1
|
Lux C, Tilger T, Geisler R, Soltwedel O, von Klitzing R. Model Surfaces for Paper Fibers Prepared from Carboxymethyl Cellulose and Polycations. Polymers (Basel) 2021; 13:435. [PMID: 33573003 PMCID: PMC7866410 DOI: 10.3390/polym13030435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
For tailored functionalization of cellulose based papers, the interaction between paper fibers and functional additives must be understood. Planar cellulose surfaces represent a suitable model system for studying the binding of additives. In this work, polyelectrolyte multilayers (PEMs) are prepared by alternating dip-coating of the negatively charged cellulose derivate carboxymethyl cellulose and a polycation, either polydiallyldimethylammonium chloride (PDADMAC) or chitosan (CHI). The parameters varied during PEM formation are the concentrations (0.1-5 g/L) and pH (pH = 2-6) of the dipping solutions. Both PEM systems grow exponentially, revealing a high mobility of the polyelectrolytes (PEs). The pH-tunable charge density leads to PEMs with different surface topographies. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) reveal the pronounced viscoelastic properties of the PEMs. Ellipsometry and atomic force microscopy (AFM) measurements show that the strong and highly charged polycation PDADMAC leads to the formation of smooth PEMs. The weak polycation CHI forms cellulose model surfaces with higher film thicknesses and a tunable roughness. Both PEM systems exhibit a high water uptake when exposed to a humid environment, with the PDADMAC/carboxymethyl cellulose (CMC) PEMs resulting in a water uptake up to 60% and CHI/CMC up to 20%. The resulting PEMs are water-stable, but water swellable model surfaces with a controllable roughness and topography.
Collapse
Affiliation(s)
| | | | | | | | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technical University of Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany; (C.L.); (T.T.); (R.G.); (O.S.)
| |
Collapse
|
2
|
Di Napoli B, Franco S, Severini L, Tumiati M, Buratti E, Titubante M, Nigro V, Gnan N, Micheli L, Ruzicka B, Mazzuca C, Angelini R, Missori M, Zaccarelli E. Gellan Gum Microgels as Effective Agents for a Rapid Cleaning of Paper. ACS APPLIED POLYMER MATERIALS 2020; 2:2791-2801. [PMID: 32685926 PMCID: PMC7359273 DOI: 10.1021/acsapm.0c00342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 05/21/2023]
Abstract
Microgel particles have emerged in the past few years as a favorite model system for fundamental science and for innovative applications ranging from the industrial to biomedical fields. Despite their potentialities, no works so far have focused on the application of microgels for cultural heritage preservation. Here we show their first use for this purpose, focusing on wet paper cleaning. Exploiting their retentive properties, microgels are able to clean paper, ensuring more controlled water release from the gel matrix, in analogy to their macroscopic counterpart, i.e., hydrogels. However, differently from these, the reduced size of microgels makes them suitable to efficiently penetrate in the porous structure of the paper and to easily adapt to the irregular surfaces of the artifacts. To test their cleaning abilities, we prepare microgels made of Gellan gum, a natural and widespread material already used as a hydrogel for paper cleaning, and apply them to modern and ancient paper samples. Combining several diagnostic methods, we show that microgels performances in the removal of cellulose degradation byproducts for ancient samples are superior to commonly employed hydrogels and water bath treatments. This is due to the composition and morphology of ancient paper, which facilitates microgels penetration. For modern paper cleaning, performances are at least comparable to the other methods. In all cases, the application of microgels takes place on a time scale of a few minutes, opening the way for widespread use as a rapid and efficient cleaning protocol.
Collapse
Affiliation(s)
- Benedetta Di Napoli
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Silvia Franco
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Leonardo Severini
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Manuel Tumiati
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Elena Buratti
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Mattia Titubante
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Valentina Nigro
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
- ENEA
C.R. Frascati, FSN-TECFIS-MNF
Photonics Micro and Nanostructures Laboratory, Via E. Fermi 45, 00044 Frascati, Roma, Italy
| | - Nicoletta Gnan
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Laura Micheli
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Barbara Ruzicka
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Claudia Mazzuca
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Roberta Angelini
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Mauro Missori
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Emanuela Zaccarelli
- Institute
for Complex Systems, National Research Council (CNR-ISC) and Department
of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| |
Collapse
|
3
|
Cheng H, Lu Y, Zhu D, Rosa L, Han F, Ma M, Su W, Francis PS, Zheng Y. Plasmonic nanopapers: flexible, stable and sensitive multiplex PUF tags for unclonable anti-counterfeiting applications. NANOSCALE 2020; 12:9471-9480. [PMID: 32347271 DOI: 10.1039/d0nr01223h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Highly flexible and stable plasmonic nanopaper comprised of silver nanocubes and cellulose nanofibres was fabricated through a self-assembly-assisted vacuum filtration method. It shows significant enhancement of the fluorescence emission with an enhancement factor of 3.6 and Raman scattering with an enhancement factor of ∼104, excellent mechanical properties with tensile strength of 62.9 MPa and Young's modulus of 690.9 ± 40 MPa, and a random distribution of Raman intensity across the whole nanopaper. The plasmonic nanopapers were encoded with multiplexed optical signals including surface plasmon resonance, fluorescence and SERS for anti-counterfeiting applications, thus increasing security levels. The surface plasmon resonance and fluorescence information is used as the first layer of security and can be easily verified by the naked eye, while the unclonable SERS mapping is used as the second layer of security and can be readily authenticated by Raman spectroscopy using a computer vision technique.
Collapse
Affiliation(s)
- Hongrui Cheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yongfeng Lu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Dongyan Zhu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Lorenzo Rosa
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, via Vivarelli 10, I-41125, Modena, Italy and Applied Plasmonics Lab, Centre for Micro-Photonics, Mail H74, P.O. Box 218, Hawthorn, VIC 3122, Australia
| | - Fei Han
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Mingguo Ma
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wenyue Su
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Paul S Francis
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Yuanhui Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Machado Charry E, Neumann M, Lahti J, Schennach R, Schmidt V, Zojer K. Pore space extraction and characterization of sack paper using μ-CT. J Microsc 2018; 272:35-46. [PMID: 29984831 DOI: 10.1111/jmi.12730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/14/2018] [Accepted: 06/10/2018] [Indexed: 11/28/2022]
Abstract
We show that attenuation X-ray microcomputed tomography (μ-CT) offers a route to extract the three-dimensional pore space of paper reliably enough to distinguish samples of the same kind of paper. Here, we consider two sack kraft papers for cement bags with different basis weights and thicknesses. Sample areas of approximately 5 mm2 with a resolution of 1.5 μm are considered, i.e. sizes that exceed sample areas of 2 mm2 for which the pore structure was previously studied in the literature. The image segmentation is based on indicator kriging as a local method that removes ambiguities in assigning voxels as pore or as fibre. The microstructures of the two samples are statistically compared in terms of descriptors such as sheet thickness, porosity, fractions of externally accessible pores and mean geodesic tortuosity. We demonstrate that a quantitative comparison of samples in terms of porosity and thickness requires a common definition of the sheet surfaces. Finally, the statistical pore space analysis based on the μ-CT scans reliably reveals structural differences between the two paper samples, but only when several descriptors are used. LAY DESCRIPTION This paper is a seemingly abundant material. Its intrinsic porosity enables a vast number of commercial applications. Particularly packing products, e.g. cement bags, often incorporate sack kraft paper due to its high porosity and its additional mechanical strength. A direct quantification of the porosity of sack kraft papers is, hence, particularly desirable. However, experimental quantification of paper porosity or its pore network properties is difficult and often highly indirect. A nondestructive statistical analysis of the 3D microstructure holds the promise to directly assess the pores. In particular, X-ray microcomputed tomography (μ-CT), frequently with sub-μm resolution, has been established as a method to study the fibre and pore structure of paper. The question arises, whether statistical analysis of the microstructure based on μ-CT imaging is sufficient to reliably distinguish between different sack kraft papers. Here, we explore whether the pore structure of paper can be extracted and statistically analysed for larger sample areas despite the fact that a larger sample size directly translates into a lower resolution of the μ-CT scan. We expect that a large sample size increases the region of interest on the basis of which samples can be better distinguished. A lowered resolution poses a severe challenge for the reliable identification of voxel data as pores or as fibres, because the contrast between paper fibres (made of cellulose) and air, which is established due to X-ray absorption, is weak. We show that we can reliably assign each voxel by using an indicator kriging as a two-step method. This method performs an initial voxel identification based on the overall distribution of measured grey values and refines the identification by inspecting the local environment of each voxel. For the pore space extracted in such a way, we can then compute quantities that are related to the geometry and connectivity properties of the pores. Furthermore, we address a paper-born challenge for such an analysis, i.e. we cannot always unambiguously tell whether a pore is located inside the paper sheet or at the surface of the paper. The way the paper surfaces are extracted from the microstructure decisively determines the final specifications of the predicted properties. A significant distinction of the samples is only possible when comparing the properties of the pore network.
Collapse
Affiliation(s)
- E Machado Charry
- Institute of Solid State Physics and NAWI Graz, Graz University of Technology, Graz, Austria.,Christian Doppler Laboratory for Mass Transport through Paper, Graz University of Technology, Graz, Austria
| | - M Neumann
- Institute of Stochastics, Ulm University, Ulm, Germany
| | - J Lahti
- Institute for Paper, Pulp, and Fiber Technology, Graz University of Technology, Graz, Austria
| | - R Schennach
- Institute of Solid State Physics and NAWI Graz, Graz University of Technology, Graz, Austria.,Christian Doppler Laboratory for Mass Transport through Paper, Graz University of Technology, Graz, Austria
| | - V Schmidt
- Institute of Stochastics, Ulm University, Ulm, Germany
| | - K Zojer
- Institute of Solid State Physics and NAWI Graz, Graz University of Technology, Graz, Austria.,Christian Doppler Laboratory for Mass Transport through Paper, Graz University of Technology, Graz, Austria
| |
Collapse
|
5
|
Al-Qararah AM, Ekman A, Hjelt T, Kiiskinen H, Timonen J, Ketoja JA. Porous structure of fibre networks formed by a foaming process: a comparative study of different characterization techniques. J Microsc 2016; 264:88-101. [PMID: 27159162 DOI: 10.1111/jmi.12420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/14/2016] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
Abstract
Recent developments in making fibre materials using the foam-forming technology have raised a need to characterize the porous structure at low material density. In order to find an effective choice among all structure-characterization methods, both two-dimensional and three-dimensional techniques were used to explore the porous structure of foam-formed samples made with two different types of cellulose fibre. These techniques included X-ray microtomography, scanning electron microscopy, light microscopy, direct surface imaging using a CCD camera and mercury intrusion porosimetry. The mean pore radius for a varying type of fibre and for varying foam properties was described similarly by all imaging methods. X-ray microtomography provided the most extensive information about the sheet structure, and showed more pronounced effects of varying foam properties than the two-dimensional imaging techniques. The two-dimensional methods slightly underestimated the mean pore size of samples containing stiff CTMP fibres with void radii exceeding 100 μm, and overestimated the pore size for the samples containing flexible kraft fibres with all void radii below 100 μm. The direct rapid surface imaging with a CCD camera showed surprisingly strong agreement with the other imaging techniques. Mercury intrusion porosimetry was able to characterize pore sizes also in the submicron region and led to an increased relative volume of the pores in the range of the mean bubble size of the foam. This may be related to the penetration channels created by the foam-fibre interaction.
Collapse
Affiliation(s)
- Ahmad M Al-Qararah
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
| | - Axel Ekman
- Department of Physics and Nanoscience Center, , P.O. Box 35, FI-40014 University of Jyvaskyla, Finland
| | - Tuomo Hjelt
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
| | - Harri Kiiskinen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
| | - Jussi Timonen
- Department of Physics and Nanoscience Center, , P.O. Box 35, FI-40014 University of Jyvaskyla, Finland
| | - Jukka A Ketoja
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland.
| |
Collapse
|
6
|
Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 2013; 44:331-8. [DOI: 10.1016/j.micron.2012.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 11/24/2022]
|
7
|
Tobjörk D, Österbacka R. Paper electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:1935-61. [PMID: 21433116 DOI: 10.1002/adma.201004692] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/03/2011] [Indexed: 05/07/2023]
Abstract
Paper is ubiquitous in everyday life and a truly low-cost substrate. The use of paper substrates could be extended even further, if electronic applications would be applied next to or below the printed graphics. However, applying electronics on paper is challenging. The paper surface is not only very rough compared to plastics, but is also porous. While this is detrimental for most electronic devices manufactured directly onto paper substrates, there are also approaches that are compatible with the rough and absorptive paper surface. In this review, recent advances and possibilities of these approaches are evaluated and the limitations of paper electronics are discussed.
Collapse
Affiliation(s)
- Daniel Tobjörk
- Center for Functional Materials, Graduate School of Materials Research, Physics, Department of Natural Sciences, Åbo Akademi University, Turku, FI-20500, Finland
| | | |
Collapse
|
8
|
DAHLSTRÖM C, ALLEM R, UESAKA T. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy. J Microsc 2011; 241:179-87. [DOI: 10.1111/j.1365-2818.2010.03418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
WILTSCHE M, DONOSER M, KRITZINGER J, BAUER W. Automated serial sectioning applied to 3D paper structure analysis. J Microsc 2010; 242:197-205. [DOI: 10.1111/j.1365-2818.2010.03459.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|