1
|
Todini L, Fantuz F. Thirst: neuroendocrine regulation in mammals. Vet Res Commun 2023; 47:1085-1101. [PMID: 36932281 DOI: 10.1007/s11259-023-10104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Animals can sense their changing internal needs and then generate specific physiological and behavioural responses in order to restore homeostasis. Water-saline homeostasis derives from balances of water and sodium intake and output (drinking and diuresis, salt appetite and natriuresis), maintaining an appropriate composition and volume of extracellular fluid. Thirst is the sensation which drives to seek and consume water, regulated in the central nervous system by both neural and chemical signals. Water and electrolyte homeostasis depends on finely tuned physiological mechanisms, mainly susceptible to plasma Na+ concentration and osmotic pressure, but also to blood volume and arterial pressure. Increases of osmotic pressure as slight as 1-2% are enough to induce thirst ("homeostatic" or cellular), by activation of specialized osmoreceptors in the circumventricular organs, outside the blood-brain barrier. Presystemic anticipatory signals (by oropharyngeal or gastrointestinal receptors) inhibit thirst when fluids are ingested, or stimulate thirst associated with food intake. Hypovolemia, arterial hypotension, Angiotensin II stimulate thirst ("hypovolemic thirst", "extracellular dehydration"). Hypervolemia, hypertension, Atrial Natriuretic Peptide inhibit thirst. Circadian rhythms of thirst are also detectable, driven by suprachiasmatic nucleus in the hypothalamus. Such homeostasis and other fundamental physiological functions (cardiocircolatory, thermoregulation, food intake) are highly interdependent.
Collapse
Affiliation(s)
- Luca Todini
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via della Circonvallazione 93/95, 62024, Matelica, MC, Italy.
| | - Francesco Fantuz
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via della Circonvallazione 93/95, 62024, Matelica, MC, Italy
| |
Collapse
|
2
|
Porcari CY, Cambiasso MJ, Mecawi AS, Caeiro XE, Antunes-Rodrigues J, Vivas LM, Godino A. Molecular neurobiological markers in the onset of sodium appetite. Sci Rep 2022; 12:14224. [PMID: 35987984 PMCID: PMC9392805 DOI: 10.1038/s41598-022-18220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Sodium appetite is a motivational state involving homeostatic behavior, seeking the ingest of salty substances after sodium loss. There is a temporal dissociation between sodium depletion (SD) and the appearance of sodium appetite. However, the responsible mechanisms for this delay remain poorly elucidated. In the present study, we measured the temporal changes at two and 24 h after SD in the gene expression of key elements within excitatory, inhibitory, and sensory areas implicated in the signaling pathways involved in the onset of sodium appetite. In SD rats, we observed that the expression of critical components within the brain control circuit of sodium appetite, including Angiotensin-type-1 receptor (Agtr1a), Oxytocin-(OXT-NP)-neurophysin-I, and serotonergic-(5HT)-type-2c receptor (Htr2c) were modulated by SD, regardless of time. However, we observed reduced phosphorylation of mitogen-activated protein kinases (MAPK) at the paraventricular nucleus (PVN) and increased oxytocin receptor (Oxtr) mRNA expression at the anteroventral of the third ventricle area (AV3V), at two hours after SD, when sodium appetite is inapparent. At twenty-four hours after SD, when sodium appetite is released, we observed a reduction in the mRNA expression of the transient receptor potential channel 1gene (Trpv1) and Oxtr in the AV3V and the dorsal raphe nucleus, respectively. The results indicate that SD exerts a coordinated timing effect, promoting the appearance of sodium appetite through changes in MAPK activity and lower Trpv1 channel and Oxtr expression that trigger sodium consumption to reestablish the hydroelectrolytic homeostasis.
Collapse
Affiliation(s)
- Cintia Y Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina
| | - María J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - André S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Ximena E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Laura M Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina.
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
3
|
Signal Transduction of Mineralocorticoid and Angiotensin II Receptors in the Central Control of Sodium Appetite: A Narrative Review. Int J Mol Sci 2021; 22:ijms222111735. [PMID: 34769164 PMCID: PMC8584094 DOI: 10.3390/ijms222111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Sodium appetite is an innate behavior occurring in response to sodium depletion that induces homeostatic responses such as the secretion of the mineralocorticoid hormone aldosterone from the zona glomerulosa of the adrenal cortex and the stimulation of the peptide hormone angiotensin II (ANG II). The synergistic action of these hormones signals to the brain the sodium appetite that represents the increased palatability for salt intake. This narrative review summarizes the main data dealing with the role of mineralocorticoid and ANG II receptors in the central control of sodium appetite. Appropriate keywords and MeSH terms were identified and searched in PubMed. References to original articles and reviews were examined, selected, and discussed. Several brain areas control sodium appetite, including the nucleus of the solitary tract, which contains aldosterone-sensitive HSD2 neurons, and the organum vasculosum lamina terminalis (OVLT) that contains ANG II-sensitive neurons. Furthermore, sodium appetite is under the control of signaling proteins such as mitogen-activated protein kinase (MAPK) and inositol 1,4,5-thriphosphate (IP3). ANG II stimulates salt intake via MAPK, while combined ANG II and aldosterone action induce sodium intake via the IP3 signaling pathway. Finally, aldosterone and ANG II stimulate OVLT neurons and suppress oxytocin secretion inhibiting the neuronal activity of the paraventricular nucleus, thus disinhibiting the OVLT activity to aldosterone and ANG II stimulation.
Collapse
|
4
|
Andrade-Franzé GMF, Pereira ED, Yosten GLC, Samson WK, Menani JV, De Luca LA, Andrade CAF. Blockade of ERK1/2 activation with U0126 or PEP7 reduces sodium appetite and angiotensin II-induced pressor responses in spontaneously hypertensive rats. Peptides 2021; 136:170439. [PMID: 33166587 DOI: 10.1016/j.peptides.2020.170439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
Spontaneously hypertensive rats (SHRs) have increased daily or induced sodium intake compared to normotensive rats. In normotensive rats, angiotensin II (ANG II)-induced sodium intake is blocked by the inactivation of p42/44 mitogen-activated protein kinase, also known as extracellular signal-regulated protein kinase1/2 (ERK1/2). Here we investigated if inhibition of ERK1/2 pathway centrally would change sodium appetite and intracerebroventricular (icv) ANG II-induced pressor response in SHRs. SHRs (280-330 g, n = 07-14/group) with stainless steel cannulas implanted in the lateral ventricle (LV) were used. Water and 0.3 M NaCl intake was induced by the treatment with the diuretic furosemide + captopril (angiotensin converting enzyme blocker) subcutaneously or 24 h of water deprivation (WD) followed by 2 h of partial rehydration with only water (PR). The blockade of ERK1/2 activation with icv injections of U0126 (MEK1/2 inhibitor, 2 mM; 2 μl) reduced 0.3 M NaCl intake induced by furosemide + captopril (5.0 ± 1.0, vs. vehicle: 7.3 ± 0.7 mL/120 min) or WD-PR (4.6 ± 1.3, vs. vehicle: 10.3 ± 1.4 mL/120 min). PEP7 (selective inhibitor of AT1 receptor-mediated ERK1/2 activation, 2 nmol/2 μL) icv also reduced WD-PR-induced 0.3 M NaCl (2.8 ± 0.7, vs. vehicle: 6.8 ± 1.4 mL/120 min). WD-PR-induced water intake was also reduced by U0126 or PEP7. In addition, U0126 or PEP7 icv reduced the pressor response to icv ANG II. Therefore, the present results suggest that central AT1 receptor-mediated ERK1/2 activation is part of the mechanisms involved in sodium appetite and ANG II-induced pressor response in SHRs.
Collapse
Affiliation(s)
- G M F Andrade-Franzé
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - E D Pereira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - G L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - W K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - C A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Souza MM, Vechiato FMV, Debarba LK, Leao RM, Dias MVS, Pereira AA, Cruz JC, Elias LLK, Antunes-Rodrigues J, Ruginsk SG. Effects of Hyperosmolality on Hypothalamic Astrocytic Area, mRNA Expression and Glutamate Balance In Vitro. Neuroscience 2020; 442:286-295. [PMID: 32599125 DOI: 10.1016/j.neuroscience.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
During prolonged dehydration, body fluid homeostasis is challenged by extracellular fluid (ECF) hyperosmolality, which induce important functional changes in the hypothalamus, in parallel with other effector responses, such as the activation of the local renin-angiotensin system (RAS). Therefore, in the present study we investigated the role of sodium-driven ECF hyperosmolality on glial fibrillary acid protein (GFAP) immunoreactivity and protein expression, membrane capacitance, mRNA expression of RAS components and glutamate balance in cultured hypothalamic astrocytes. Our data show that hypothalamic astrocytes respond to increased hyperosmolality with a similar decrease in GFAP expression and membrane capacitance, indicative of reduced cellular area. Hyperosmolality also downregulates the transcript levels of angiotensinogen and both angiotensin-converting enzymes, whereas upregulates type 1a angiotensin II receptor mRNA. Incubation with hypertonic solution also decreases the immunoreactivity to the membrane glutamate/aspartate transporter (GLAST) as well as tritiated-aspartate uptake by astrocytes. This latter effect is completely restored to basal levels when astrocytes previously exposed to hypertonicity are incubated under isotonic conditions. Together with a direct effect on two important local signaling systems (glutamate and RAS), these synaptic rearrangements driven by astrocytes may accomplish for a coordinated increase in the excitatory drive onto the hypothalamic neurosecretory system, ultimately culminating with increased AVP release in response to hyperosmolality.
Collapse
Affiliation(s)
- M M Souza
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - F M V Vechiato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - R M Leao
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - M V S Dias
- Natural Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - A A Pereira
- Food and Drugs Department, Pharmaceutical Sciences Faculty, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - J C Cruz
- Biotechnology Center, Department of Biotechnology, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - S G Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Monteiro LRN, Marangon PB, Elias LLK, Reis LC, Antunes-Rodrigues J, Mecawi AS. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain. J Neuroendocrinol 2017; 29. [PMID: 28836382 DOI: 10.1111/jne.12530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
Abstract
Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium diet consumption.
Collapse
Affiliation(s)
- L R N Monteiro
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - P B Marangon
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - L L K Elias
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - L C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - A S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
8
|
Almeida-Pereira G, Coletti R, Mecawi AS, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol and angiotensin II crosstalk in hydromineral balance: Role of the ERK1/2 and JNK signaling pathways. Neuroscience 2016; 322:525-38. [PMID: 26951941 DOI: 10.1016/j.neuroscience.2016.02.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/17/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
The angiotensin II (ANGII) receptor AT1 plays an important role in the control of hydromineral balance, mediating the dipsogenic and natriorexigenic effects and neuroendocrine responses of ANGII. While estradiol (E2) is known to modulate several actions of ANGII in the brain, the molecular and cellular mechanisms of the interaction between E2 and ANGII and its physiological role in the control of body fluids remain unclear. We investigated the influence of E2 (40 μg/kg) pretreatment and extracellular-signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) cell signaling on the dipsogenic and natriorexigenic effects, as well as the neuroendocrine responses to angiotensinergic central stimulation in ovariectomized rats (OVX). We showed that the inhibitory effect of E2 on ANGII-induced water and sodium intake requires the ERK1/2 and JNK signaling pathways. On the other hand, E2 pretreatment prevents the ANGII-induced phosphorylation of ERK and JNK in the lamina terminalis. E2 therapy decreased oxytocin (OT) and vasopressin (AVP) secretion and decreased ERK1/2 phosphorylation in the supraoptic and paraventricular nuclei (SON and PVN, respectively). We found that the AVP secretion induced by ANGII required ERK1/2 signaling, but OT secretion did not involve ERK1/2 signaling. Taken together, these results demonstrate that E2 modulates ANGII-induced water and sodium intake and AVP secretion by affecting the ERK1/2 and JNK pathways in the lamina terminalis and ERK1/2 signaling in the hypothalamic nuclei (PVN and SON) in OVX rats.
Collapse
Affiliation(s)
- G Almeida-Pereira
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
| | - R Coletti
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - A S Mecawi
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, Brazil
| | - L C Reis
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
9
|
Yosten GLC, Liu J, Ji H, Sandberg K, Speth R, Samson WK. A 5'-upstream short open reading frame encoded peptide regulates angiotensin type 1a receptor production and signalling via the β-arrestin pathway. J Physiol 2015; 594:1601-5. [PMID: 26333095 DOI: 10.1113/jp270567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
AUG sequences and short open reading frames are commonly present in the 5'-leader sequence of G protein-coupled receptor mRNAs. The presence of these upstream AUG sequences has been demonstrated to inhibit downstream receptor translation efficiency and, most recently, receptor signal transduction. A seven amino acid peptide encoded by a short open reading frame in exon 2 of the angiotensin type 1a receptor has been shown to inhibit non-G protein-coupled signalling of angiotensin II, without altering the classical G protein-coupled pathway activated by the ligand. This finding may lead to the development of a new class of angiotensin receptor antagonists with activities biased for one, but not all, of the signalling cascades activated by angiotensin II, which could have therapeutic implications for the myriad hormones and neurotransmitters that signal through G protein-coupled receptors.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jun Liu
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Hong Ji
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Robert Speth
- Department of Pharmaceutical Sciences, Nova University, Fort Lauderdale, FL, USA
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Coble JP, Grobe JL, Johnson AK, Sigmund CD. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. Am J Physiol Regul Integr Comp Physiol 2014; 308:R238-49. [PMID: 25519738 DOI: 10.1152/ajpregu.00486.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is critical for cells to maintain a homeostatic balance of water and electrolytes because disturbances can disrupt cellular function, which can lead to profound effects on the physiology of an organism. Dehydration can be classified as either intra- or extracellular, and different mechanisms have developed to restore homeostasis in response to each. Whereas the renin-angiotensin system (RAS) is important for restoring homeostasis after dehydration, the pathways mediating the responses to intra- and extracellular dehydration may differ. Thirst responses mediated through the angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptors (AT2R) respond to extracellular dehydration and intracellular dehydration, respectively. Intracellular signaling factors, such as protein kinase C (PKC), reactive oxygen species (ROS), and the mitogen-activated protein (MAP) kinase pathway, mediate the effects of central angiotensin II (ANG II). Experimental evidence also demonstrates the importance of the subfornical organ (SFO) in mediating some of the fluid intake effects of central ANG II. The purpose of this review is to highlight the importance of the SFO in mediating fluid intake responses to dehydration and ANG II.
Collapse
Affiliation(s)
| | - Justin L Grobe
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
12
|
Grafe LA, Takacs AE, Yee DK, Flanagan-Cato LM. The role of the hypothalamic paraventricular nucleus and the organum vasculosum lateral terminalis in the control of sodium appetite in male rats. J Neurosci 2014; 34:9249-60. [PMID: 25009258 PMCID: PMC4087205 DOI: 10.1523/jneurosci.3979-13.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 05/16/2014] [Accepted: 06/05/2014] [Indexed: 11/21/2022] Open
Abstract
Angiotensin II (AngII) and aldosterone cooperate centrally to produce a robust sodium appetite. The intracellular signaling and circuitry that underlie this interaction remain unspecified. Male rats pretreated with both deoxycorticosterone (DOC; a synthetic precursor of aldosterone) and central AngII exhibited a marked sodium intake, as classically described. Disruption of inositol trisphosphate signaling, but not extracellular-regulated receptor kinase 1 and 2 signaling, prevented the cooperativity of DOC and AngII on sodium intake. The pattern of expression of the immediate early gene product cFos was used to identify key brain regions that may underlie this behavior. In the paraventricular nuclei (PVN) of the hypothalamus, DOC pretreatment diminished both AngII-induced cFos induction and neurosecretion of oxytocin, a peptide expressed in the PVN. Conversely, in the organum vasculosum lateral terminalis (OVLT), DOC pretreatment augmented cFos expression. Immunohistochemistry identified a substantial presence of oxytocin fibers in the OVLT. In addition, when action potentials in the PVN were inhibited with intraparenchymal lidocaine, AngII-induced sodium ingestion was exaggerated. Intriguingly, this treatment also increased the number of neurons in the OVLT expressing AngII-induced cFos. Collectively, these results suggest that the behavioral cooperativity between DOC and AngII involves the alleviation of an inhibitory oxytocin signal, possibly relayed directly from the PVN to the OVLT.
Collapse
Affiliation(s)
| | | | | | - Loretta M Flanagan-Cato
- Neuroscience Graduate Group, Departments of Psychology and the Mahoney Institute of Neurological Sciences, University of Pennsylvania, Philadelphia Pennsylvania 19104
| |
Collapse
|
13
|
Coble JP, Cassell MD, Davis DR, Grobe JL, Sigmund CD. Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. Am J Physiol Regul Integr Comp Physiol 2014; 307:R376-86. [PMID: 24965793 DOI: 10.1152/ajpregu.00216.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased activity of the renin-angiotensin system within the brain elevates fluid intake, blood pressure, and resting metabolic rate. Renin and angiotensinogen are coexpressed within the same cells of the subfornical organ, and the production and action of ANG II through the ANG II type 1 receptor in the subfornical organ (SFO) are necessary for fluid intake due to increased activity of the brain renin-angiotensin system. We generated an inducible model of ANG II production by breeding transgenic mice expressing human renin in neurons controlled by the synapsin promoter with transgenic mice containing a Cre-recombinase-inducible human angiotensinogen construct. Adenoviral delivery of Cre-recombinase causes SFO-selective induction of human angiotensinogen expression. Selective production of ANG II in the SFO results in increased water intake but did not change blood pressure or resting metabolic rate. The increase in water intake was ANG II type 1 receptor-dependent. When given a choice between water and 0.15 M NaCl, these mice increased total fluid and sodium, but not water, because of an increased preference for NaCl. When provided a choice between water and 0.3 M NaCl, the mice exhibited increased fluid, water, and sodium intake, but no change in preference for NaCl. The increase in fluid intake was blocked by an inhibitor of PKC, but not ERK, and was correlated with increased phosphorylated cyclic AMP response element binding protein in the subfornical organ. Thus, increased production and action of ANG II specifically in the subfornical organ are sufficient on their own to mediate an increase in drinking through PKC.
Collapse
Affiliation(s)
- Jeffrey P Coble
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Martin D Cassell
- Department of Anatomy and Cell Biology, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deborah R Davis
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Justin L Grobe
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
14
|
Liu J, Yosten GLC, Ji H, Zhang D, Zheng W, Speth RC, Samson WK, Sandberg K. Selective inhibition of angiotensin receptor signaling through Erk1/2 pathway by a novel peptide. Am J Physiol Regul Integr Comp Physiol 2014; 306:R619-26. [PMID: 24523339 DOI: 10.1152/ajpregu.00562.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A seven-amino acid peptide (PEP7) is encoded within a short open reading frame within exon 2 (E2) in the 5'-leader sequence (5'LS) upstream of the rat ANG 1a-receptor (rAT1aR) mRNA. A chemically synthesized PEP7 markedly inhibited ANG II-induced Erk1/2 activation in cell culture by 62% compared with a scrambled PEP7 (sPEP7) [pErk1/2/Erk1/2 (AU): ANG II, 1.000 ± 0.0, ANG II+PEP7, 0.3812 ± 0.086, ANG II+sPEP7, 1.069 ± 0.18; n = 3]. Under these same conditions, PEP7 had no effect on ANG II-stimulated inositol-trisphosphate production. PEP7 also had no effect on epidermal growth factor- and phorbol methyl ester-induced Erk1/2 activation, suggesting PEP7 selectively inhibits AT1aR-mediated Erk1/2 signaling. PEP7 intracerebroventricularly inhibited ANG II-induced saline intake but had no effect on water intake in male and female rats, indicating PEP7 also selectively inhibits the ANG II-Erk1/2 pathway in vivo since saline drinking is Erk1/2-mediated, while water drinking is not. PEP7 inhibition of ANG II-induced saline ingestion was rapidly reversed by a subsequent intracerebroventricular injection of an oxytocin antagonist, suggesting when PEP7 blocks ANG II-stimulated Erk1/2 activation, animals no longer ingest saline to balance the continued water intake, due to the release of oxytocin and its subsequent inhibitory effects on saline drinking. PEP7 also attenuated ANG II-induced increases in arterial pressure by 35% compared with sPEP7 at the same dose. Thus, we have identified a novel peptide encoded within the rAT1aR E2 that selectively inhibits Erk1/2 activation, resulting in physiological consequences for sodium ingestion and arterial pressure that may have implications for treating sodium-sensitive diseases like hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Jun Liu
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, D.C.
| | | | | | | | | | | | | | | |
Collapse
|