1
|
Anand G, Rajeshkumar KC. Challenges and Threats Posed by Plant Pathogenic Fungi on Agricultural Productivity and Economy. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Wingfield MJ, Hurley B, Wingfield B, Slippers B. Tree health in South Africa: Retrospect and prospect. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/8038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
South Africa is a country with very limited natural forest cover. Consequently, the timber and fibre needs of the country cannot be provided for from indigenous forest. It is largely for this reason that South Africa initially developed a highly productive plantation forest industry, which today makes a substantial contribution to the local economy. These plantations are based on non-native species of Eucalyptus, Pinus and Australian Acacia. In the early years of establishment, South African plantations were relatively free of pest and pathogen problems. But, over time, an increasing number of insects, fungi and bacteria have emerged as serious threats to the sustainability of the forestry industry. Numerous native pests and pathogens, especially insects, have adapted to these introduced tree species to cause damage or disease. The problem is compounded by the accidental introduction of non-native pests and pathogens, and this has been at a rapidly increasing rate over the past three decades. Some of these introduced pests and pathogens also threaten the fitness and even the survival of many indigenous South African tree species. Fortunately, South Africa has developed an impressive knowledge base and range of integrated management options to deal with these problems. This development was first driven by government programmes, and in more recent years by public–private partnerships between industry, universities and government. It is clear from the pattern of emergence of pests and pathogens in recent years that South Africa will deal with an increasing number of these problems and a continuously changing tree health environment. This requires robust investment in both quarantine and mitigation mechanisms to protect the country’s biodiversity as well as to ensure the sustainability of its wood and fibre industries.
Collapse
Affiliation(s)
- Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brett Hurley
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Crous P, Wingfield M, Cheewangkoon R, Carnegie A, Burgess T, Summerell B, Edwards J, Taylor P, Groenewald J. Foliar pathogens of eucalypts. Stud Mycol 2019; 94:125-298. [PMID: 31636729 PMCID: PMC6797021 DOI: 10.1016/j.simyco.2019.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Species of eucalypts are commonly cultivated for solid wood and pulp products. The expansion of commercially managed eucalypt plantations has chiefly been driven by their rapid growth and suitability for propagation across a very wide variety of sites and climatic conditions. Infection of foliar fungal pathogens of eucalypts is resulting in increasingly negative impacts on commercial forest industries globally. To assist in evaluating this threat, the present study provides a global perspective on foliar pathogens of eucalypts. We treat 110 different genera including species associated with foliar disease symptoms of these hosts. The vast majority of these fungi have been grown in axenic culture, and subjected to DNA sequence analysis, resolving their phylogeny. During the course of this study several new genera and species were encountered, and these are described. New genera include: Lembosiniella (L. eucalyptorum on E. dunnii, Australia), Neosonderhenia (N. eucalypti on E. costata, Australia), Neothyriopsis (N. sphaerospora on E. camaldulensis, South Africa), Neotrichosphaeria (N. eucalypticola on E. deglupta, Australia), Nothotrimmatostroma (N. bifarium on E. dalrympleana, Australia), Nowamyces (incl. Nowamycetaceae fam. nov., N. globulus on E. globulus, Australia), and Walkaminomyces (W. medusae on E. alba, Australia). New species include (all from Australia): Disculoides fraxinoides on E. fraxinoides, Elsinoe piperitae on E. piperita, Fusculina regnans on E. regnans, Marthamyces johnstonii on E. dunnii, Neofusicoccum corticosae on E. corticosa, Neotrimmatostroma dalrympleanae on E. dalrympleana, Nowamyces piperitae on E. piperita, Phaeothyriolum dunnii on E. dunnii, Pseudophloeospora eucalyptigena on E. obliqua, Pseudophloeospora jollyi on Eucalyptus sp., Quambalaria tasmaniae on Eucalyptus sp., Q. rugosae on E. rugosa, Sonderhenia radiata on E. radiata, Teratosphaeria pseudonubilosa on E. globulus and Thyrinula dunnii on E. dunnii. A new name is also proposed for Heteroconium eucalypti as Thyrinula uruguayensis on E. dunnii, Uruguay. Although many of these genera and species are commonly associated with disease problems, several appear to be opportunists developing on stressed or dying tissues. For the majority of these fungi, pathogenicity remains to be determined. This represents an important goal for forest pathologists and biologists in the future. Consequently, this study will promote renewed interest in foliar pathogens of eucalypts, leading to investigations that will provide an improved understanding of the biology of these fungi.
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - M.J. Wingfield
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - R. Cheewangkoon
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - A.J. Carnegie
- Forest Health & Biosecurity, Forest Science, NSW Department of Primary Industries – Forestry, Level 12, 10 Valentine Ave, Parramatta, NSW, 2150, Australia
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - T.I. Burgess
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - B.A. Summerell
- Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - J. Edwards
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, 5 Ring Road, LaTrobe University, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, LaTrobe University, Bundoora, Victoria, 3083, Australia
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands
| |
Collapse
|
4
|
Rocca GD, Danti R, Williams N, Eyre C, Garbelotto M. Molecular analyses indicate that both native and exotic pathogen populations serve as sources of novel outbreaks of Cypress Canker Disease. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Aylward J, Roets F, Dreyer LL, Wingfield MJ. Teratosphaeria stem canker of Eucalyptus: two pathogens, one devastating disease. MOLECULAR PLANT PATHOLOGY 2019; 20:8-19. [PMID: 30311749 PMCID: PMC6430483 DOI: 10.1111/mpp.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Teratosphaeria gauchensis and T. zuluensis are closely related fungi that cause Teratosphaeria (previously Coniothyrium) stem canker disease on Eucalyptus species propagated in plantations for commercial purposes. This disease is present in many countries in which Eucalyptus trees are planted, and continues to spread with the international trade of infected plant germplasm. TAXONOMY Fungi, Ascomycota, Pezizomycotina, Dothideomycetes, Dothideomycetidae, Capnodiales, Teratosphaeriaceae, Teratosphaeria. IDENTIFICATION The causal agents form dark masses of pycnidia that are visible on the surface of distinct stem cankers that typically form on young green stem tissues. Accurate diagnosis of the causal agents requires DNA sequence data. HOST RANGE Nine species of Eucalyptus are known to be affected. Of these, E. grandis and its hybrids, which include some of the most important planting stock globally, appear to be particularly vulnerable. DISEASE SYMPTOMS Small necrotic lesions develop on young green stem tissue. These lesions coalesce to form large cankers that exude gum. Epicormic shoots develop below the girdling canker and, in severe cases, trees die. USEFUL WEBSITES Mycobank, https://www.mycobank.org; Publications of the Forestry and Agricultural Biotechnology Institute (FABI), https://www.fabinet.up.ac.za/index.php/journals.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
- Department of Conservation Ecology and EntomologyStellenbosch University, Private Bag X1Matieland7602South Africa
| | - Francois Roets
- Department of Conservation Ecology and EntomologyStellenbosch University, Private Bag X1Matieland7602South Africa
| | - Leánne L. Dreyer
- Department of Botany and ZoologyStellenbosch University, Private Bag X1Matieland7602South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
| |
Collapse
|
6
|
Piotrowska MJ, Riddell C, Hoebe PN, Ennos RA. Planting exotic relatives has increased the threat posed by Dothistroma septosporum to the Caledonian pine populations of Scotland. Evol Appl 2018; 11:350-363. [PMID: 29632553 PMCID: PMC5881121 DOI: 10.1111/eva.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/08/2017] [Indexed: 12/27/2022] Open
Abstract
To manage emerging forest diseases and prevent their occurrence in the future, it is essential to determine the origin(s) of the pathogens involved and identify the management practices that have ultimately caused disease problems. One such practice is the widespread planting of exotic tree species within the range of related native taxa. This can lead to emerging forest disease both by facilitating introduction of exotic pathogens and by providing susceptible hosts on which epidemics of native pathogens can develop. We used microsatellite markers to determine the origins of the pathogen Dothistroma septosporum responsible for the current outbreak of Dothistroma needle blight (DNB) on native Caledonian Scots pine (Pinus sylvestris) populations in Scotland and evaluated the role played by widespread planting of two exotic pine species in the development of the disease outbreak. We distinguished three races of D. septosporum in Scotland, one of low genetic diversity associated with introduced lodgepole pine (Pinus contorta), one of high diversity probably derived from the DNB epidemic on introduced Corsican pine (Pinus nigra subsp. laricio) in England and a third of intermediate diversity apparently endemic on Caledonian Scots pine. These races differed for both growth rate and exudate production in culture. Planting of exotic pine stands in the UK appears to have facilitated the introduction of two exotic races of D. septosporum into Scotland which now pose a threat to native Caledonian pines both directly and through potential hybridization and introgression with the endemic race. Our results indicate that both removal of exotic species from the vicinity of Caledonian pine populations and restriction of movement of planting material are required to minimize the impact of the current DNB outbreak. They also demonstrate that planting exotic species that are related to native species reduces rather than enhances the resilience of forests to pathogens.
Collapse
Affiliation(s)
- Marta J. Piotrowska
- Crop and Soil Systems Research GroupScotland's Rural CollegeEdinburghUK
- The Institute of Biological Chemistry, Biophysics and BioengineeringHeriot‐Watt UniversityEdinburghUK
| | - Carolyn Riddell
- Institute of Evolutionary BiologyAshworth LaboratoriesUniversity of EdinburghEdinburghUK
- Forest ResearchNorthern Research StationRoslinUK
| | - Peter N. Hoebe
- Crop and Soil Systems Research GroupScotland's Rural CollegeEdinburghUK
| | - Richard A. Ennos
- Institute of Evolutionary BiologyAshworth LaboratoriesUniversity of EdinburghEdinburghUK
| |
Collapse
|
7
|
Marçais B, Piou D, Dezette D, Desprez-Loustau ML. Can Oak Powdery Mildew Severity be Explained by Indirect Effects of Climate on the Composition of the Erysiphe Pathogenic Complex? PHYTOPATHOLOGY 2017; 107:570-579. [PMID: 28026998 DOI: 10.1094/phyto-07-16-0268-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coinfection by several pathogens is increasingly recognized as an important feature in the epidemiology and evolution of plant fungal pathogens. Oak mildew is induced by two closely related Erysiphe invasive species (Erysiphe alphitoides and E. quercicola) which differ in their mode of overwintering. We investigated how climate influences the co-occurrence of the two species in oak young stands and whether this is important for the disease epidemiology. We studied the frequency of flag-shoots (i.e., shoots developing from infected buds, usually associated with E. quercicola) in 95 oak regenerations over a 6-year period. Additionally, in 2012 and 2013, the oak mildew severity and the two Erysiphe spp. relative frequencies were determined in both spring and autumn in 51 regenerations and 43 1-year-old plantations of oaks. Both the frequency of flag-shoots and the proportion of Erysiphe lesions with E. quercicola presence were related to climate. We showed that survival of E. quercicola was improved after mild winters, with increase of both the flag-shoot frequency and the proportion of Erysiphe lesions with E. quercicola presence in spring. However, disease severity was not related to any complementarity effect between the two Erysiphe spp. causing oak powdery mildew. By contrast, increased E. alphitoides prevalence in spring was associated with higher oak mildew severity in autumn. Our results point out the critical role of between-season transmission and primary inoculum to explain disease dynamics which could be significant in a climate-warming context.
Collapse
Affiliation(s)
- Benoit Marçais
- First author: UMR1136 IAM, INRA, Université de Lorraine, Nancy, F-54280 Champenoux, France; second author: Ministère de l'agriculture, de l'agro-alimentaire et de la forêt DGAL-SDQPV, Département de la Santé des Forêts, 251 rue de Vaugirard, 75732, Paris cedex 15, France; and second, third, and fourth authors: UMR1202 BIOGECO, INRA, University of Bordeaux, F-33610 Cestas, France
| | - Dominique Piou
- First author: UMR1136 IAM, INRA, Université de Lorraine, Nancy, F-54280 Champenoux, France; second author: Ministère de l'agriculture, de l'agro-alimentaire et de la forêt DGAL-SDQPV, Département de la Santé des Forêts, 251 rue de Vaugirard, 75732, Paris cedex 15, France; and second, third, and fourth authors: UMR1202 BIOGECO, INRA, University of Bordeaux, F-33610 Cestas, France
| | - Damien Dezette
- First author: UMR1136 IAM, INRA, Université de Lorraine, Nancy, F-54280 Champenoux, France; second author: Ministère de l'agriculture, de l'agro-alimentaire et de la forêt DGAL-SDQPV, Département de la Santé des Forêts, 251 rue de Vaugirard, 75732, Paris cedex 15, France; and second, third, and fourth authors: UMR1202 BIOGECO, INRA, University of Bordeaux, F-33610 Cestas, France
| | - Marie-Laure Desprez-Loustau
- First author: UMR1136 IAM, INRA, Université de Lorraine, Nancy, F-54280 Champenoux, France; second author: Ministère de l'agriculture, de l'agro-alimentaire et de la forêt DGAL-SDQPV, Département de la Santé des Forêts, 251 rue de Vaugirard, 75732, Paris cedex 15, France; and second, third, and fourth authors: UMR1202 BIOGECO, INRA, University of Bordeaux, F-33610 Cestas, France
| |
Collapse
|
8
|
Burgess TI, Crous CJ, Slippers B, Hantula J, Wingfield MJ. Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AOB PLANTS 2017; 8:plw076. [PMID: 27821517 PMCID: PMC5206332 DOI: 10.1093/aobpla/plw076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/26/2016] [Indexed: 05/28/2023]
Abstract
When non-native plants reach novel environments, they typically arrive with hidden microbiomes. In general, most of these hitchhikers remain on their co-evolved hosts, some contribute to the invasiveness of their hosts, and a small number can undergo host shifts and move onto native hosts. Invasion success can vary depending upon the different categories of fungal associates. When an invader tree relies on a fungal mutualism to survive in the new environment, there is a fundamentally lower likelihood of either the tree, or the fungus, establishing novel associations. In contrast, parasitic hitchhikers could merely use their host plants to move through the landscape and to become established on new hosts (host shifts). Evidence suggests the frequency of these host shifts is low and depends upon the fungal functional group. However, epidemics caused by invasive pathogens in native ecosystems have occurred globally. Thus, elucidating the potential for hidden non-native fungi to form novel host associations in a new environment is important for biodiversity conservation.
Collapse
Affiliation(s)
- Treena I Burgess
- Centre of Phytophthora Science and Management, School of Veterinary and Life Science, Murdoch University, Murdoch 6150, Australia
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Casparus J Crous
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
- Present address: Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Jarkko Hantula
- Natural Resources Institute Finland, Natural Resources and Bioproduction Unit, Vantaa 01300, Finland
| | - Michael J Wingfield
- Centre of Phytophthora Science and Management, School of Veterinary and Life Science, Murdoch University, Murdoch 6150, Australia
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
9
|
Burgess TI, Wingfield MJ. Pathogens on the Move: A 100-Year Global Experiment with Planted Eucalypts. Bioscience 2016. [DOI: 10.1093/biosci/biw146] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
10
|
Crous PW, Groenewald JZ, Slippers B, Wingfield MJ. Global food and fibre security threatened by current inefficiencies in fungal identification. Philos Trans R Soc Lond B Biol Sci 2016; 371:20160024. [PMID: 28080994 PMCID: PMC5095547 DOI: 10.1098/rstb.2016.0024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 01/02/2023] Open
Abstract
Fungal pathogens severely impact global food and fibre crop security. Fungal species that cause plant diseases have mostly been recognized based on their morphology. In general, morphological descriptions remain disconnected from crucially important knowledge such as mating types, host specificity, life cycle stages and population structures. The majority of current fungal species descriptions lack even the most basic genetic data that could address at least some of these issues. Such information is essential for accurate fungal identifications, to link critical metadata and to understand the real and potential impact of fungal pathogens on production and natural ecosystems. Because international trade in plant products and introduction of pathogens to new areas is likely to continue, the manner in which fungal pathogens are identified should urgently be reconsidered. The technologies that would provide appropriate information for biosecurity and quarantine already exist, yet the scientific community and the regulatory authorities are slow to embrace them. International agreements are urgently needed to enforce new guidelines for describing plant pathogenic fungi (including key DNA information), to ensure availability of relevant data and to modernize the phytosanitary systems that must deal with the risks relating to trade-associated plant pathogens.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Pedro W Crous
- CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Bernard Slippers
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
11
|
Janoušek J, Wingfield MJ, Monsivais JGM, Jankovský L, Stauffer C, Konečný A, Barnes I. Genetic Analyses Suggest Separate Introductions of the Pine Pathogen Lecanosticta acicola Into Europe. PHYTOPATHOLOGY 2016; 106:1413-1425. [PMID: 26714104 DOI: 10.1094/phyto-10-15-0271-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lecanosticta acicola is a heterothallic ascomycete that causes brown spot needle blight on native and nonnative Pinus spp. in many regions of the world. In this study we investigated the origin of European L. acicola populations and estimated the level of random mating of the pathogen in affected areas. Part of the elongation factor 1-α gene was sequenced, 11 microsatellite regions were screened, and the mating type idiomorphs were determined for 201 isolates of L. acicola collected from three continents and 17 host species. The isolates from Mexico and Guatemala were unique, highly diverse and could represent cryptic species of Lecanosticta. The isolates from East Asia formed a uniform and discrete group. Two distinct populations were identified in both North America and Europe. Approximate Bayesian computation analyses strongly suggest independent introductions of two populations from North America into Europe. Microsatellite data and mating type distributions indicated random recombination in the populations of North America and Europe. Its intercontinental introduction can most likely be explained as a consequence of the movement of infected plant material. In contrast, the spread of L. acicola within Europe appears to be primarily due to conidial dispersion and probably also ascospore dissemination.
Collapse
Affiliation(s)
- Josef Janoušek
- First and fourth authors: Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno 613 00, Czech Republic; second and seventh authors: Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; third author: Facultad de Ciencias Forestales, UANL, Nuevo León 67700, Mexico; fifth author: Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna 1190, Austria; and sixth author: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Michael J Wingfield
- First and fourth authors: Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno 613 00, Czech Republic; second and seventh authors: Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; third author: Facultad de Ciencias Forestales, UANL, Nuevo León 67700, Mexico; fifth author: Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna 1190, Austria; and sixth author: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - José G Marmolejo Monsivais
- First and fourth authors: Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno 613 00, Czech Republic; second and seventh authors: Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; third author: Facultad de Ciencias Forestales, UANL, Nuevo León 67700, Mexico; fifth author: Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna 1190, Austria; and sixth author: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Libor Jankovský
- First and fourth authors: Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno 613 00, Czech Republic; second and seventh authors: Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; third author: Facultad de Ciencias Forestales, UANL, Nuevo León 67700, Mexico; fifth author: Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna 1190, Austria; and sixth author: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Christian Stauffer
- First and fourth authors: Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno 613 00, Czech Republic; second and seventh authors: Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; third author: Facultad de Ciencias Forestales, UANL, Nuevo León 67700, Mexico; fifth author: Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna 1190, Austria; and sixth author: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Adam Konečný
- First and fourth authors: Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno 613 00, Czech Republic; second and seventh authors: Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; third author: Facultad de Ciencias Forestales, UANL, Nuevo León 67700, Mexico; fifth author: Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna 1190, Austria; and sixth author: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Irene Barnes
- First and fourth authors: Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno 613 00, Czech Republic; second and seventh authors: Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; third author: Facultad de Ciencias Forestales, UANL, Nuevo León 67700, Mexico; fifth author: Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna 1190, Austria; and sixth author: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
12
|
Luchi N, Capretti P, Pazzagli M, Pinzani P. Powerful qPCR assays for the early detection of latent invaders: interdisciplinary approaches in clinical cancer research and plant pathology. Appl Microbiol Biotechnol 2016; 100:5189-204. [PMID: 27112348 DOI: 10.1007/s00253-016-7541-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 12/29/2022]
Abstract
Latent invaders represent the first step of disease before symptoms occur in the host. Based on recent findings, tumors are considered to be ecosystems in which cancer cells act as invasive species that interact with the native host cell species. Analogously, in plants latent fungal pathogens coevolve within symptomless host tissues. For these reasons, similar detection approaches can be used for an early diagnosis of the invasion process in both plants and humans to prevent or reduce the spread of the disease. Molecular tools based on the evaluation of nucleic acids have been developed for the specific, rapid, and early detection of human diseases. During the last decades, these techniques to assess and quantify the proliferation of latent invaders in host cells have been transferred from the medical field to different areas of scientific research, such as plant pathology. An improvement in molecular biology protocols (especially referring to qPCR assays) specifically designed and optimized for detection in host plants is therefore advisable. This work is a cross-disciplinary review discussing the use of a methodological approach that is employed within both medical and plant sciences. It provides an overview of the principal qPCR tools for the detection of latent invaders, focusing on comparisons between clinical cancer research and plant pathology, and recent advances in the early detection of latent invaders to improve prevention and control strategies.
Collapse
Affiliation(s)
- Nicola Luchi
- National Research Council (IPSP-CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019, Sesto Fiorentino Firenze, Italy
| | - Paolo Capretti
- National Research Council (IPSP-CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019, Sesto Fiorentino Firenze, Italy
- Department of Agri-Food Productions and Environmental Sciences (DiSPAA), University of Florence, Piazzale delle Cascine 28, Florence, Italy
| | - Mario Pazzagli
- Department of Clinical, Experimental and Biomedical Sciences, University of Florence, Viale Pieraccini, 6, 50139, Firenze, Italy
| | - Pamela Pinzani
- Department of Clinical, Experimental and Biomedical Sciences, University of Florence, Viale Pieraccini, 6, 50139, Firenze, Italy.
| |
Collapse
|
13
|
Lee CE. Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system. Evol Appl 2015; 9:248-70. [PMID: 27087851 PMCID: PMC4780390 DOI: 10.1111/eva.12334] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/19/2015] [Indexed: 01/06/2023] Open
Abstract
The study of the copepod Eurytemora affinis has provided unprecedented insights into mechanisms of invasive success. In this invited review, I summarize a subset of work from my laboratory to highlight key insights gained from studying E. affinis as a model system. Invasive species with brackish origins are overrepresented in freshwater habitats. The copepod E. affinis is an example of such a brackish invader, and has invaded freshwater habitats multiple times independently in recent years. These invasions were accompanied by the evolution of physiological tolerance and plasticity, increased body fluid regulation, and evolutionary shifts in ion transporter (V‐type H+ATPase, Na+, K+‐ATPase) activity and expression. These evolutionary changes occurred in parallel across independent invasions in nature and in laboratory selection experiments. Selection appears to act on standing genetic variation during invasions, and maintenance of this variation is likely facilitated through ‘beneficial reversal of dominance’ in salinity tolerance across habitats. Expression of critical ion transporters is localized in newly discovered Crusalis leg organs. Increased freshwater tolerance is accompanied by costs to development time and greater requirements for food. High‐food concentration increases low‐salinity tolerance, allowing saline populations to invade freshwater habitats. Mechanisms observed here likely have relevance for other taxa undergoing fundamental niche expansions.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution (CORE) University of Wisconsin Madison WI USA
| |
Collapse
|
14
|
Jimu L, Chen S, Wingfield MJ, Mwenje E, Roux J. Three genetic groups of the Eucalyptus stem canker pathogen Teratosphaeria zuluensis introduced into Africa from an unknown source. Antonie van Leeuwenhoek 2015; 109:21-33. [PMID: 26499489 DOI: 10.1007/s10482-015-0606-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
Abstract
The Eucalyptus stem canker pathogen Teratosphaeria zuluensis was discovered in South Africa in 1988 and it has subsequently been found in several other African countries as well as globally. In this study, the population structure, genetic diversity and evolutionary history of T. z uluensis were analysed using microsatellite markers to gain an enhanced understanding of its movement in Africa. Isolates were collected from several sites in Malawi, Mozambique, Uganda and Zambia. Data obtained were compared with those previously published for a South African population. The data obtained from 334 isolates, amplified across eight microsatellite loci, were used for assignment, differentiation and genetic diversity tests. STRUCTURE analyses, θ st and genetic distances revealed the existence of two clusters, one dominated by isolates from South Africa and the other by isolates from the Zambezi basin including Malawi, Mozambique and Zambia. High levels of admixture were found within and among populations, dominated by the Mulanje population in Malawi. Moderate to low genetic diversity of the populations supports the previously held view that the pathogen was introduced into Africa. The clonal nature of the Ugandan population suggests a very recent introduction, most likely from southern Africa.
Collapse
Affiliation(s)
- Luke Jimu
- Department of Plant Production and Soil Science, Forest Science Postgraduate Programme, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| | - ShuaiFei Chen
- Department of Microbiology and Plant Pathology, FABI, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Microbiology and Plant Pathology, FABI, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Eddie Mwenje
- Bindura University of Science Education (BUSE), P. Bag 1020, Bindura, Zimbabwe
| | - Jolanda Roux
- Department of Microbiology and Plant Pathology, FABI, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
15
|
Mbenoun M, Wingfield MJ, Letsoalo T, Bihon W, Wingfield BD, Roux J. Independent origins and incipient speciation among host-associated populations of Thielaviopsis ethacetica in Cameroon. Fungal Biol 2015; 119:957-972. [PMID: 26466872 DOI: 10.1016/j.funbio.2015.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
Thielaviopsis ethacetica was recently reinstated as a distinct taxon using DNA phylogenies. It is widespread affecting several crop plants of global economic importance. In this study, microsatellite markers were developed and used in conjunction with sequence data to investigate the genetic diversity and structure of Th. ethacetica in Cameroon. A collection of 71 isolates from cacao, oil palm, and pineapple, supplemented with nine isolates from other countries were analysed. Four genetic groups were identified. Two of these were associated with oil palm in Cameroon and showed high genetic diversity, suggesting that they might represent an indigenous population of the pathogen. In contrast, the remaining two groups, associated with cacao and pineapple, had low genetic diversity and, most likely, represent introduced populations. There was no evidence of gene flow between these groups. Phylogenetic analyses based on sequences of the tef1-α as well as the combined flanking regions of six microsatellite loci were consistent with population genetic analyses and suggested that Th. ethacetica is comprised of two divergent genetic lineages.
Collapse
Affiliation(s)
- Michael Mbenoun
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20 Hatfield, University of Pretoria, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20 Hatfield, University of Pretoria, Pretoria 0028, South Africa
| | - Teboho Letsoalo
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20 Hatfield, University of Pretoria, Pretoria 0028, South Africa
| | - Wubetu Bihon
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20 Hatfield, University of Pretoria, Pretoria 0028, South Africa; Agricultural Research Council-Vegetable and Ornamental Plant Institute (ARC-VOPI), Private Bag X293, Pretoria 0001, South Africa
| | - Brenda D Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20 Hatfield, University of Pretoria, Pretoria 0028, South Africa
| | - Jolanda Roux
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20 Hatfield, University of Pretoria, Pretoria 0028, South Africa.
| |
Collapse
|
16
|
Mercière M, Laybats A, Carasco-Lacombe C, Tan JS, Klopp C, Durand-Gasselin T, Alwee SSRS, Camus-Kulandaivelu L, Breton F. Identification and development of new polymorphic microsatellite markers using genome assembly for Ganoderma boninense, causal agent of oil palm basal stem rot disease. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1123-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Taole M, Bihon W, Wingfield BD, Wingfield MJ, Burgess TI. Multiple introductions from multiple sources: invasion patterns for an important Eucalyptus leaf pathogen. Ecol Evol 2015; 5:4210-20. [PMID: 26445668 PMCID: PMC4588637 DOI: 10.1002/ece3.1693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
Many population studies on invasive plant pathogens are undertaken without knowing the center of origin of the pathogen. Most leaf pathogens of Eucalyptus originate in Australia and consequently with indigenous populations available, and it is possible to study the pathways of invasion. Teratosphaeria suttonii is a commonly occurring leaf pathogen of Eucalyptus species, naturally distributed in tropical and subtropical regions of eastern Australia where it is regarded as a minor pathogen infecting older leaves; however, repeated infections, especially in exotic plantations, can result in severe defoliation and tree deaths. Nine polymorphic microsatellite markers were used to assess the genetic structure of 11 populations of T. suttonii of which four where from within its native range in eastern Australia and the remaining seven from exotic Eucalyptus plantations. Indigenous populations exhibited high allele and haplotype diversity, predominantly clonal reproduction, high population differentiation, and low gene flow. The diversity of the invasive populations varied widely, but in general, the younger the plantation industry in a country or region, the lower the diversity of T. suttonii. Historical gene flow was from Australia, and while self-recruitment was dominant in all populations, there was evidence for contemporary gene flow, with South Africa being the most common source and Uruguay the most common sink population. This points distinctly to human activities underlying long-distance spread of this pathogen, and it highlights lessons to be learned regarding quarantine.
Collapse
Affiliation(s)
- Matsepo Taole
- Department of Biology National University of Lesotho P. O. 180 Roma Lesotho ; Department of Genetics Forestry and Agriculture Biotechnology Institute (FABI) University of Pretoria Pretoria 0002 South Africa
| | - Wubetu Bihon
- Department of Genetics Forestry and Agriculture Biotechnology Institute (FABI) University of Pretoria Pretoria 0002 South Africa ; Agricultural Research Council Vegetable & Ornamental Plant Institute Pretoria South Africa
| | - Brenda D Wingfield
- Department of Genetics Forestry and Agriculture Biotechnology Institute (FABI) University of Pretoria Pretoria 0002 South Africa
| | - Michael J Wingfield
- Department of Microbiology and Plant Pathology Forestry and Agriculture Biotechnology Institute (FABI) University of Pretoria Pretoria 0002 South Africa ; School of Veterinary and Life Sciences Murdoch University Murdoch WA 6150 Australia
| | - Treena I Burgess
- Department of Genetics Forestry and Agriculture Biotechnology Institute (FABI) University of Pretoria Pretoria 0002 South Africa ; School of Veterinary and Life Sciences Murdoch University Murdoch WA 6150 Australia
| |
Collapse
|
18
|
|