1
|
Martinez-Romero E, Peix A, Hungria M, Mousavi SA, Martinez-Romero J, Young P. Guidelines for the description of rhizobial symbiovars. Int J Syst Evol Microbiol 2024; 74:006373. [PMID: 38743471 PMCID: PMC11165908 DOI: 10.1099/ijsem.0.006373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.
Collapse
Affiliation(s)
| | - Alvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
- Interacción Planta-Microorganismo, Universidad de Salamanca, Unidad Asociada al CSIC por el IRNASA, Salamanca, Spain
| | | | | | | | - Peter Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
2
|
Eardly B, Meor Osman WA, Ardley J, Zandberg J, Gollagher M, van Berkum P, Elia P, Marinova D, Seshadri R, Reddy TBK, Ivanova N, Pati A, Woyke T, Kyrpides N, Loedolff M, Laird DW, Reeve W. The Genome of the Acid Soil-Adapted Strain Rhizobium favelukesii OR191 Encodes Determinants for Effective Symbiotic Interaction With Both an Inverted Repeat Lacking Clade and a Phaseoloid Legume Host. Front Microbiol 2022; 13:735911. [PMID: 35495676 PMCID: PMC9048898 DOI: 10.3389/fmicb.2022.735911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
Although Medicago sativa forms highly effective symbioses with the comparatively acid-sensitive genus Ensifer, its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant R. favelukesii strains. Rhizobium favelukesii has the unusual ability of being able to nodulate and fix nitrogen, albeit sub-optimally, not only with M. sativa but also with the promiscuous host Phaseolus vulgaris. Here we describe the genome of R. favelukesii OR191 and genomic features important for the symbiotic interaction with both of these hosts. The OR191 draft genome contained acid adaptation loci, including the highly acid-inducible lpiA/acvB operon and olsC, required for production of lysine- and ornithine-containing membrane lipids, respectively. The olsC gene was also present in other acid-tolerant Rhizobium strains but absent from the more acid-sensitive Ensifer microsymbionts. The OR191 symbiotic genes were in general more closely related to those found in Medicago microsymbionts. OR191 contained the nodA, nodEF, nodHPQ, and nodL genes for synthesis of polyunsaturated, sulfated and acetylated Nod factors that are important for symbiosis with Medicago, but contained a truncated nodG, which may decrease nodulation efficiency with M. sativa. OR191 contained an E. meliloti type BacA, which has been shown to specifically protect Ensifer microsymbionts from Medicago nodule-specific cysteine-rich peptides. The nitrogen fixation genes nifQWZS were present in OR191 and P. vulgaris microsymbionts but absent from E. meliloti-Medicago microsymbionts. The ability of OR191 to nodulate and fix nitrogen symbiotically with P. vulgaris indicates that this host has less stringent requirements for nodulation than M. sativa but may need rhizobial strains that possess nifQWZS for N2-fixation to occur. OR191 possessed the exo genes required for the biosynthesis of succinoglycan, which is required for the Ensifer-Medicago symbiosis. However, 1H-NMR spectra revealed that, in the conditions tested, OR191 exopolysaccharide did not contain a succinyl substituent but instead contained a 3-hydroxybutyrate moiety, which may affect its symbiotic performance with Medicago hosts. These findings provide a foundation for the genetic basis of nodulation requirements and symbiotic effectiveness with different hosts.
Collapse
Affiliation(s)
- Bertrand Eardly
- Berks College, Penn State University, Reading, PA, United States
| | - Wan Adnawani Meor Osman
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Julie Ardley
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Jaco Zandberg
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Margaret Gollagher
- Murdoch University Associate, Murdoch, WA, Australia.,Sustainability and Biosecurity, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Peter van Berkum
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Patrick Elia
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Dora Marinova
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - Rekha Seshadri
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - T B K Reddy
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Natalia Ivanova
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Amrita Pati
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Nikos Kyrpides
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Matthys Loedolff
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Damian W Laird
- Centre for Water Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Wayne Reeve
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
3
|
Hailu Gunnabo A, Geurts R, Wolde-meskel E, Degefu T, E. Giller K, van Heerwaarden J. Phylogeographic distribution of rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. FEMS Microbiol Ecol 2021; 97:fiab046. [PMID: 33724341 PMCID: PMC8016211 DOI: 10.1093/femsec/fiab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/13/2021] [Indexed: 11/19/2022] Open
Abstract
Rhizobia are soilborne bacteria that form symbiotic relations with legumes and fix atmospheric nitrogen. The nitrogen fixation potential depends on several factors such as the type of host and symbionts and on environmental factors that affect the distribution of rhizobia. We isolated bacteria nodulating common bean in Southern Ethiopia to evaluate their genetic diversity and phylogeography at nucleotide, locus (gene/haplotype) and species levels of genetic hierarchy. Phylogenetically, eight rhizobial genospecies (including previous collections) were determined that had less genetic diversity than found among reference strains. The limited genetic diversity of the Ethiopian collections was due to absence of many of the Rhizobium lineages known to nodulate beans. Rhizobium etli and Rhizobiumphaseoli were predominant strains of bean-nodulating rhizobia in Ethiopia. We found no evidence for a phylogeographic pattern in strain distribution. However, joint analysis of the current and previous collections revealed differences between the two collections at nucleotide level of genetic hierarchy. The differences were due to genospecies Rhizobium aethiopicum that was only isolated in the earlier collection.
Collapse
Affiliation(s)
- Ashenafi Hailu Gunnabo
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Endalkachew Wolde-meskel
- World Agroforestry Centre (ICRAF), c/o ILRI Campus, Gurd Shola PO Box 5689, Addis Ababa, 4 Ethiopia
| | - Tulu Degefu
- International Crops Research Institute for the Semi-Arid Tropics, c/o ILRI Campus, Gurd Shola PO Box 5689, Addis Ababa, Ethiopia
| | - Ken E. Giller
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Joost van Heerwaarden
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| |
Collapse
|
4
|
Efstathiadou E, Savvas D, Tampakaki AP. Genetic diversity and phylogeny of indigenous rhizobia nodulating faba bean (Vicia faba L.) in Greece. Syst Appl Microbiol 2020; 43:126149. [PMID: 33161357 DOI: 10.1016/j.syapm.2020.126149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/19/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022]
Abstract
The genetic diversity and phylogeny of fast-growing rhizobia isolated from root nodules of Vicia faba grown in different geographical regions of Greece were assessed. Although Rhizobium leguminosarum sv. viciae is the most common symbiont of Vicia spp. in European soils, there is no available information on native rhizobia nodulating faba bean in Greece. Seventy bacterial strains were isolated and grouped into sixteen distinct profiles based on BOX-PCR fingerprinting. The phylogenetic affiliation was further defined by sequence analysis of the rrs and multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and gyrB). Fifty-eight isolates were affiliated with recently described genospecies gsF-2, represented by R. laguerreae FB206T, whereas six isolates were closely related to gsB and two isolates might belong to gsA. Two isolates assigned to R. hidalgonense and another two non-nodulating strains could not be assigned to any validly defined species and possibly belong to a new rhizobial lineage. Interestingly, R. laguerreae strains were commonly found at all sampling sites, suggesting that they could be the main symbionts of faba beans in Greek soils. According to the phylogenies of two symbiosis-related genes (nodC and nifH), all nodulating isolates belonged to symbiovar (sv.) viciae harboring four distinct nodC gene haplotypes and they were grouped into two clades together with strains assigned to R. laguerreae and genospecies of R. leguminosarum isolated from other countries and continents. This is the first report that R. hidalgonense strains belong to sv. viciae. No correlation was observed between the nodC haplotypes, geographic origin and chromosomal background of the isolates in the study.
Collapse
Affiliation(s)
- Evdoxia Efstathiadou
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece
| | - Anastasia P Tampakaki
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece.
| |
Collapse
|
5
|
Novel putative Mesorhizobium and Ensifer genomospecies together with a novel symbiovar psoraleae nodulate legumes of agronomic interest grown in Tunisia. Syst Appl Microbiol 2020; 43:126067. [PMID: 32005490 DOI: 10.1016/j.syapm.2020.126067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Forty rhizobial strains were isolated from Lotus creticus, L. pusillus and Bituminaria bituminosa endemic to Tunisia, and they belonged to the Mesorhizobium and Ensifer genera based on 16S rDNA sequence phylogeny. According to the concatenated recA and glnII sequence-based phylogeny, four Bituminaria isolates Pb5, Pb12, Pb8 and Pb17 formed a monophyletic group with Mesorhizobium chacoense ICMP14587T, whereas four other strains Pb1, Pb6, Pb13 and Pb15 formed two separate lineages within the Ensifer genus. Among the L. pusillus strains, Lpus9 and Lpus10 showed a 96% identical nucleotide with Ensifer meliloti CCBAU83493T; whereas six other strains could belong to previously undescribed Mesorhizobium and Ensifer species. For L. creticus strains, Lcus37, Lcus39 and Lcus44 showed 98% sequence identity with Ensifer aridi JNVU TP6, and Lcus42 shared a 96% identical nucleotide with Ensifer meliloti CCBAU83493T; whereas another four strains were divergent from all the described Ensifer and Mesorhizobium species. The analysis of the nodC gene-based phylogeny identified four symbiovar groups; Mesorhizobium sp. sv. anthyllidis (Lpus3 and Lpus11 from L. pusillus, Lcus43 from L. creticus), Ensifer medicae sv. meliloti (four strains from L. creticus and two strains from L. pusillus), E. meliloti sv. meliloti (four from L. creticus, four from L. pusillus and four from B. bituminosa). In addition, four B. bituminosa strains (Pb5, Pb8, Pb12, and Pb17) displayed a distinctive nodC sequence distant from those of other symbiovars described to date. According to their symbiotic gene sequences and host range, the B. bituminosa symbionts (Pb5, Pb8, Pb12 and Pb17) would represent a new symbiovar of M. chacoense for which sv. psoraleae is proposed.
Collapse
|
6
|
Rhizobia Isolated from the Relict Legume Vavilovia formosa Represent a Genetically Specific Group within Rhizobium leguminosarum biovar viciae. Genes (Basel) 2019; 10:genes10120991. [PMID: 31805683 PMCID: PMC6947851 DOI: 10.3390/genes10120991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023] Open
Abstract
Twenty-two rhizobia strains isolated from three distinct populations (North Ossetia, Dagestan, and Armenia) of a relict legume Vavilovia formosa were analysed to determine their position within Rhizobium leguminosarum biovar viciae (Rlv). These bacteria are described as symbionts of four plant genera Pisum, Vicia, Lathyrus, and Lens from the Fabeae tribe, of which Vavilovia is considered to be closest to its last common ancestor (LCA). In contrast to biovar viciae, bacteria from Rhizobium leguminosarum biovar trifolii (Rlt) inoculate plants from the Trifolieae tribe. Comparison of house-keeping (hkg: 16S rRNA, glnII, gltA, and dnaK) and symbiotic (sym: nodA, nodC, nodD, and nifH) genes of the symbionts of V. formosa with those of other Rlv and Rlt strains reveals a significant group separation, which was most pronounced for sym genes. A remarkable feature of the strains isolated from V. formosa was the presence of the nodX gene, which was commonly found in Rlv strains isolated from Afghanistan pea genotypes. Tube testing of different strains on nine plant species, including all genera from the Fabeae tribe, demonstrated that the strains from V. formosa nodulated the same cross inoculation group as the other Rlv strains. Comparison of nucleotide similarity in sym genes suggested that their diversification within sym-biotypes of Rlv was elicited by host plants. Contrariwise, that of hkg genes could be caused by either local adaptation to soil niches or by genetic drift. Long-term ecological isolation, genetic separation, and the ancestral position of V. formosa suggested that symbionts of V. formosa could be responsible for preserving ancestral genotypes of the Rlv biovar.
Collapse
|
7
|
Rajnovic I, Ramírez-Bahena MH, Sánchez-Juanes F, González-Buitrago JM, Kajic S, Peix Á, Velázquez E, Sikora S. Phylogenetic diversity of rhizobia nodulating Phaseolus vulgaris in Croatia and definition of the symbiovar phaseoli within the species Rhizobium pisi. Syst Appl Microbiol 2019; 42:126019. [PMID: 31635886 DOI: 10.1016/j.syapm.2019.126019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 11/27/2022]
Abstract
Phaseolus vulgaris is a legume indigenous to America which is currently cultivated in Europe including countries located at the Southeast of this continent, such as Croatia, where several local landraces are cultivated, most of them of Andean origin. In this work we identify at species and symbiovar levels several fast-growing strains able to form effective symbiosis with P. vulgaris in different Croatian soils. The identification at species level based on MALDI-TOF MS and core gene sequence analysis showed that most of these strains belong to the species R. leguminosarum, R. hidalgonense and R. pisi. In addition, several strains belong to putative new species phylogenetically close to R. ecuadorense and R. sophoriradicis. All Croatian strains belong to the symbiovar phaseoli and harbour the α and γ nodC alleles typical for American strains of this symbiovar. Nevertheless, most of Croatian strains harboured the γ nodC gene allele supporting its Andean origin since it is also dominant in other European countries, where Andean cultivars of P. vulgaris are traditionally cultivated, as occurs in Spain. The only strains harbouring the α nodC allele belong to R. hidalgonense and R. pisi, this last only containing the symbiovars viciae and trifolii to date. This is the first report about the presence in Europe of the species R. hidalgonense, the nodulation of P. vulgaris by R. pisi and the existence of the symbiovar phaseoli within this species. These results significantly increase the knowledge of the biogeography of Rhizobium-P. vulgaris symbiosis.
Collapse
Affiliation(s)
- Ivana Rajnovic
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | - José-Manuel González-Buitrago
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | - Sanja Kajic
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain; Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain.
| | - Encarna Velázquez
- Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain; Departmento de Microbiología y Genética and CIALE, Universidad de Salamanca, Salamanca, Spain
| | - Sanja Sikora
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian CF, Vinuesa P, Wei G, Willems A, Zilli J, Young P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852-1863. [PMID: 31140963 DOI: 10.1099/ijsem.0.003426] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.
Collapse
Affiliation(s)
| | - Mitchell Andrews
- 2Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Julie Ardley
- 3School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | | | - Estelle Jumas-Bilak
- 5UMR 5569, Department of Microbiology, Faculty of Pharmacy, University of Montpellier, France
| | - Nemanja Kuzmanović
- 6Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Florent Lassalle
- 7Department of Infectious Disease Epidemiology - MRC Centre for Outbreak Analysis and Modelling, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Kristina Lindström
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Ridha Mhamdi
- 9Centre of Biotechnology of Borj-Cedria, BP 901 Hammam-lif 2050, Tunisia
| | - Esperanza Martínez-Romero
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Lionel Moulin
- 11IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Seyed Abdollah Mousavi
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Xavier Nesme
- 12LEM, UCBL, CNRS, INRA, Univ Lyon, Villeurbanne, France
| | - Alvaro Peix
- 13Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Joanna Puławska
- 14Department of Phytopathology, Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Emma Steenkamp
- 15Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Tomasz Stępkowski
- 16Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Chang-Fu Tian
- 17State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, College of Biological Sciences, China Agricultural University, 100193, Beijing, PR China
| | - Pablo Vinuesa
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Gehong Wei
- 18Northwest A&F University, Yangling, Shaanxi, PR China
| | - Anne Willems
- 19Department Biochemistry and Microbiology, Lab. Microbiology, Ghent University, Belgium
| | - Jerri Zilli
- 20Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, Brazil, 23891-000, Brazil
| | - Peter Young
- 21Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
9
|
Wang X, Liu D, Luo Y, Zhao L, Liu Z, Chou M, Wang E, Wei G. Comparative analysis of rhizobial chromosomes and plasmids to estimate their evolutionary relationships. Plasmid 2018; 96-97:13-24. [PMID: 29608935 DOI: 10.1016/j.plasmid.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
In the present study, complete genomic sequences retrieved from 57 rhizobial strains that covered four genera including 11 species were analyzed comprehensively. The four types of replicons: chromosomes, chromids, nonsymbiotic plasmids, and symbiotic plasmids were investigated and compared among these strains. Results showed that co-evolution occurred among these four replicons based on the similarities in average nucleotide identity. High correlation coefficient r values were observed between chromosomes and chromids, as well as between chromosomes and nonsymbiotic plasmids. Chromosomes and symbiotic plasmids showed different phylogenetic topology based on their core genes. Population structure analyses were performed to extrapolate the evolutionary histories of the test strains based on their chromosomal and symbiotic plasmid background. This resulted in seven ancestral types for chromosomal genes and three ancestral types for symbiotic plasmid genes. Rhizobial strains containing chromosome genes with ancestral type E tend to contain symbiotic plasmid genes with ancestral type II, while rhizobial strains containing chromosome genes with ancestral type G tend to contain symbiotic plasmid genes with ancestral type III. Seventeen strains associated with different host plant species which harbored the symbiotic genes with ancestral type I, exhibited high genetic diversity. In addition, Fu's test of the symbiotic plasmid genes with ancestral type III had undergone an expansion event, implying the influence of negative selection on these symbiotic plasmid genes.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Dongying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China.
| |
Collapse
|
10
|
Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae , Rhizobium laguerreae and two new genospecies. Syst Appl Microbiol 2018; 41:122-130. [DOI: 10.1016/j.syapm.2017.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022]
|
11
|
Rebollar EA, Sandoval-Castellanos E, Roessler K, Gaut BS, Alcaraz LD, Benítez M, Escalante AE. Seasonal Changes in a Maize-Based Polyculture of Central Mexico Reshape the Co-occurrence Networks of Soil Bacterial Communities. Front Microbiol 2017; 8:2478. [PMID: 29326663 PMCID: PMC5741676 DOI: 10.3389/fmicb.2017.02478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/29/2017] [Indexed: 11/26/2022] Open
Abstract
The milpa is a traditional maize-based polyculture in Mexico that is typically practiced as rainfed agriculture. Because milpa cultivation has been practiced over a vast range of environmental and cultural conditions, this agroecosystem is recognized as an important repository of biological and cultural diversity. As for any agroecosystem, the relationship between plant development and the biogeochemical processes of the soil is critical. Although the milpa has been studied from different perspectives, the diversity and structure of microbial communities within milpa soils remain largely unexplored. In this study, we surveyed a milpa system in Central Mexico across cropping season: before planting (dry season; t1), during the early growth of plants (onset of the rainy season; t2), and before harvest (end of the rainy season; t3). In order to examine changes in community structure through time, we characterized bacterial diversity through high-throughput sequencing of 16S rRNA gene amplicons and recorded the nutrient status of multiple (5–10) soil samples from our milpa plots. We estimated microbial diversity from a total of 90 samples and constructed co-occurrence networks. Although we did not find significant changes in diversity or composition of bacterial communities across time, we identified significant rearrangements in their co-occurrence network structure. We found particularly drastic changes between the first and second time points. Co-occurrence analyses showed that the bacterial community changed from a less structured network at (t1) into modules with a non-random composition of taxonomic groups at (t2). We conclude that changes in bacterial communities undetected by standard diversity analyses can become evident when performing co-occurrence network analyses. We also postulate possible functional associations among keystone groups suggested by biogeochemical processes. This study represents the first contribution on soil microbial diversity of a maize-based polyculture and shows its dynamic nature in short-term scales.
Collapse
Affiliation(s)
- Eria A Rebollar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Kyria Roessler
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Luis D Alcaraz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana E Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Porter SS, Faber-Hammond JJ, Friesen ML. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes. FEMS Microbiol Ecol 2017; 94:4705886. [DOI: 10.1093/femsec/fix168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Joshua J Faber-Hammond
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
- Department of Plant Pathology, Washington State University, P.O. Box 646430 Pullman, WA 99164, USA
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420 Pullman, WA 99164, USA
| |
Collapse
|
13
|
de Oliveira-Francesquini JP, Hungria M, Savi DC, Glienke C, Aluizio R, Kava V, Galli-Terasawa LV. Differential colonization by bioprospected rhizobial bacteria associated with common bean in different cropping systems. Can J Microbiol 2017; 63:682-689. [PMID: 28376308 DOI: 10.1139/cjm-2016-0784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we evaluated the diversity of rhizobia isolated from root nodules on common bean (Phaseolus vulgaris) derived from Andean and Mesoamerican centers and grown under field and greenhouse conditions. Genetic characterization of isolates was performed by sequencing analyses of the 16S rRNA gene and 2 housekeeping genes, recA and glnII, and by the amplification of nifH. Symbiotic efficiency was evaluated by examining nodulation, plant biomass production, and plant nitrogen (N) accumulation. The influence of the environment was observed in nodulation capacity, where Rhizobium miluonense was dominant under greenhouse conditions and the Rhizobium acidisoli group prevailed under field conditions. However, strain LGMB41 fit into a separate group from the type strain of R. acidisoli in terms of multilocus phylogeny, implying that it could belong to a new species. Rhizobium miluonense LGMB73 showed the best symbiotic efficiency performance, i.e., with the highest shoot-N content (77.7 mg/plant), superior to the commercial standard strain (56.9 mg/plant). Biodiversity- and bioprospecting-associated studies are important to better understand ecosystems and to develop more effective strategies to improve plant growth using a N-fixation process.
Collapse
Affiliation(s)
| | | | - Daiani Cristina Savi
- a Universidade Federal do Paraná, Department of Genetics, C.P. 19071, 81531-980, Curitiba, PR, Brazil
| | - Chirlei Glienke
- a Universidade Federal do Paraná, Department of Genetics, C.P. 19071, 81531-980, Curitiba, PR, Brazil
| | - Rodrigo Aluizio
- a Universidade Federal do Paraná, Department of Genetics, C.P. 19071, 81531-980, Curitiba, PR, Brazil
| | - Vanessa Kava
- a Universidade Federal do Paraná, Department of Genetics, C.P. 19071, 81531-980, Curitiba, PR, Brazil
| | | |
Collapse
|
14
|
Complete Genome Sequences of Three Rhizobium gallicum Symbionts Associated with Common Bean ( Phaseolus vulgaris). GENOME ANNOUNCEMENTS 2017; 5:5/11/e00030-17. [PMID: 28302777 PMCID: PMC5356054 DOI: 10.1128/genomea.00030-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The whole-genome sequences of three strains of Rhizobium gallicum reported here support the concept that the distinct nodulation host ranges displayed by the symbiovars gallicum and phaseoli can be largely explained by different symbiotic plasmids.
Collapse
|
15
|
Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales. Appl Environ Microbiol 2016; 82:5099-115. [PMID: 27316955 DOI: 10.1128/aem.00591-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
Collapse
|
16
|
Zhao L, Wang X, Huo H, Yuan G, Sun Y, Zhang D, Cao Y, Xu L, Wei G. Phylogenetic Diversity of Ammopiptanthus Rhizobia and Distribution of Rhizobia Associated with Ammopiptanthus mongolicus in Diverse Regions of Northwest China. MICROBIAL ECOLOGY 2016; 72:231-239. [PMID: 27079453 DOI: 10.1007/s00248-016-0759-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Aiming to investigate the diversity and distribution of rhizobia associated with Ammopiptanthus, an endangered evergreen legume widely distributed in deserts, we characterized a total of 219 nodule isolates from nine sampling sites in Northwest China with different soil characteristics based upon restriction fragment length polymorphism (RFLP) analysis of 16S ribosomal RNA (rRNA) and symbiotic genes (nodC and nifH). Ten isolates representing different 16S rRNA-RFLP types were selected for further sequence analyses of 16S rRNA and four housekeeping genes. As results, nine genospecies belonging to the genera Ensifer, Neorhizobium, Agrobacterium, Pararhizobium, and Rhizobium could be defined among the isolates. The nodC and nifH phylogenies of 14 isolates representing different symbiotic-RFLP types revealed five lineages linked to Ensifer fredii, Ensifer meliloti, Rhizobium leguminosarum, Mesorhizobium amorphae, and Rhizobium gallicum, which demonstrated the various origins and lateral transfers of symbiotic genes between different genera and species. The rhizobial diversities of Ammopiptanthus mongolicus varied among regions, and the community compositions of rhizobia associated with A. mongolicus were significantly different in wild and cultured fields. Constrained correspondence analysis showed that the distribution of A. mongolicus rhizobia could be explained by available potassium content and that the assembly of symbiotic types was mainly affected by available phosphorus content and carbon-nitrogen ratio.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haibo Huo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiji Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yali Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lin Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Van Cauwenberghe J, Lemaire B, Stefan A, Efrose R, Michiels J, Honnay O. Symbiont abundance is more important than pre-infection partner choice in a Rhizobium - legume mutualism. Syst Appl Microbiol 2016; 39:345-9. [PMID: 27269381 DOI: 10.1016/j.syapm.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Abstract
It is known that the genetic diversity of conspecific rhizobia present in root nodules differs greatly among populations of a legume species, which has led to the suggestion that both dispersal limitation and the local environment affect rhizobial genotypic composition. However, it remains unclear whether rhizobial genotypes residing in root nodules are representative of the entire population of compatible symbiotic rhizobia. Since symbiotic preferences differ among legume populations, the genetic composition of rhizobia found within nodules may reflect the preferences of the local hosts, rather than the full diversity of potential nodulating rhizobia present in the soil. Here, we assessed whether Vicia cracca legume hosts of different provenances select different Rhizobium leguminosarum genotypes than sympatric V. cracca hosts, when presented a natural soil rhizobial population. Through combining V. cracca plants and rhizobia from adjacent and more distant populations, we found that V. cracca hosts are relatively randomly associated with rhizobial genotypes. This indicates that pre-infection partner choice is relatively weak in certain legume hosts when faced with a natural population of rhizobia.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Benny Lemaire
- Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Andrei Stefan
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I 20A, 700505 Iasi, Romania
| | - Rodica Efrose
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
18
|
Hollowell AC, Regus JU, Turissini D, Gano-Cohen KA, Bantay R, Bernardo A, Moore D, Pham J, Sachs JL. Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities. Proc Biol Sci 2016; 283:20160496. [PMID: 27122562 PMCID: PMC4855393 DOI: 10.1098/rspb.2016.0496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023] Open
Abstract
Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated 'symbiosis island' (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance.
Collapse
Affiliation(s)
- Amanda C Hollowell
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - John U Regus
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - David Turissini
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Roxanne Bantay
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Andrew Bernardo
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Devora Moore
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Jonathan Pham
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Joel L Sachs
- Department of Biology, University of California, Riverside, CA 92521, USA Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
19
|
Rouhrazi K, Khodakaramian G, Velázquez E. Phylogenetic diversity of rhizobial species and symbiovars nodulatingPhaseolus vulgarisin Iran. FEMS Microbiol Lett 2016; 363:fnw024. [DOI: 10.1093/femsle/fnw024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 11/12/2022] Open
|
20
|
Vishnu US, Sankarasubramanian J, Sridhar J, Gunasekaran P, Rajendhran J. Identification of Recombination and Positively Selected Genes in Brucella. Indian J Microbiol 2015; 55:384-91. [PMID: 26543263 PMCID: PMC4627946 DOI: 10.1007/s12088-015-0545-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/24/2015] [Indexed: 01/01/2023] Open
Abstract
Brucella is a facultative intracellular bacterium belongs to the class alpha proteobacteria. It causes zoonotic disease brucellosis to wide range of animals. Brucella species are highly conserved in nucleotide level. Here, we employed a comparative genomics approach to examine the role of homologous recombination and positive selection in the evolution of Brucella. For the analysis, we have selected 19 complete genomes from 8 species of Brucella. Among the 1599 core genome predicted, 24 genes were showing signals of recombination but no significant breakpoint was found. The analysis revealed that recombination events are less frequent and the impact of recombination occurred is negligible on the evolution of Brucella. This leads to the view that Brucella is clonally evolved. On other hand, 56 genes (3.5 % of core genome) were showing signals of positive selection. Results suggest that natural selection plays an important role in the evolution of Brucella. Some of the genes that are responsible for the pathogenesis of Brucella were found positively selected, presumably due to their role in avoidance of the host immune system.
Collapse
Affiliation(s)
- Udayakumar S. Vishnu
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | - Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | - Jayavel Sridhar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | - Paramasamy Gunasekaran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| |
Collapse
|
21
|
Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 2015; 38:287-91. [DOI: 10.1016/j.syapm.2014.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022]
|
22
|
Van Cauwenberghe J, Verstraete B, Lemaire B, Lievens B, Michiels J, Honnay O. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol 2014; 37:613-21. [DOI: 10.1016/j.syapm.2014.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/04/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
23
|
Zhao L, Fan M, Zhang D, Yang R, Zhang F, Xu L, Wei X, Shen Y, Wei G. Distribution and diversity of rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in Northwest China. Syst Appl Microbiol 2014; 37:449-56. [PMID: 25052953 DOI: 10.1016/j.syapm.2014.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
A total of 155 nodule isolates that originated from seven sites in Northwest China were characterized by PCR-RFLP of the 16S rRNA gene and sequence analysis of multiple core genes (16S rRNA, recA, atpD, and glnII) in order to investigate the diversity and biogeography of Glycine soja-nodulating rhizobia. Among the isolates, 80 were Ensifer fredii, 19 were Ensifer morelense, 49 were Rhizobium radiobacter, and 7 were putative novel Rhizobium species. The phylogenies of E. fredii and E. morelense isolates in a concatenate tree (assembly of all housekeeping genes) were generally consistent with those in individual gene trees. However, incongruence was found in the phylogenies of the different genes of Rhizobium isolates, indicating that lateral transfer or recombination possibly occurred in these gene loci. Despite their species identity, all the isolates in this study formed a single lineage related to E. fredii in nodAand nifH gene phylogenies, which also indicated that the symbiotic genes were laterally transferred between different species. Biogeographic patterns were found at the species and strain genomic type levels, as revealed by BOXA1R fingerprinting, demonstrating that the evolution of rhizobial populations in different geographic locations was related to soil types, altitude and spatial effects. This study is the first to report that E. morelense, R. radiobacter, and Rhizobium sp. are microsymbionts of G. soja, as well as showing that the diversity of G. soja rhizobia is enhanced and new rhizobia have evolved in Northwest China.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miaochun Fan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dehui Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiping Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feilong Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuli Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaoyao Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Rogel MA, Bustos P, Santamaría RI, González V, Romero D, Cevallos MÁ, Lozano L, Castro-Mondragón J, Martínez-Romero J, Ormeño-Orrillo E, Martínez-Romero E. Genomic basis of symbiovar mimosae in Rhizobium etli. BMC Genomics 2014; 15:575. [PMID: 25005495 PMCID: PMC4125696 DOI: 10.1186/1471-2164-15-575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 07/01/2014] [Indexed: 11/25/2022] Open
Abstract
Background Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees. Results We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved. Conclusions The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-575) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Mnasri B, Liu TY, Saidi S, Chen WF, Chen WX, Zhang XX, Mhamdi R. Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 2014; 64:1501-1506. [DOI: 10.1099/ijs.0.058651-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three microbial strains isolated from common beans, 23C2T (Tunisia), Gr42 (Spain) and IE4868 (Mexico), which have been identified previously as representing a genomic group closely related to
Rhizobium gallicum
, are further studied here. Their 16S rRNA genes showed 98.5–99 % similarity with
Rhizobium loessense
CCBAU 7190BT,
R. gallicum
R602spT,
Rhizobium mongolense
USDA 1844T and
Rhizobium yanglingense
CCBAU 71623T. Phylogenetic analysis based on recA, atpD, dnaK and thrC sequences showed that the novel strains were closely related and could be distinguished from the four type strains of the closely related species. Strains 23C2T, Gr42 and IE4868 could be also differentiated from their closest phylogenetic neighbours by their phenotypic and physiological properties and their fatty acid contents. All three strains harboured symbiotic genes specific to biovar gallicum. Levels of DNA–DNA relatedness between strain 23C2T and the type strains of
R. loessense
,
R. mongolense
,
R. gallicum
and
R. yanglingense
ranged from 58.1 to 61.5 %. The DNA G+C content of the genomic DNA of strain 23C2T was 59.52 %. On the basis of these data, strains 23C2T, Gr42 and IE4868 were considered to represent a novel species of the genus
Rhizobium
for which the name Rhizobium azibense is proposed. Strain 23C2T ( = CCBAU 101087T = HAMBI3541T) was designated as the type strain.
Collapse
Affiliation(s)
- Bacem Mnasri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Tian Yan Liu
- State Key Lab for Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Sabrine Saidi
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Wen Feng Chen
- State Key Lab for Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen Xin Chen
- State Key Lab for Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xiao Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100080, PR China
| | - Ridha Mhamdi
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| |
Collapse
|
26
|
Guo HJ, Wang ET, Zhang XX, Li QQ, Zhang YM, Tian CF, Chen WX. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max. Appl Environ Microbiol 2014; 80:1245-55. [PMID: 24317084 PMCID: PMC3911071 DOI: 10.1128/aem.03037-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/30/2013] [Indexed: 01/09/2023] Open
Abstract
In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.
Collapse
Affiliation(s)
- Hui Juan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico D.F., Mexico
| | - Xing Xing Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Qin Qin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Harun-or Rashid M, Gonzalez J, Young JPW, Wink M. Rhizobium leguminosarum is the symbiont of lentils in the Middle East and Europe but not in Bangladesh. FEMS Microbiol Ecol 2013; 87:64-77. [PMID: 24033582 DOI: 10.1111/1574-6941.12190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 01/07/2023] Open
Abstract
Lentil is the oldest of the crops that have been domesticated in the Fertile Crescent and spread to other regions during the Bronze Age, making it an ideal model to study the evolution of rhizobia associated with crop legumes. Housekeeping and nodulation genes of lentil-nodulating rhizobia from the region where lentil originated (Turkey and Syria) and regions to which lentil was introduced later (Germany and Bangladesh) were analyzed to determine their genetic diversity, population structure, and taxonomic position. There are four different lineages of rhizobia associated with lentil nodulation, of which three are new and endemic to Bangladesh, while Mediterranean and Central European lentil symbionts belong to the Rhizobium leguminosarum lineage. The endemic lentil grex pilosae may have played a significant role in the origin of these new lineages in Bangladesh. The presence of R. leguminosarum with lentil at the center of origin and in countries where lentil was introduced later suggests that R. leguminosarum is the original symbiont of lentil. Lentil seeds may have played a significant role in the initial dispersal of this Rhizobium species within the Middle East and on to other countries. Nodulation gene sequences revealed a high similarity to those of symbiovar viciae.
Collapse
Affiliation(s)
- M Harun-or Rashid
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany; Soil Microbiology Laboratory, Soil Science Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh
| | | | | | | |
Collapse
|
28
|
Ng KW, Pointing SB, Dvornyk V. Patterns of nucleotide diversity of the ldpA circadian gene in closely related species of cyanobacteria from extreme cold deserts. Appl Environ Microbiol 2013; 79:1516-22. [PMID: 23263969 PMCID: PMC3591978 DOI: 10.1128/aem.03439-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/14/2012] [Indexed: 11/20/2022] Open
Abstract
In the circadian system of cyanobacteria, the ldpA gene is a component of the input to the clock. We comparatively analyzed nucleotide polymorphism of this gene in populations of two closely related species of cyanobacteria (denoted as Synechococcus species S1 and S2, respectively) from extreme cold deserts in Antarctica, the Canadian Arctic, and Tibet. Although both species manifested similarly high haplotype diversities (0.990 and 0.809, respectively), the nucleotide diversity differed significantly (0.0091 in S1 and 0.0037 in S2). The populations of species S2 were more differentiated (F(ST) = 0.2242) compared to those of species S1 (F(ST) between 0.0296 and 0.1188). An analysis of positive selection with several tests yielded highly significant values (P < 0.01) for both species. On the other hand, these results may be somewhat compromised by fluctuating population sizes of the species. The apparent selection pressure coupled with the pronounced demographic factors, such as population expansion, small effective population size, and genetic drift, may thus result in the observed significant interpopulation differentiation and subsequent speciation of cyanobacteria.
Collapse
Affiliation(s)
- Ka Wai Ng
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
29
|
Durán D, Rey L, Sánchez-Cañizares C, Navarro A, Imperial J, Ruiz-Argueso T. Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkaline-limed soils within its area of distribution in Eastern Spain. Syst Appl Microbiol 2013; 36:128-36. [DOI: 10.1016/j.syapm.2012.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 11/27/2022]
|
30
|
Gurkanli CT, Ozkoc I, Gunduz I. Genetic diversity of rhizobia nodulating common bean (Phaseolus vulgaris L.) in the Central Black Sea Region of Turkey. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0551-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Phylogenetic analysis and polyphasic characterization of Clavibacter michiganensis strains isolated from tomato seeds reveal that nonpathogenic strains are distinct from C. michiganensis subsp. michiganensis. Appl Environ Microbiol 2012; 78:8388-402. [PMID: 23001675 DOI: 10.1128/aem.02158-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this "framework" with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.
Collapse
|
32
|
Zhang YM, Tian CF, Sui XH, Chen WF, Chen WX. Robust markers reflecting phylogeny and taxonomy of rhizobia. PLoS One 2012; 7:e44936. [PMID: 23028691 PMCID: PMC3444505 DOI: 10.1371/journal.pone.0044936] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/10/2012] [Indexed: 12/17/2022] Open
Abstract
Genomic ANI (Average Nucleotide Identity) has been found to be able to replace DNA-DNA hybridization in prokaryote taxonomy. The ANI of each of the core genes that has a phylogeny congruent with the reference species tree of rhizobia was compared to the genomic ANI. This allowed us to identify three housekeeping genes (SMc00019-truA-thrA) whose ANI reflected the intraspecies and interspecies genomic ANI among rhizobial strains, revealing an ANI gap (≥2%) between the inter- and intra-species comparisons. The intraspecies (96%) and interspecies (94%) ANI boundaries calculated from three genes (SMc00019-truA-thrA) provided a criterion for bacterial species definition and confirmed 621/629 of known interspecies relationships within Bradyrhizobium, Mesorhizobium, Sinorhizobium and Rhizobium. Some widely studied strains should be renamed. The SMc00019-truA-thrA ANI also correlates well with the genomic ANI of strains in Agrobacterium, Methylobacterium, Ralstonia, Rhodopseudomonas, Cupriavidus and Burkholderia, suggesting their wide applicability in other bacteria.
Collapse
Affiliation(s)
- Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
- * E-mail:
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
López-Guerrero MG, Ormeño-Orrillo E, Velázquez E, Rogel MA, Acosta JL, Gónzalez V, Martínez J, Martínez-Romero E. Rhizobium etli taxonomy revised with novel genomic data and analyses. Syst Appl Microbiol 2012; 35:353-8. [DOI: 10.1016/j.syapm.2012.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/14/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022]
|
34
|
Dvornyk V, Jahan AS. Extreme conservation and non-neutral evolution of the cpmA Circadian locus in a globally distributed Chroococcidiopsis sp. from naturally stressful habitats. Mol Biol Evol 2012; 29:3899-907. [PMID: 22844070 DOI: 10.1093/molbev/mss191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cyanobacteria are among the most ancient organisms known to have circadian rhythms. The cpmA gene is involved in controlling the circadian output signal. We studied polymorphism and divergence of this gene in six populations of a stress-tolerant cyanobacterium, Chroococcidiopsis sp., sampled in extreme habitats across the globe. Despite high haplotype diversity (0.774), nucleotide diversity of cpmA is very low (π = 0.0034): the gene appears to be even more conserved than housekeeping genes. Even though the populations were sampled thousands kilometers apart, they manifested virtually no genetic differentiation at this locus (F(ST) = 0.0228). Using various tests for neutrality, we determined that evolution of cpmA significantly departures from the neutral model and is governed by episodic positive selection.
Collapse
Affiliation(s)
- Volodymyr Dvornyk
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | | |
Collapse
|
35
|
Souza V, Eguiarte LE, Travisano M, Elser JJ, Rooks C, Siefert JL. Travel, sex, and food: what's speciation got to do with it? ASTROBIOLOGY 2012; 12:634-640. [PMID: 22920513 PMCID: PMC3426884 DOI: 10.1089/ast.2011.0768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
We discuss the potential interactions among travel (dispersal and gene flow), bacterial "sex" (mainly as horizontal gene transfer), and food (metabolic plasticity and responses to nutrient availability) in shaping microbial communities. With regard to our work at a unique desert oasis, the Cuatro Ciénegas Basin in Coahuila, Mexico, we propose that diversification and low phosphorus availability, in combination with mechanisms for nutrient recycling and community cohesion, result in enhanced speciation through reproductive as well as geographic isolation. We also discuss these mechanisms in the broader sense of ecology and evolution. Of special relevance to astrobiology and central to evolutionary biology, we ask why there are so many species on Earth and provide a working hypothesis and a conceptual framework within which to consider the question. Key Words: Microbial ecology-Microbial mats-Evolution-Horizontal gene transfer-Metabolism.
Collapse
Affiliation(s)
- Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México.
| | | | | | | | | | | |
Collapse
|
36
|
Mnasri B, Saïdi S, Chihaoui SA, Mhamdi R. Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst Appl Microbiol 2012; 35:263-9. [PMID: 22633818 DOI: 10.1016/j.syapm.2012.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
A total of 40 symbiotic bacterial strains isolated from root nodules of common bean grown in a soil located in the north of Tunisia were characterized by PCR-RFLP of the 16S rRNA genes. Six different ribotypes were revealed. Nine representative isolates were submitted to phylogenetic analyses of rrs, recA, atpD, dnaK, nifH and nodA genes. The strains 23C40 and 23C95 representing the most abundant ribotype were closely related to Sinorhizobium americanum CFNEI 156(T). S. americanum was isolated from Acacia spp. in Mexico, but this is the first time that this species is reported among natural populations of rhizobia nodulating common bean. These isolates nodulated and fixed nitrogen with this crop and harbored the symbiotic genes of the symbiovar mediterranense. The strains 23C2 and 23C55 were close to Rhizobium gallicum R602sp(T) but formed a well separated clade and may probably constitute a new species. The sequence similarities with R. gallicum type strain were 98.7% (rrs), 96.6% (recA), 95.8% (atpD) and 93.4% (dnaK). The remaining isolates were, respectively, affiliated to R. gallicum, E. meliloti, Rhizobium giardinii and Rhizobium radiobacter. However, some of them failed to re-nodulate their original host but promoted root growth.
Collapse
Affiliation(s)
- Bacem Mnasri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, Hammam-lif 2050, Tunisia
| | | | | | | |
Collapse
|
37
|
Faghire M, Mandri B, Oufdou K, Bargaz A, Ghoulam C, Ramírez-Bahena M, Velázquez E, Peix A. Identification at the species and symbiovar levels of strains nodulating Phaseolus vulgaris in saline soils of the Marrakech region (Morocco) and analysis of the otsA gene putatively involved in osmotolerance. Syst Appl Microbiol 2012; 35:156-64. [DOI: 10.1016/j.syapm.2012.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/29/2022]
|
38
|
Wicker E, Lefeuvre P, de Cambiaire JC, Lemaire C, Poussier S, Prior P. Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. THE ISME JOURNAL 2012; 6:961-74. [PMID: 22094345 PMCID: PMC3329105 DOI: 10.1038/ismej.2011.160] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 01/14/2023]
Abstract
We used multilocus sequence analysis (MLSA) on a worldwide collection of the plant pathogenic Ralstonia solanacearum (Betaproteobacteria) to retrace its complex evolutionary history. Using genetic imprints left during R. solanacearum evolution, we were able to delineate distinct evolutionary complex displaying contrasting dynamics. Among the phylotypes already described (I, IIA, IIB, III, IV), eight groups of strains with distinct evolutionary patterns, named clades, were identified. From our recombination analysis, we identified 21 recombination events that occurred within and across these lineages. Although appearing the most divergent and ancestral phylotype, phylotype IV was inferred as a gene donor for the majority of the recombination events that we detected. Whereas this phylotype apparently fuelled the species diversity, ongoing diversification was mainly detected within phylotype I, IIA and III. These three groups presented a recent expanding population structure, a high level of homologous recombination and evidences of long-distance migrations. Factors such as adaptation to a specific host or intense trading of infected crops may have promoted this diversification. Whether R. solanacearum lineages will eventually evolve in distinct species remains an open question. The intensification of cropping and increase of geographical dispersion may favour situations of phylotype sympatry and promote higher exchange of key factors for host adaptation from their common genetic pool.
Collapse
Affiliation(s)
- Emmanuel Wicker
- CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Saint Pierre, La Réunion, France.
| | | | | | | | | | | |
Collapse
|
39
|
López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J, Ormeño-Orrillo E, Martínez-Romero E. Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 2011; 62:2264-2271. [PMID: 22081714 DOI: 10.1099/ijs.0.033555-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel related Rhizobium species, Rhizobium grahamii sp. nov. and Rhizobium mesoamericanum sp. nov., were identified by a polyphasic approach using DNA-DNA hybridization, whole-genome sequencing and phylogenetic and phenotypic characterization including nodulation of Leucaena leucocephala and Phaseolus vulgaris (bean). As similar bacteria were found in the Los Tuxtlas rainforest in Mexico and in Central America, we suggest the existence of a Mesoamerican microbiological corridor. The type strain of Rhizobium grahamii sp. nov. is CCGE 502(T) (= ATCC BAA-2124(T) = CFN 242(T) = Dal4(T) = HAMBI 3152(T)) and that of Rhizobium mesoamericanum sp. nov. is CCGE 501(T) (= ATCC BAA-2123(T) = HAMBI 3151(T) = CIP 110148(T) = 1847(T)).
Collapse
Affiliation(s)
- Aline López-López
- Centro de Ciencias Genómicas, UNAM, Chamilpa 62210, Cuernavaca, Morelos, Mexico
| | | | - Isabelle Barois
- Departamento de Biología de Suelos, Instituto de Ecología AC, AP 63, Veracruz 91000, Xalapa, Mexico
| | | | - Julio Martínez
- Centro de Ciencias Genómicas, UNAM, Chamilpa 62210, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
40
|
Rogel MA, Ormeño-Orrillo E, Martinez Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011; 34:96-104. [DOI: 10.1016/j.syapm.2010.11.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/24/2010] [Accepted: 11/27/2010] [Indexed: 11/27/2022]
|
41
|
Fterich A, Mahdhi M, Caviedes MA, Pajuelo E, Rivas R, Rodriguez-Llorente ID, Mars M. Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch Microbiol 2011; 193:385-97. [PMID: 21359955 DOI: 10.1007/s00203-011-0683-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Diversity of 50 bacterial isolates recovered from root nodules of Prosopis farcta grown in different arid soils in Tunisia, was investigated. Characterization of isolates was assessed using a polyphasic approach including phenotypic characteristics, 16S rRNA gene PCR--RFLP and sequencing, nodA gene sequencing and MLSA. It was found that most of isolates are tolerant to high temperature (40°C) and salinity (3%). Genetic characterization emphasizes that isolates were assigned to the genus Ensifer (80%), Mesorhizobium (4%) and non-nodulating endophytic bacteria (16%). Forty isolates belonging to the genus Ensifer were affiliated to Ensifer meliloti, Ensifer xinjiangense/Ensifer fredii and Ensifer numidicus species. Two isolates belonged to the genus Mesorhizobium. Eight isolates failing to renodulate their host plant were endophytic bacteria and belonged to Bacillus, Paenibacillus and Acinetobacter genera. Symbiotic properties of nodulating isolates showed a diversity in their capacity to infect their host plant and fix atmospheric nitrogen. Isolate PG29 identified as Ensifer meliloti was the most effective one. Ability of Prosopis farcta to establish symbiosis with rhizobial species confers an important advantage for this species to be used in reforestation programs. This study offered the first systematic information about the diversity of microsymbionts nodulating Prosopis farcta in the arid regions of Tunisia.
Collapse
Affiliation(s)
- A Fterich
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Gabès, Université de Gabes, Cité Erriadh Zrig, 6072, Gabès, Tunisia
| | | | | | | | | | | | | |
Collapse
|
42
|
Vos M. A species concept for bacteria based on adaptive divergence. Trends Microbiol 2010; 19:1-7. [PMID: 21071229 DOI: 10.1016/j.tim.2010.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/07/2010] [Accepted: 10/13/2010] [Indexed: 11/29/2022]
Abstract
Bacterial strains are currently grouped into species based on overall genomic similarity and sharing of phenotypes deemed ecologically important. Many believe this polyphasic taxonomy is in need of revision because it lacks grounding in evolutionary theory, and boundaries between species are arbitrary. Recent taxonomy efforts using multilocus sequence typing (MLST) data are based on the identification of distinct phylogenetic clusters. However, these approaches face the problem of deciding the phylogenetic level at which clusters are representative of evolutionary or taxonomically distinct units. In this review, I propose classifying two phylogenetic clusters as separate species only when they have statistically significantly diverged as a result of adaptive evolution. More than a method for classification, the concept of adaptive divergence can be used in a 'reverse ecology' approach to identify lineages that are in the process of speciation or genes involved in initial adaptive divergence.
Collapse
Affiliation(s)
- Michiel Vos
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6666 GA Heteren, The Netherlands.
| |
Collapse
|
43
|
The nodulation of alfalfa by the acid-tolerant Rhizobium sp. strain LPU83 does not require sulfated forms of lipochitooligosaccharide nodulation signals. J Bacteriol 2010; 193:30-9. [PMID: 20971905 DOI: 10.1128/jb.01009-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp. strain LPU83, a bacterium capable of nodulating at least alfalfa, bean, and Leucena leucocephala. The nod gene cluster was located on the plasmid pLPU83b. The organization of the cluster showed synteny with those of the alfalfa-nodulating rhizobia, Sinorhizobium meliloti and Sinorhizobium medicae. Interestingly, the strongest sequence similarity observed was between the partial nod sequences of Rhizobium mongolense USDA 1844 and the corresponding LPU83 nod genes sequences. The phylogenetic analysis of the intergenic region nodEG positions strain LPU83 and the type strain R. mongolense 1844 in the same branch, which indicates that Rhizobium sp. strain LPU83 might represent an early alfalfa-nodulating genotype. The NF chemical structures obtained for the wild-type strain consist of a trimeric, tetrameric, and pentameric chitin backbone that shares some substitutions with both alfalfa- and bean-nodulating rhizobia. Remarkably, while in strain LPU83 most of the NFs were sulfated in their reducing terminal residue, none of the NFs isolated from the nodH mutant LPU83-H were sulfated. The evidence obtained supports the notion that the sulfate decoration of NFs in LPU83 is not necessary for alfalfa nodulation.
Collapse
|
44
|
Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14512-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
45
|
Evolutionary dynamics of insertion sequences in relation to the evolutionary histories of the chromosome and symbiotic plasmid genes of Rhizobium etli populations. Appl Environ Microbiol 2010; 76:6504-13. [PMID: 20675442 DOI: 10.1128/aem.01001-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (IS) are mobile genetic elements that are distributed in many prokaryotes. In particular, in the genomes of the symbiotic nitrogen-fixing bacteria collectively known as rhizobia, IS are fairly abundant in plasmids or chromosomal islands that carry the genes needed for symbiosis. Here, we report an analysis of the distribution and genetic conservation of the IS found in the genome of Rhizobium etli CFN42 in a collection of 87 Rhizobium strains belonging to populations with different geographical origins. We used PCR to generate presence/absence profiles of the 39 IS found in R. etli CFN42 and evaluated whether the IS were located in consistent genomic contexts. We found that the IS from the symbiotic plasmid were frequently present in the analyzed strains, whereas the chromosomal IS were observed less frequently. We then examined the evolutionary dynamics of these strains based on a population genetic analysis of two chromosomal housekeeping genes (glyA and dnaB) and three symbiotic sequences (nodC and the two IS elements). Our results indicate that the IS contained within the symbiotic plasmid have a higher degree of genomic context conservation, lower nucleotide diversity and genetic differentiation, and fewer recombination events than the chromosomal housekeeping genes. These results suggest that the R. etli populations diverged recently in Mexico, that the symbiotic plasmid also had a recent origin, and that the IS elements have undergone a process of cyclic infection and expansion.
Collapse
|
46
|
Fernandez-Aunión C, Hamouda TB, Iglesias-Guerra F, Argandoña M, Reina-Bueno M, Nieto JJ, Aouani ME, Vargas C. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol 2010; 10:192. [PMID: 20633304 PMCID: PMC2918589 DOI: 10.1186/1471-2180-10-192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 07/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T. RESULTS The most NaCl-tolerant strain was A. tumefaciens 10c2, followed (in decreasing order) by R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3, R. etli 12a3 and R. gallicum bv. phaseoli 8a3. 13C- and 1H-NMR analyses showed that all Rhizobium strains synthesized trehalose whereas A. tumefaciens 10c2 synthesized mannosucrose. Glutamate synthesis was also observed in R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3 and A. tumefaciens 10c2. When added as a carbon source, mannitol was also accumulated by all strains. Accumulation of trehalose in R. tropici CIAT 899 and of mannosucrose in A. tumefaciens 10c2 was osmoregulated, suggesting their involvement in osmotolerance. The phylogenetic analysis of the otsA gene, encoding the trehalose-6-phosphate synthase, suggested the existence of lateral transfer events. In vivo 13C labeling experiments together with genomic analysis led us to propose the uptake and conversion pathways of different carbon sources into trehalose. Collaterally, the beta-1,2-cyclic glucan from R. tropici CIAT 899 was co-extracted with the cytoplasmic compatible solutes and its chemical structure was determined. CONCLUSIONS The soil bacteria analyzed in this work accumulated mainly disaccharides in response to NaCl stress. We could not find a direct correlation between the trehalose content of the rhizobial strains and their osmotolerance, suggesting that additional osmoadaptive mechanism should be operating in the most NaCl-tolerant strain R. tropici CIAT 899.
Collapse
|
47
|
Tian CF, Young JPW, Wang ET, Tamimi SM, Chen WX. Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol 2010; 73:563-76. [PMID: 20533948 DOI: 10.1111/j.1574-6941.2010.00909.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The level and mechanisms of population mixing among faba bean (Vicia faba) rhizobia of different geographic origins (three ecoregions of China and several Western countries) were analysed by sequencing three chromosomal housekeeping loci (atpD, recA and glnII) and one nodulation gene (nodD). Eight distinct sublineages of Rhizobium leguminosarum bv. viciae (Rlv) were identified by concatenated sequences of chromosomal loci. structure analysis revealed admixture patterns of Rlv populations of different geographic origins. Recombination, particularly among these chromosomal loci, was revealed to be an important microevolutionary force in shaping the observed genetic diversity and the phylogeny of Rlv. The phylogeny of nodD is largely independent of that of the chromosomal loci, reflecting multiple gene transfers between sublineages and possibly selection imposed by different faba bean gene pools. The dominant nodulation genotype of faba bean rhizobia in the spring growing region of China is identical to the prevalent type of Europe, while the winter growing region of China has another related, but distinct, dominant nodulation genotype. Although several geographically specific sublineages of Rlv were observed, recombination and lateral gene transfer have driven the process of population mixing among different ecoregions of China or between China and countries to the west.
Collapse
Affiliation(s)
- Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
48
|
Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli. Appl Environ Microbiol 2010; 76:1604-14. [PMID: 20048063 DOI: 10.1128/aem.02039-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of the same bacterial species often show considerable genomic variation. To examine the extent of such variation in Rhizobium etli, the complete genome sequence of R. etli CIAT652 and the partial genomic sequences of six additional R. etli strains having different geographical origins were determined. The sequences were compared with each other and with the previously reported genome sequence of R. etli CFN42. DNA sequences common to all strains constituted the greater part of these genomes and were localized in both the chromosome and large plasmids. About 700 to 1,000 kb of DNA that did not match sequences of the complete genomes of strains CIAT652 and CFN42 was unique to each R. etli strain. These sequences were distributed throughout the chromosome as individual genes or chromosomal islands and in plasmids, and they encoded accessory functions, such as transport of sugars and amino acids, or secondary metabolism; they also included mobile elements and hypothetical genes. Sequences corresponding to symbiotic plasmids showed high levels of nucleotide identity (about 98 to 99%), whereas chromosomal sequences and the sequences with matches to other plasmids showed lower levels of identity (on average, about 90 to 95%). We concluded that R. etli has a pangenomic structure with a core genome composed of both chromosomal and plasmid sequences, including a highly conserved symbiotic plasmid, despite the overall genomic divergence.
Collapse
|
49
|
Amrani S, Noureddine NE, Bhatnagar T, Argandoña M, Nieto JJ, Vargas C. Phenotypic and genotypic characterization of rhizobia associated with Acacia saligna (Labill.) Wendl. in nurseries from Algeria. Syst Appl Microbiol 2010; 33:44-51. [DOI: 10.1016/j.syapm.2009.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Indexed: 10/20/2022]
|
50
|
López-López A, Rosenblueth M, Martínez J, Martínez-Romero E. Rhizobial Symbioses in Tropical Legumes and Non-Legumes. SOIL BIOLOGY 2010. [DOI: 10.1007/978-3-642-05076-3_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|