1
|
Štěrbová K, Raisová Stuchlíková L, Rychlá N, Kohoutová K, Babičková M, Skálová L, Matoušková P. Phylogenetic and transcriptomic study of aldo-keto reductases in Haemonchus contortus and their inducibility by flubendazole. Int J Parasitol Drugs Drug Resist 2024; 25:100555. [PMID: 38996597 PMCID: PMC11296255 DOI: 10.1016/j.ijpddr.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.
Collapse
Affiliation(s)
- Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Kateřina Kohoutová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Markéta Babičková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Sedky D, Abd El-Aziz TH, Nasr SM, Abdel-Aziem SH, Hassan NMF, Mohamed AH, Abou Zeina HAA. Regulatory effect of Balanites aegyptiaca ethanol extract on oxidant/antioxidant status, inflammatory cytokines, and cell apoptosis gene expression in goat abomasum experimentally infected with Haemonchus Contortus. Trop Anim Health Prod 2024; 56:195. [PMID: 38963478 PMCID: PMC11224118 DOI: 10.1007/s11250-024-04023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 07/05/2024]
Abstract
This experiment aimed to assess the regulatory effects of treatment with Balanites aegyptiaca fruit ethanol extract (BA-EE) on oxidant/antioxidant status, anti-inflammatory cytokines, and cell apoptosis gene expression in the abomasum of Haemonchus contortus-infected goats. Twenty goat kids were assigned randomly to four equal groups: (G1) infected-untreated, (G2) uninfected-BA-EE-treated, (G3) infected-albendazole-treated, (G4) infected-BA-EE-treated. Each goat in (G1), (G3), and (G4) was orally infected with 10,000 infective third-stage larvae. In the fifth week postinfection, single doses of albendazole (5 mg/kg.BW) and BA-EE (9 g/kg.BW) were given orally. In the ninth week postinfection, the animals were slaughtered to obtain abomasum specimens. The following oxidant/antioxidant markers were determined: malondialdehyde (MDA), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT). The mRNA gene expression of cytokines (IL-3, IL-6, IL-10, TNF-α) and cell apoptosis markers (Bax, Bcl-2) were estimated. (G1) showed significantly reduced GSH content and GST and SOD activities but a markedly increased MDA level. (G3) and (G4) revealed a markedly lower MDA level with pronouncedly elevated GSH, SOD, and GST levels. The antioxidant properties of BA-EE were superior to those of albendazole. The mRNA gene expressions of IL-3, IL-6, IL-10, TNF-α, and Bax-2 were upregulated in (G1) but downregulated in (G3) and (G4). Bcl-2 and Bcl-2/Bax ratio expression followed a reverse course in the infected and both treated groups. We conclude that BA-EE treatment has a protective role in the abomasum of H. contortus-infected goats. This could be attributed to its antioxidant properties and ability to reduce pro-inflammatory cytokines and cell apoptosis.
Collapse
Affiliation(s)
- Doaa Sedky
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Post Box, 12622, Giza, Egypt
| | - Tamer Helmi Abd El-Aziz
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Post Box, 12622, Giza, Egypt
| | - Soad Mohamed Nasr
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Post Box, 12622, Giza, Egypt
| | | | - Noha Mahmoud Fahmy Hassan
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Post Box, 12622, Giza, Egypt
| | - Amira Hassan Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Post Box, 12211, Giza, Egypt
| | - Hala Abdalla Ahmed Abou Zeina
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Post Box, 12622, Giza, Egypt.
| |
Collapse
|
3
|
Effects of Echinococcus multilocularis metacestodes infection and drug treatment on the activities of biotransformation enzymes in mouse liver. Parasitol Int 2022; 89:102563. [PMID: 35202818 DOI: 10.1016/j.parint.2022.102563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
The changes of biotransformation enzymes will substantially affect the host's ability to metabolize drugs and other xenobiotic compounds. In order to further elucidate this process and promote the development in treatment of echinococcosis, we investigated the effects of Echinococcus multilocularis infection and drug treatment on biotransformation enzymes in mouse liver. In microsomal and cytosolic fractions, from the six activities assayed, significant decrease of glutathione S-transferases (GST) activity and significant increase of 7-pentoxyresorufin (PROD) and NADPH-cytochrome P450 reductase (CPR) activity were observed in the mice. infected with E. multilocularis metacestodes. In addition, after six weeks treatment of albendazole in E. multilocularis infected mice, significant decreased GST activity and significant increase of 7- ethoxyresorufin (EROD), PROD, and particularly 3-fold higher 7-methoxyresorufin (MROD) activity were observed. The 3-bromopyruvate treated mice only exhibited significantly lower GST activity. Our results demonstrate that E. multilocularis metacestodes infection can affect the activities of main hepatic biotransformation enzymes and such alterations of activity may further affect the hepatic biotransformation of xenobiotics. Moreover, albendazole and 3-bromopyruvate, the promising potential drug against Echinococcus, affected different hepatic biotransformation enzymes and may affect their metabolism. The findings will help to develop rational treatments with less side effects and promote the development of more efficient treatments against E. multilocularis.
Collapse
|
4
|
Martinez MN, Greene J, Kenna L, Kissell L, Kuhn M. The Impact of Infection and Inflammation on Drug Metabolism, Active Transport, and Systemic Drug Concentrations in Veterinary Species. Drug Metab Dispos 2020; 48:631-644. [PMID: 32503881 DOI: 10.1124/dmd.120.090704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Within human medicine, it is recognized that the pharmacokinetics (PK) of many compounds can be altered by the presence of inflammation or infection. Research into the reason for these changes has identified pathways that can influence drug absorption, clearance, and tissue distribution. In contrast, far less is known about these relationships within the framework of veterinary medicine. Rather, most of the PK data generated in veterinary species employs healthy subjects, raising the question of whether these studies are founded on an assumption that healthy animal PK reflect that of the diseased animal population. Accordingly, there is a need to explore the PK changes that might be overlooked in studies that recruit only healthy animals to assesses drug PK. To meet this objective, we surveyed the published literature for studies focusing on the impact of disease on the dose-exposure relationships in food-producing and companion animal species. We found that, consistent with humans and laboratory species, both up- and downregulation of the various cytochrome isoenzymes and/or transporters have occurred in response to an increase in inflammatory mediators. These findings suggest that, as observed in human medicine, the potential for differences in the drug PK in healthy versus animal patients points to a need for acquiring a greater understanding of these changes and how they may influence the dose-exposure-response relationships of veterinary pharmaceuticals. SIGNIFICANCE STATEMENT: This review delivers a much-needed summary of published information that provides insights into how disease and inflammation can influence the appropriateness of extrapolating laboratory-based dose-exposure-response relationships to what will occur in the actual veterinary patient. As part of this review, we also examine some of the method-associated issues to be considered when assessing the reported nature and magnitude of these changes.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Rockville, Maryland (M.N.M., J.G., L.Ke., L.Ki.) and Department of Large Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, Michigan (M.K.)
| | - Jonathan Greene
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Rockville, Maryland (M.N.M., J.G., L.Ke., L.Ki.) and Department of Large Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, Michigan (M.K.)
| | - Leslie Kenna
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Rockville, Maryland (M.N.M., J.G., L.Ke., L.Ki.) and Department of Large Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, Michigan (M.K.)
| | - Lindsey Kissell
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Rockville, Maryland (M.N.M., J.G., L.Ke., L.Ki.) and Department of Large Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, Michigan (M.K.)
| | - Matt Kuhn
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Rockville, Maryland (M.N.M., J.G., L.Ke., L.Ki.) and Department of Large Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, Michigan (M.K.)
| |
Collapse
|
5
|
Zhou X, Liu J, Zhang J, Wei Y, Li H. Flubendazole inhibits glioma proliferation by G2/M cell cycle arrest and pro-apoptosis. Cell Death Discov 2018. [PMID: 29531815 PMCID: PMC5841417 DOI: 10.1038/s41420-017-0017-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Flubendazole, FDA-approved anthelmintic, has been widely used in treating testinal parasites. In the recent years, Flubendazole has been reported to exert anticancer activities. On the other hand, little was known about the effects of Flubendazole on gliomas. Here we demonstrated a novel effect of flubendazole on glioma cells. We found that Flubendazole inhibited cell proliferation and promoted cell apoptosis of glioma cell lines in vitro, and suppressed tumor growth in xenograft models by intraperitoneal injection. However, Flubendazole might have no influence on cell migration. Mechanism study reaveled that Flubendazole caused cell cycle arrest in G2/M phase, which partly account for the suppressed proliferation. Consistently, Flubendazole induced P53 expression and reduced Cyclin B1 and p-cdc2 expression in glioma cells. In addition, Flubendazole promoted cell apoptosis by regulating the classical apoptosis protein BCL-2 expression. These observations suggest that Flubendazole exerts anti-proliferation and pro-apoptosis effects in Glioma through affecting the cell cycle and intrinsic apoptotic signaling, and indicate a novel utilization of Flubendazole in the treatment of Glioma.
Collapse
Affiliation(s)
- Xumin Zhou
- 1Department of Pathogen Biology and Experimental teaching center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Jumei Liu
- 1Department of Pathogen Biology and Experimental teaching center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Jinming Zhang
- 2Department of Respiration, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Yong Wei
- 1Department of Pathogen Biology and Experimental teaching center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Hua Li
- 1Department of Pathogen Biology and Experimental teaching center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
6
|
Stuchlíková LR, Skálová L, Szotáková B, Syslová E, Vokřál I, Vaněk T, Podlipná R. Biotransformation of flubendazole and fenbendazole and their effects in the ribwort plantain (Plantago lanceolata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:681-687. [PMID: 28934712 DOI: 10.1016/j.ecoenv.2017.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Although veterinary anthelmintics represent an important source of environmental pollution, the fate of anthelmintics and their effects in plants has not yet been studied sufficiently. The aim of our work was to identify metabolic pathways of the two benzimidazole anthelmintics fenbendazole (FBZ) and flubendazole (FLU) in the ribwort plantain (Plantago lanceolata L.). Plants cultivated as in vitro regenerants were used for this purpose. The effects of anthelmintics and their biotransformation products on plant oxidative stress parameters were also studied. The obtained results showed that the enzymatic system of the ribwort plantain was able to uptake FLU and FBZ, translocate them in leaves and transform them into several metabolites, particularly glycosides. Overall, 12 FLU and 22 FBZ metabolites were identified in the root, leaf base and leaf top of the plant. Concerning the effects of FLU and FBZ, both anthelmintics in the ribwort plantain cells caused significant increase of proline concentration (up to twice), a well-known stress marker, and significant decrease of superoxide dismutase activity (by 50%). In addition, the activities of four other antioxidant enzymes were significantly changed after either FLU or FBZ exposition. This could indicate a certain risk of oxidative damage in plants influenced by anthelmintics, particularly when they are under other stress conditions.
Collapse
Affiliation(s)
- Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Eliška Syslová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02 Praha 6 - Lysolaje, Czech Republic.
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Tomáš Vaněk
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02 Praha 6 - Lysolaje, Czech Republic.
| | - Radka Podlipná
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02 Praha 6 - Lysolaje, Czech Republic.
| |
Collapse
|
7
|
Prchal L, Vokřál I, Kašný M, Rejšková L, Zajíčková M, Lamka J, Skálová L, Lecová L, Szotáková B. Metabolism of drugs and other xenobiotics in giant liver fluke (Fascioloides magna). Xenobiotica 2015; 46:132-40. [DOI: 10.3109/00498254.2015.1060370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Biotransformation of anthelmintics and the activity of drug-metabolizing enzymes in the tapeworm Moniezia expansa. Parasitology 2014; 142:648-59. [DOI: 10.1017/s0031182014001711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYThe sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.
Collapse
|
9
|
Vokřál I, Jirásko R, Stuchlíková L, Bártíková H, Szotáková B, Lamka J, Várady M, Skálová L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Vet Parasitol 2013; 196:373-81. [PMID: 23587403 DOI: 10.1016/j.vetpar.2013.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/27/2022]
Abstract
The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites.
Collapse
Affiliation(s)
- Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
10
|
The metabolism of flubendazole and the activities of selected biotransformation enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Parasitology 2012; 139:1309-16. [PMID: 22717022 DOI: 10.1017/s0031182012000595] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Haemonchus contortus is one of the most pathogenic parasites of small ruminants (e.g. sheep and goat). The treatment of haemonchosis is complicated because of recurrent resistance of H. contortus to common anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug flubendazole (FLU) and the activities of selected biotransformation enzymes towards model xenobiotics in 4 different strains of H. contortus: the ISE strain (susceptible to common anthelmintics), ISE-S (resistant to ivermectin), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (resistant to all common anthelmintics). H. contortus adults were collected from the abomasums from experimentally infected lambs. The in vitro as well as ex vivo experiments were performed and analysed using HPLC with spectrofluorimetric and mass-spectrometric detection. In all H. contortus strains, 4 different FLU metabolites were detected: FLU with a reduced carbonyl group (FLU-R), glucose conjugate of FLU-R and 2 glucose conjugates of FLU. In the resistant strains, the ex vivo formation of all FLU metabolites was significantly higher than in the susceptible ISE strain. The multi-resistant WR strain formed approximately 5 times more conjugates of FLU than the susceptible ISE strain. The in vitro data also showed significant differences in FLU metabolism, in the activities of UDP-glucosyltransferase and several carbonyl-reducing enzymes between the susceptible and resistant H. contortus strains. The altered activities of certain detoxifying enzymes might protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites.
Collapse
|
11
|
The activity of drug-metabolizing enzymes and the biotransformation of selected anthelmintics in the model tapeworm Hymenolepis diminuta. Parasitology 2012; 139:809-18. [DOI: 10.1017/s0031182011002265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe drug-metabolizing enzymes of some helminths can deactivate anthelmintics and therefore partially protect helminths against these drugs' toxic effect. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (albendazole, flubendazole, mebendazole) in the rat tapeworm Hymenolepis diminuta, a species often used as a model tapeworm. In vitro and ex vivo experiments were performed. Metabolites of the anthelmintics were detected and identified by HPLC with spectrofluorometric or mass–spectrometric detection. The enzymes of H. diminuta are able to reduce the carbonyl group of flubendazole, mebendazole and several other xenobiotics. Although the activity of a number of oxidation enzymes was determined, no oxidative metabolites of albendazole were detected. Regarding conjugation enzymes, a high activity of glutathione S-transferase was observed. A methyl derivative of reduced flubendazole was the only conjugation metabolite identified in ex vivo incubations of H. diminuta with anthelmintics. The results revealed that H. diminuta metabolized flubendazole and mebendazole, but not albendazole. The biotransformation pathways found in H. diminuta differ from those described in Moniezia expanza and suggest the interspecies differences in drug metabolism not only among classes of helminths, but even among tapeworms.
Collapse
|
12
|
Factors affecting pharmacokinetics of benzimidazole anthelmintics in food-producing animals: The consequences and potential risks. Res Vet Sci 2011; 91:333-41. [DOI: 10.1016/j.rvsc.2010.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 10/27/2010] [Accepted: 12/18/2010] [Indexed: 01/26/2023]
|