1
|
Li X, Wu M, Lu J, Yu J, Chen D. Interleukin-21 as an adjuvant in cancer immunotherapy: Current advances and future directions. Biochim Biophys Acta Rev Cancer 2024; 1879:189084. [PMID: 38354828 DOI: 10.1016/j.bbcan.2024.189084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immunotherapy has revolutionized cancer treatment. However, it's well-recognized that a considerable proportion of patients fail to benefit from immunotherapy, and to improve immunotherapy response is clinically urgent. Insufficient immune infiltration and immunosuppressive tumor microenvironments (TME) are main contributors to immunotherapy resistance. Thus sustaining functional self-renewal capacity for immune cells and subverting immune-suppressive signals are potential strategies for boosting the efficacy of immunotherapy. Interleukin-21 (IL-21), a crucial cytokine, which could enhance cytotoxic function of immune cells and reduces immunosuppressive cells enrichment in TME, shows promising orientations as an immunoadjuvant in tumor immunotherapy. This review focuses on IL-21 in cancer treatment, including function and mechanisms of IL-21, preclinical and clinical studies, and future directions for IL-21-assisted therapies.
Collapse
Affiliation(s)
- Xinyang Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Shireman JM, Gonugunta N, Zhao L, Pattnaik A, Distler E, Her S, Wang X, Das R, Galipeau J, Dey M. GM-CSF and IL-7 fusion cytokine engineered tumor vaccine generates long-term Th-17 memory cells and increases overall survival in aged syngeneic mouse models of glioblastoma. Aging Cell 2023; 22:e13864. [PMID: 37165998 PMCID: PMC10352573 DOI: 10.1111/acel.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
Age-related immune dysfunctions, such as decreased T-cell output, are closely related to pathologies like cancers and lack of vaccine efficacy among the elderly. Engineered fusokine, GIFT-7, a fusion of interleukin 7 (IL-7) and GM-CSF, can reverse aging-related lymphoid organ atrophy. We generated a GIFT-7 fusokine tumor vaccine and employed it in aged syngeneic mouse models of glioblastoma and found that peripheral vaccination with GIFT-7TVax resulted in thymic regeneration and generated durable long-term antitumor immunity specifically in aged mice. Global cytokine analysis showed increased pro-inflammatory cytokines including IL-1β in the vaccinated group that resulted in hyperactivation of dendritic cells. In addition, GIFT-7 vaccination resulted in increased T-cell trafficking to the brain and robust Th-17 long-term effector memory T-cell formation. TCR-seq analysis showed increased productive frequency among detected rearrangements within the vaccinated group. Overall, our data demonstrate that aging immune system can be therapeutically augmented to generate lasting antitumor immunity.
Collapse
Affiliation(s)
- Jack M. Shireman
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Nikita Gonugunta
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Lei Zhao
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Akshita Pattnaik
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Emily Distler
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Skyler Her
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Xiaohu Wang
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Rahul Das
- Department of Medicine, Division of Hematology and OncologyUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Jaques Galipeau
- Department of Medicine, Division of Hematology and OncologyUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Mahua Dey
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| |
Collapse
|
3
|
Dai W, Qiu X, Lu C, Zou Z, Sha H, Kong W, Liu B, Du J. AGIG Chemo-Immunotherapy in Patients With Advanced Pancreatic Cancer: A Single-Arm, Single-Center, Phase 2 Study. Front Oncol 2021; 11:693386. [PMID: 34722242 PMCID: PMC8548663 DOI: 10.3389/fonc.2021.693386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background To date, chemotherapy remains the only effective treatment of unresectable pancreatic adenocarcinoma. In the past few years, the interest in immunological anticancer therapy rises sharply. AGIG is a novel chemo-immunotherapy regimen that combines nab-paclitaxel + gemcitabine chemotherapy with sequential recombinant interleukin-2 (IL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF) therapy. We conducted a single-arm prospective phase II study to determine the efficacy and safety of the first-line treatment of advanced pancreatic cancer with AGIG regimen. Methods Nab-paclitaxel (125 mg/m2) and gemcitabine (1000 mg/m2) were administered intravenously to all patients on days 1 and 8 triweekly, interleukin-2 (1000000U) and GM-CSF (100 µg) were administered subcutaneously on days 3-5 after chemotherapy. The primary end point was ORR by the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary end points included safety profile, progression-free survival (PFS), overall survival (OS). Patients’ conditions along with the efficacy and safety were assessed every two cycles. Results Between 11/2018 and 01/2020, sixty-four patients were enrolled. In the sixty-four evaluable patients, the disease control rate (DCR) and overall response rate (ORR) were 76.6% and 43.75%, respectively. The median follow-up time was 12.1 (range 7.1–22.4) months. The median PFS was 5.7 (range 1.63–15.8) months. The median OS was 14.2 (range 2.9–22.0) months. The most common adverse event was fever (75%). The incidence of III/IV grade neutropenia was 4.69%. In subgroup analyses, we found that eosinophil count in the blood elevated three times higher than baseline level predicted a longer survival. Conclusions The AGIG chemo-immunotherapy regimen has presented favorable ORR, OS, and manageable toxicities as first-line therapeutic strategy of advanced pancreatic cancer treatment. This regimen may be a novel reliable therapeutic option for patients with preserved performance status. The improvement of treatment efficiency may be related to the activation of non-specific immune response. Clinical Trial Registration https://clinicaltrials.gov/. identifier NCT03768687.
Collapse
Affiliation(s)
- Wangshu Dai
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.,The Cadre Health Care Ward, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Qiu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Huizi Sha
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Weiwei Kong
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.,The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Cheng ZX, Chu X, Wang SN, Peng XX, Li H. Six genes of ompA family shuffling for development of polyvalent vaccines against Vibrio alginolyticus and Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2018; 75:308-315. [PMID: 29438846 DOI: 10.1016/j.fsi.2018.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Polyvalent vaccines against more than one species of pathogens are especially important due to the complex ecosystem in aquaculture. We have previously shown that the development of polyvalent vaccines by shuffling six ompA genes from different bacteria with V. parahaemolyticus VP0764 primers. Here, we used the same 6 genes, V. alginolyticus VA0764 and VA1186, V. parahaemolyticus VP0764 and VP1186, E. tarda ompA and E. coli ompA, but with E. tarda ompA primers to develop new polyvalent vaccines. By this approach, we identified 7 potential polyvalent vaccines that were effective against both V. alginolyticus and E. tarda infections. Furthermore, the innate immunity triggered by the vaccines were also explored in three groups, no protection (group I), protection against V. alginolyticus (group II), and protection against both V. alginolyticus and E. tarda (group III). The transcription of IL-1β, IL-6, IL-8, C3b and NF-kB were significantly increased in group II and group III but not group I, where the expression level of group III was higher than group II. In addition, differential activities of succinate dehydrogenase were detected among the three groups. These results indicate the expansion of polyvalent vaccine reservoir with the same shuffling genes but different primers, and promote the understanding of the mechanisms of polyvalent vaccines based on vaccine-induced innate immunity.
Collapse
Affiliation(s)
- Zhi-Xue Cheng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, PR China
| | - Xiao Chu
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, PR China
| | - Sheng-Nan Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, PR China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Fercher C, Keshvari S, McGuckin MA, Barnard RT. Evolution of the magic bullet: Single chain antibody fragments for the targeted delivery of immunomodulatory proteins. Exp Biol Med (Maywood) 2017; 243:166-183. [PMID: 29256259 DOI: 10.1177/1535370217748575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immunocytokines are fusion proteins that combine the specific antigen binding capacities of an antibody or derivative thereof and the potent bioactivity of a cytokine partner. These novel biopharmaceuticals have been directed to various targets of oncological as well as non-oncological origin and a handful of promising constructs are currently advancing in the clinical trial pipeline. Several factors such as the choice of a disease specific antigen, the antibody format and the modulatory nature of the payload are crucial, not only for therapeutic efficacy and safety but also for the commercial success of such a product. In this review, we provide an overview of the basic principles and obstacles in immunocytokine design with a specific focus on single chain antibody fragment-based constructs that employ interleukins as the immunoactive component. Impact statement Selective activation of the immune system in a variety of malignancies represents an attractive approach when existing strategies have failed to provide adequate treatment options. Immunocytokines as a novel class of bifunctional protein therapeutics have emerged recently and generated promising results in preclinical and clinical studies. In order to harness their full potential, multiple different aspects have to be taken into consideration. Several key points of these fusion constructs are discussed here and should provide an outline for the development of novel products based on an overview of selected formats.
Collapse
Affiliation(s)
- Christian Fercher
- 1 School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahar Keshvari
- 2 Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Michael A McGuckin
- 2 Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Ross T Barnard
- 1 School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.,3 Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Stark FC, McCluskie MJ, Krishnan L. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8⁺ T Cells that Protect Against Subcutaneous B16-OVA Melanoma. Vaccines (Basel) 2016; 4:vaccines4040044. [PMID: 27869670 PMCID: PMC5192364 DOI: 10.3390/vaccines4040044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 01/04/2023] Open
Abstract
Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8+ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8+ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8+ T cell response of up to 45% of all circulating CD8+ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8+ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8+ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8+ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection.
Collapse
Affiliation(s)
- Felicity C Stark
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd., Ottawa, ON K1A 0R6, Canada.
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd., Ottawa, ON K1A 0R6, Canada.
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd., Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
7
|
A GMCSF and IL7 fusion cytokine leads to functional thymic-dependent T-cell regeneration in age-associated immune deficiency. Clin Transl Immunology 2015; 4:e37. [PMID: 26131365 PMCID: PMC4478872 DOI: 10.1038/cti.2015.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/16/2023] Open
Abstract
The competence of cellular immunity depends on a diverse T-cell receptor (TCR) repertoire arising from thymic output. Normal thymopoiesis arises from marrow-derived CD3(-)CD4(-)CD8(-) triple-negative T-cell progenitors (TN), which develop into mature single-positive (SP) CD4 or CD8 T cells after expressing both CD4 and CD8 (double-positive, DP) transiently, leading to de novo T-cell production. Interleukin-7 (IL7) is a singularly important common γ-chain IL involved in normal thymic development. Our previous work has demonstrated that γc cytokines fused with granulocyte-macrophage colony stimulating factor (GMCSF) at the N-terminus acquire unheralded biological properties. Therefore, to enhance thymopoiesis, we developed a novel biopharmaceutical based on the fusion of GMCSF and IL7, hereafter GIFT7. Systemic administration of GIFT7 leads to cortical thymic hyperplasia including the specific expansion of CD44(int)CD25(-) double-negative 1 (DN1) thymic progenitors. During murine cytomegalovirus (mCMV) infection of aged animals, GIFT7-mediated neo-thymopoiesis led to increased absolute numbers of viral-specific CD8(+) T cell. Our work demonstrated that thymic precursors can be therapeutically repopulated and its reconstitution leads to meaningful central and peripheral T-cell neogenesis, correcting immune dysfunction arising from age-associated thymic atrophy.
Collapse
|
8
|
Maltose-binding protein fusion allows for high level bacterial expression and purification of bioactive mammalian cytokine derivatives. PLoS One 2014; 9:e106724. [PMID: 25198691 PMCID: PMC4157803 DOI: 10.1371/journal.pone.0106724] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/05/2014] [Indexed: 01/25/2023] Open
Abstract
Fusokines are chimeric proteins generated by the physical coupling of cytokines in a single polypeptide, resulting in proteins with highly pleiotropic activity and the potential to treat cancer and autoimmune ailments. For instance, the fusokine GIFT15 (GM-CSF and Interleukin 15 Fusion Transgene) has been shown to be a powerful immunosuppressive protein able to convert naïve B cells into IL-10-producing B cells. To date, the mammalian cell systems used for the expression of GIFT15 allow for secretion of the protein in the culturing media, an inefficient system for producing GMP-compliant fusokines. In this study we report the bacterial expression of bioactive recombinant GIFT15 (rGIFT15). Indeed, there is a constant demand to improve the expression systems for therapeutic proteins. Expression of a maltose-binding protein (MBP) fusion protein efficiently allowed the accumulation of soluble protein in the intracellular milieu. Optimizing the bacterial culture significantly increased the yield of recombinant protein. The biological activity of rGIFT15 was comparable to that of fusokine derived from a mammalian source. This approach led to the production of soluble, endotoxin-free functional protein, averaging 5 mg of rGIFT15 per liter of culture. This process is amenable to scale up for the development of Food and Drug Administration (FDA)-compliant immune-modulatory rGIFT15.
Collapse
|
9
|
da Cunha NB, Vianna GR, da Almeida Lima T, Rech E. Molecular farming of human cytokines and blood products from plants: Challenges in biosynthesis and detection of plant-produced recombinant proteins. Biotechnol J 2013; 9:39-50. [DOI: 10.1002/biot.201300062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/21/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022]
|
10
|
Zikich D, Schachter J, Besser MJ. Immunotherapy for the management of advanced melanoma: the next steps. Am J Clin Dermatol 2013; 14:261-72. [PMID: 23516145 DOI: 10.1007/s40257-013-0013-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melanoma is an immunogenic tumor that can induce a natural immune response. A number of immunotherapy-based approaches have been developed over the past decades, and certain degrees of effectiveness were achieved by the use of cytokines, adoptive cell transfer and T-cell immune modulators. Currently, interleukin-2 and the immune stimulatory antibody, ipilimumab, are the only two approved immunotherapies for metastatic melanoma, but various new therapies are in promising developmental stages. This comprehensive review will discuss the latest achievements of immunotherapy and emerging directions for the management of advanced melanoma.
Collapse
Affiliation(s)
- Dragoslav Zikich
- Ella Institute for Melanoma, Sheba Medical Center, 52621 Ramat-Gan, Israel
| | | | | |
Collapse
|
11
|
Wei F, Wang H, Zhang J, Chen X, Li C, Huang Q. Pharmacokinetics of combined gene therapy expressing constitutive human GM-CSF and hyperthermia-regulated human IL-12. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:5. [PMID: 23352035 PMCID: PMC3564871 DOI: 10.1186/1756-9966-32-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/20/2013] [Indexed: 11/10/2022]
Abstract
Background An adenovirus that expresses both interleukin (IL)-12 and granulocyte-macrophage colony-stimulating-factor (GM-CSF) has been proven to be very effective in treating several tumors, but causes serious normal tissue toxicities. Methods In this study, a novel adenoviral vector was constructed by placing the human GM-CSF gene under the control of the CMV-IE promoter and human IL-12 gene under the control of heat shock protein 70B gene promoter. Both hGM-CSF and hIL-12 expressions in virus-infected tumor cells were analyzed in vitro and in vivo when underlying single or multiple rounds of hyperthermia. Results We observed constitutive high expression of human GM-CSF and heat-induced expression of human IL-12 after a single round of hyperthermia post viral infection. The heat-induced hIL-12 expression exhibited a pulse-like pattern with a peak at 24 hrs followed by a decline 48 hrs post heat stress. Repeated heat treatment was more effective in inducing hIL-12 expression than a one-time heat treatment. Interestedly, we also observed that constitutive expression of hGM-CSF could be stimulated by heat stress in tested tumor cells. Conclusion Our study provided a novel strategy for combined gene therapy that allows constitutive expression of a non-toxic gene such as GM-CSF and heat-induced expression of a toxic gene such as IL-12. In addition, our study also showed that hyperthermia can be used to trigger gene expression in temporal and special manner.
Collapse
Affiliation(s)
- Fang Wei
- Experimental Research Center, First People's Hospital, School of Medicine, Shanghai Jiaotong University, 85 Wujin Road, Shanghai, 200080, China.
| | | | | | | | | | | |
Collapse
|
12
|
Inducible IL10(+) suppressor B cells inhibit CNS inflammation and T helper 17 polarization. Mol Ther 2012; 20:1767-77. [PMID: 22760541 DOI: 10.1038/mt.2012.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GMCSF) and MCP3 (aka CCL7) exert complementary, nonoverlapping, proimmune effects on responsive lymphoid and myeloid cells. We hypothesized that a synthetic cytokine linking GMCSF to MCP3 (hereafter GMME3) as part of a single polypeptide would acquire novel, therapeutically desirable immunomodulatory properties. We demonstrate that GMME3 has enhanced CC-chemokine receptor (CCR)-mediated intracellular Ca(++) mobilization with selective effects on the CD21(hi)CD24(hi) CD1.d(hi) subset of splenic B cells inducing substantial interleukin 10 (IL10) production. We demonstrate that B(GMME3) exert their suppressive effect through an IL10-mediated inhibition of antigen presentation. More importantly, B(GMME3) inhibit the reactivation of encephalomyelitis (EAE)-derived or TGFβ/IL6 differentiated Th17 cells by altering their polarization toward a Th1 or Th2 phenotype. The secretion of interferon-γ (IFNγ) and IL4 in turn inhibits IL17 production. The adoptive transfer of B(GMME3), but not IL10(-/-) B(GMME3) cells, to mice symptomatic with experimental autoimmune encephalitis significantly improves their disease score and inhibits lymphoid infiltration into the central nervous system (CNS). We propose that designed CCR modulators such as GMME3, allows for conversion of naive B-cells to a novel suppressor phenotype allowing for the personalized cell therapy of autoimmune ailments.
Collapse
|
13
|
Abstract
Melanoma has traditionally been considered an immunogenic tumor. A number of approaches have been studied for enhancement of antitumor immunity. The first cytokine approved for the treatment of metastatic melanoma, interleukin-2, has resulted in prolonged responses in a small subset of patients, providing hope that immunotherapy might be useful for this disease. Ipilimumab, a monoclonal antibody to CTLA-4, was recently approved and a number of other promising investigational approaches are currently being pursued. This manuscript discusses more recent advances in the treatment of melanoma employing a variety of immune-enhancing approaches.
Collapse
Affiliation(s)
- Christopher R Zito
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06451, USA
| | | |
Collapse
|
14
|
Recombinant cytokines from plants. Int J Mol Sci 2011; 12:3536-52. [PMID: 21747693 PMCID: PMC3131577 DOI: 10.3390/ijms12063536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/11/2011] [Accepted: 05/27/2011] [Indexed: 11/21/2022] Open
Abstract
Plant-based platforms have been successfully applied for the last two decades for the efficient production of pharmaceutical proteins. The number of commercialized products biomanufactured in plants is, however, rather discouraging. Cytokines are small glycosylated polypeptides used in the treatment of cancer, immune disorders and various other related diseases. Because the clinical use of cytokines is limited by high production costs they are good candidates for plant-made pharmaceuticals. Several research groups explored the possibilities of cost-effective production of animal cytokines in plant systems. This review summarizes recent advances in this field.
Collapse
|
15
|
Affiliation(s)
- U Andersson
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|