1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Zhang L, Fu Y, Xu Q, Chen X, Xie Y, Zhang B, Lin X. Quantitative proteomics reveals the complex regulatory networks of LTTR-type regulators in pleiotropic functions of Aeromonas hydrophila. Int J Biol Macromol 2024; 270:132315. [PMID: 38740149 DOI: 10.1016/j.ijbiomac.2024.132315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are ubiquitously distributed and abundant transcriptional regulators in prokaryotes, playing pivotal roles in diverse physiological processes. Nonetheless, despite their prevalence, the intricate functionalities and physiological implications of this protein family remain incompletely elucidated. In this study, we employed a comprehensive approach to deepen our understanding of LTTRs by generating a collection of 20 LTTR gene-deletion strains in Aeromonas hydrophila, accounting for 42.6 % of the predicted total LTTR repertoire, and subjected them to meticulous assessment of their physiological phenotypes. Leveraging quantitative proteomics, we conducted a comparative analysis of protein expression variations between six representative mutants and the wild-type strain. Subsequent bioinformatics analysis unveiled the involvement of these LTTRs in modulating a wide array of biological processes, notably including two-component regulatory systems (TCSs) and intracellular central metabolism. Moreover, employing subsequent microbiological methodologies, we experimentally verified the direct involvement of at least six LTTRs in the regulation of galactose metabolism. Importantly, through ELISA and competitive ELISA assays, we demonstrated the competitive binding capabilities of these LTTRs with the promoter of the α-galactosidase gene AHA_1897 and identified that four LTTRs (XapR, YidZ, YeeY, and AHA_1805) do not engage in competitive binding with other LTTRs. Overall, our comprehensive findings not only provide fundamental insights into the regulatory mechanisms governing crucial physiological functions of bacteria through LTTR family proteins but also uncover an intricate and interactive regulatory network mediated by LTTRs.
Collapse
Affiliation(s)
- Lishan Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou, Fujian Province 350007, China
| | - Qiaozhen Xu
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Chen
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyue Xie
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghui Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou 350003, China
| | - Xiangmin Lin
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Funkner K, Poehlein A, Jehmlich N, Egelkamp R, Daniel R, von Bergen M, Rother M. Proteomic and transcriptomic analysis of selenium utilization in Methanococcus maripaludis. mSystems 2024; 9:e0133823. [PMID: 38591896 PMCID: PMC11097638 DOI: 10.1128/msystems.01338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Methanococcus maripaludis utilizes selenocysteine- (Sec-) containing proteins (selenoproteins), mostly active in the organism's primary energy metabolism, methanogenesis. During selenium depletion, M. maripaludis employs a set of enzymes containing cysteine (Cys) instead of Sec. The genes coding for these Sec-/Cys-containing isoforms were the only genes known of which expression is influenced by the selenium status of the cell. Using proteomics and transcriptomics, approx. 7% and 12%, respectively, of all genes/proteins were found differentially expressed/synthesized in response to the selenium supply. Some of the genes identified involve methanogenesis, nitrogenase functions, and putative transporters. An increase of transcript abundance for putative transporters under selenium depletion indicated the organism's effort to tap into alternative sources of selenium. M. maripaludis is known to utilize selenite and dimethylselenide as selenium sources. To expand this list, a selenium-responsive reporter strain was assessed with nine other, environmentally relevant selenium species. While the effect of some was very similar to that of selenite, others were effectively utilized at lower concentrations. Conversely, selenate and seleno-amino acids were only utilized at unphysiologically high concentrations and two compounds were not utilized at all. To address the role of the selenium-regulated putative transporters, M. maripaludis mutant strains lacking one or two of the putative transporters were tested for the capability to utilize the different selenium species. Of the five putative transporters analyzed by loss-of-function mutagenesis, none appeared to be absolutely required for utilizing any of the selenium species tested, indicating they have redundant and/or overlapping specificities or are not dedicated selenium transporters. IMPORTANCE While selenium metabolism in microorganisms has been studied intensively in the past, global gene expression approaches have not been employed so far. Furthermore, the use of different selenium sources, widely environmentally interconvertible via biotic and abiotic processes, was also not extensively studied before. Methanococcus maripaludis JJ is ideally suited for such analyses, thanks to its known selenium usage and available genetic tools. Thus, an overall view on the selenium regulon of M. maripaludis was obtained via transcriptomic and proteomic analyses, which inspired further experimentation. This led to demonstrating the use of selenium sources M. maripaludis was previously not known to employ. Also, an attempt-although so far unsuccessful-was made to pinpoint potential selenium transporter genes, in order to deepen our understanding of trace element utilization in this important model organism.
Collapse
Affiliation(s)
- Katrina Funkner
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Michael Rother
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Prathiviraj R, Chellapandi P. Modeling a global regulatory network of Methanothermobacter thermautotrophicus strain ∆H. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s13721-020-0223-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
The TK0271 Protein Activates Transcription of Aromatic Amino Acid Biosynthesis Genes in the Hyperthermophilic Archaeon Thermococcus kodakarensis. mBio 2019; 10:mBio.01213-19. [PMID: 31506306 PMCID: PMC6737238 DOI: 10.1128/mbio.01213-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of transcriptional regulation in archaea are still poorly understood. In this study, we identified a transcriptional regulator in the hyperthermophilic archaeon Thermococcus kodakarensis that activates the transcription of three operons involved in the biosynthesis of aromatic amino acids. The study represents one of only a few that identifies a regulator in Archaea that activates transcription. The results also imply that transcriptional regulation of genes with the same function is carried out by diverse mechanisms in the archaea, depending on the lineage. TrpY from Methanothermobacter thermautotrophicus is a regulator that inhibits transcription of the Trp biosynthesis (trp) operon. Here, we show that the TrpY homolog in Thermococcus kodakarensis is not involved in such regulation. There are 87 genes on the T. kodakarensis genome predicted to encode transcriptional regulators (TRs). By screening for TRs that specifically bind to the promoter of the trp operon of T. kodakarensis, we identified TK0271. The gene resides in the aro operon, responsible for the biosynthesis of chorismate, a precursor for Trp, Tyr, and Phe. TK0271 was expressed in Escherichia coli, and the protein, here designated Tar (Thermococcalesaromatic amino acid regulator), was purified. Tar specifically bound to the trp promoter with a dissociation constant (Kd) value of approximately 5 nM. Tar also bound to the promoters of the Tyr/Phe biosynthesis (tyr-phe) and aro operons. The protein recognized a palindromic sequence (TGGACA-N8-TGTCCA) conserved in these promoters. In vitro transcription assays indicated that Tar activates transcription from all three promoters. We cultivated T. kodakarensis in amino acid-based medium and found that transcript levels of the trp, tyr-phe, and aro operons increased in the absence of Trp, Tyr, or Phe. We further constructed a TK0271 gene disruption strain (ΔTK0271). Growth of ΔTK0271 was similar to that of the host strain in medium including Trp, Tyr, and Phe but was significantly impaired in the absence of any one of these amino acids. The results suggest that Tar is responsible for the transcriptional activation of aromatic amino acid biosynthesis genes in T. kodakarensis.
Collapse
|
7
|
Functional annotation of operome from Methanothermobacter thermautotrophicus ΔH: An insight to metabolic gap filling. Int J Biol Macromol 2018; 123:350-362. [PMID: 30445075 DOI: 10.1016/j.ijbiomac.2018.11.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Methanothermobacter thermautotrophicus ΔH (MTH) is a potential methanogen known to reduce CO2 with H2 for producing methane biofuel in thermophilic digesters. The genome of this organism contains ~50.5% conserved hypothetical proteins (HPs; operome) whose function is still not determined precisely. Here, we employed a combined bioinformatics approach to annotate a precise function to HPs and categorize them as enzymes, binding proteins, and transport proteins. Results of our study show that 315 (35.6%) HPs have exhibited well-defined functions contributing imperative roles in diverse cellular metabolism. Some of them are responsible for stress-response mechanisms and cell cycle, membrane transport, and regulatory processes. The genome-neighborhood analysis found five important gene clusters (dsr, ehb, kaiC, cmr, and gas) involving in the energetic metabolism and defense systems. MTH operome contains 223 enzymes with 15 metabolic subsystems, 15 cell cycle proteins, 17 transcriptional regulators and 33 binding proteins. Functional annotation of its operome is thus more fundamental to a profound understanding of the molecular and cellular machinery at systems-level.
Collapse
|
8
|
Rother M, Quitzke V. Selenoprotein synthesis and regulation in Archaea. Biochim Biophys Acta Gen Subj 2018; 1862:2451-2462. [DOI: 10.1016/j.bbagen.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
|
9
|
Quitzke V, Fersch J, Seyhan D, Rother M. Selenium-dependent gene expression in Methanococcus maripaludis: Involvement of the transcriptional regulator HrsM. Biochim Biophys Acta Gen Subj 2018; 1862:2441-2450. [DOI: 10.1016/j.bbagen.2018.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
|
10
|
Martinez-Pastor M, Tonner PD, Darnell CL, Schmid AK. Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Networks. Annu Rev Genet 2018; 51:143-170. [PMID: 29178818 DOI: 10.1146/annurev-genet-120116-023413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are major contributors to biogeochemical cycles, possess unique metabolic capabilities, and resist extreme stress. To regulate the expression of genes encoding these unique programs, archaeal cells use gene regulatory networks (GRNs) composed of transcription factor proteins and their target genes. Recent developments in genetics, genomics, and computational methods used with archaeal model organisms have enabled the mapping and prediction of global GRN structures. Experimental tests of these predictions have revealed the dynamical function of GRNs in response to environmental variation. Here, we review recent progress made in this area, from investigating the mechanisms of transcriptional regulation of individual genes to small-scale subnetworks and genome-wide global networks. At each level, archaeal GRNs consist of a hybrid of bacterial, eukaryotic, and uniquely archaeal mechanisms. We discuss this theme from the perspective of the role of individual transcription factors in genome-wide regulation, how these proteins interact to compile GRN topological structures, and how these topologies lead to emergent, high-level GRN functions. We conclude by discussing how systems biology approaches are a fruitful avenue for addressing remaining challenges, such as discovering gene function and the evolution of GRNs.
Collapse
Affiliation(s)
| | - Peter D Tonner
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Cynthia L Darnell
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
11
|
Enzmann F, Mayer F, Rother M, Holtmann D. Methanogens: biochemical background and biotechnological applications. AMB Express 2018; 8:1. [PMID: 29302756 PMCID: PMC5754280 DOI: 10.1186/s13568-017-0531-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023] Open
Abstract
Since fossil sources for fuel and platform chemicals will become limited in the near future, it is important to develop new concepts for energy supply and production of basic reagents for chemical industry. One alternative to crude oil and fossil natural gas could be the biological conversion of CO2 or small organic molecules to methane via methanogenic archaea. This process has been known from biogas plants, but recently, new insights into the methanogenic metabolism, technical optimizations and new technology combinations were gained, which would allow moving beyond the mere conversion of biomass. In biogas plants, steps have been undertaken to increase yield and purity of the biogas, such as addition of hydrogen or metal granulate. Furthermore, the integration of electrodes led to the development of microbial electrosynthesis (MES). The idea behind this technique is to use CO2 and electrical power to generate methane via the microbial metabolism. This review summarizes the biochemical and metabolic background of methanogenesis as well as the latest technical applications of methanogens. As a result, it shall give a sufficient overview over the topic to both, biologists and engineers handling biological or bioelectrochemical methanogenesis.
Collapse
Affiliation(s)
- Franziska Enzmann
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Florian Mayer
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Michael Rother
- Technische Universität Dresden, Institut für Mikrobiologie, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Dirk Holtmann
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters. Sci Rep 2016; 6:24538. [PMID: 27087658 PMCID: PMC4834489 DOI: 10.1038/srep24538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators.
Collapse
|
13
|
Lin J, Peng T, Jiang L, Ni JZ, Liu Q, Chen L, Zhang Y. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol 2015; 7:664-76. [PMID: 25638258 PMCID: PMC5322559 DOI: 10.1093/gbe/evv022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an important micronutrient that mainly occurs in proteins in the form of selenocysteine and in tRNAs in the form of selenouridine. In the past 20 years, several genes involved in Se utilization have been characterized in both prokaryotes and eukaryotes. However, Se homeostasis and the associated regulatory network are not fully understood. In this study, we conducted comparative genomics and phylogenetic analyses to examine the occurrence of all known Se utilization traits in prokaryotes. Our results revealed a highly mosaic pattern of species that use Se (in different forms) in spite that most organisms do not use this element. Further investigation of genomic context of known Se-related genes in different organisms suggested novel candidate genes that may participate in Se metabolism in bacteria and/or archaea. Among them, a membrane protein, YedE, which contains ten transmembrane domains and shows distant similarity to a sulfur transporter, is exclusively found in Se-utilizing organisms, suggesting that it may be involved in Se transport. A LysR-like transcription factor subfamily might be important for the regulation of Sec biosynthesis and/or other Se-related genes. In addition, a small protein family DUF3343 is widespread in Se-utilizing organisms, which probably serves as an important chaperone for Se trafficking within the cells. Finally, we proposed a simple model of Se homeostasis based on our findings. Our study reveals new candidate genes involved in Se metabolism in prokaryotes and should be useful for a further understanding of the complex metabolism and the roles of Se in biology.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ting Peng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Jiang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
|
15
|
Toledo M, Santos C, Mendes J, Pelloso A, Beloti L, Crucello A, Favaro M, Santiago A, Schneider D, Saraiva A, Stach-Machado D, Souza A, Trivella D, Aparicio R, Tasic L, Azzoni A, Souza A. Small-angle X-ray scattering and in silico modeling approaches for the accurate functional annotation of an LysR-type transcriptional regulator. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:697-707. [DOI: 10.1016/j.bbapap.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 01/31/2023]
|
16
|
Marschaus L, Pfeifer F. A dual promoter region with overlapping activator sequences drives the expression of gas vesicle protein genes in haloarchaea. MICROBIOLOGY-SGM 2012; 158:2815-2825. [PMID: 22997463 DOI: 10.1099/mic.0.060178-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gas vesicle formation in haloarchaea involves 14 gas vesicle protein (gvp) genes. The strong promoter P(A) drives the expression of gvpACNO, which encodes the major gas vesicle structural proteins GvpA and GvpC, whereas the oppositely oriented promoter P(D) initiates the synthesis of the two regulator proteins, GvpD and GvpE. GvpE activates P(A) and P(D), and requires a 20 nt upstream activator sequence (UAS). UAS(A) and UAS(D) partially overlap in the centre of the 35 bp intergenic region. The basal and GvpE-induced activities of P(A) and P(D) were investigated in Haloferax volcanii transformants. Each UAS consists of two 8 nt portions (P(A), 1A+2A; P(D), 1D+2D), and mutations in the overlapping 1A and 1D portions affected the GvpE induction of both promoters. Substitution of one of the UAS portions by a nonsense sequence showed that a complete UAS is required for activation. The activation of P(A) was more efficient compared with P(D). Promoter P(A) with UAS(A) in configuration 1A+1A was still activated by GvpE, but P(D) was not inducible with UAS(D) in configuration 1D+1D. The TATA box and/or transcription factor B recognition element (BRE) were exchanged between P(A) and P(D). All elements of P(A) functioned well in the environment of 'P(D)' and transferred the stronger P(A) activity to 'P(D)'. In contrast, the respective 'P(A)' chimeras were less active, and BRE(D) was not functional in the environment of 'P(A)'. The relative strengths of the two promoters were substantially determined by the BRE. A 4 nt scanning mutagenesis uncovered an additional regulatory element in the region between TATA(D) and the transcriptional start site of gvpD.
Collapse
Affiliation(s)
- Larissa Marschaus
- Mikrobiologie und Archaea, Fachbereich Biologie der Technischen Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Mikrobiologie und Archaea, Fachbereich Biologie der Technischen Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| |
Collapse
|
17
|
Abstract
UNLABELLED Results are presented supporting a regulatory role for the product of the MA3302 gene locus (designated MreA) previously annotated as a hypothetical protein in the methanogenic species Methanosarcina acetivorans of the domain Archaea. Sequence analysis of MreA revealed identity to the TrmB family of transcription factors, albeit the sequence is lacking the sensor domain analogous to TrmBL2, abundant in nonmethanogenic species of the domain Archaea. Transcription of mreA was highly upregulated during growth on acetate versus methylotrophic substrates, and an mreA deletion (ΔmreA) strain was impaired for growth with acetate in contrast to normal growth with methylotrophic substrates. Transcriptional profiling of acetate-grown cells identified 280 genes with altered expression in the ΔmreA strain versus the wild-type strain. Expression of genes unique to the acetate pathway decreased whereas expression of genes unique to methylotrophic metabolism increased in the ΔmreA strain relative to the wild type, results indicative of a dual role for MreA in either the direct or indirect activation of acetate-specific genes and repression of methylotrophic-specific genes. Gel shift experiments revealed specific binding of MreA to promoter regions of regulated genes. Homologs of MreA were identified in M. acetivorans and other Methanosarcina species for which expression patterns indicate roles in regulating methylotrophic pathways. IMPORTANCE Species in the domain Archaea utilize basal transcription machinery resembling that of the domain Eukarya, raising questions addressing the role of numerous putative transcription factors identified in sequenced archaeal genomes. Species in the genus Methanosarcina are ideally suited for investigating principles of archaeal transcription through analysis of the capacity to utilize a diversity of substrates for growth and methanogenesis. Methanosarcina species switch pathways in response to the most energetically favorable substrate, metabolizing methylotrophic substrates in preference to acetate marked by substantial regulation of gene expression. Although conversion of the methyl group of acetate accounts for most of the methane produced in Earth's biosphere, no proteins involved in the regulation of genes in the acetate pathway have been reported. The results presented here establish that MreA participates in the global regulation of diverse methanogenic pathways in the genus Methanosarcina. Finally, the results contribute to a broader understanding of transcriptional regulation in the domain Archaea.
Collapse
|
18
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
19
|
Stock T, Selzer M, Connery S, Seyhan D, Resch A, Rother M. Disruption and complementation of the selenocysteine biosynthesis pathway reveals a hierarchy of selenoprotein gene expression in the archaeon Methanococcus maripaludis. Mol Microbiol 2011; 82:734-47. [PMID: 21992107 DOI: 10.1111/j.1365-2958.2011.07850.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Proteins containing selenocysteine are found in members of all three domains of life, Bacteria, Eukarya and Archaea. A dedicated tRNA (tRNA(sec)) serves as a scaffold for selenocysteine synthesis. However, sequence and secondary structures differ in tRNA(sec) from the different domains. An Escherichia coli strain lacking the gene for tRNA(sec) could only be complemented with the homologue from Methanococcus maripaludis when a single base in the anticodon loop was exchanged demonstrating that this base is a crucial determinant for archaeal tRNA(sec) to function in E. coli. Complementation in trans of M. maripaludis JJ mutants lacking tRNA(sec) , O-phosphoseryl-tRNA(sec) kinase or O-phosphoseryl-tRNA(sec) :selenocysteine synthase with the corresponding genes from M. maripaludis S2 restored the mutant's ability to synthesize selenoproteins. However, only partial restoration of the wild-type selenoproteome was observed as only selenocysteine-containing formate dehydrogenase was synthesized. Quantification of transcripts showed that disrupting the pathway of selenocysteine synthesis leads to downregulation of selenoprotein gene expression, concomitant with upregulation of a selenium-independent backup system, which is not re-adjusted upon complementation. This transcriptional arrest was independent of selenophosphate but depended on the 'history' of the mutants and was inheritable, which suggests that a stable genetic switch may cause the resulting hierarchy of selenoproteins synthesized.
Collapse
Affiliation(s)
- Tilmann Stock
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Hohn MJ, Palioura S, Su D, Yuan J, Söll D. Genetic analysis of selenocysteine biosynthesis in the archaeon Methanococcus maripaludis. Mol Microbiol 2011; 81:249-58. [PMID: 21564332 PMCID: PMC3124581 DOI: 10.1111/j.1365-2958.2011.07690.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Archaea selenocysteine (Sec) is synthesized in three steps. First seryl-tRNA synthetase acylates tRNA(Sec) with serine to generate Ser-tRNA(Sec). Then phosphoseryl-tRNA(Sec) kinase (PSTK) forms Sep-tRNA(Sec) , which is converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) in the presence of selenophosphate produced by selenophosphate synthetase (SelD). A complete in vivo analysis of the archaeal Sec biosynthesis pathway is still unavailable, and the existence of a redundant pathway or of a rescue mechanism based on the conversion of Sep-tRNA(Sec) to Cys-tRNA(Sec) during selenium starvation, cannot be excluded. Here we present a mutational analysis of Sec biosynthesis in Methanococcus maripaludis strain Mm900. Sec formation is abolished upon individually deleting the genes encoding SelD, PSTK or SepSecS; the resulting mutant strains could no longer grow on formate while growth with H(2) + CO(2) remained unaffected. However, deletion of the PSTK and SepSecS genes was not possible unless the selenium-free [NiFe]-hydrogenases Frc and Vhc were expressed. This required the prior deletion of either the gene encoding SelD or that of HrsM, a LysR-type regulator suppressing transcription of the frc and vhc operons in the presence of selenium. These results show that M. maripaludis Mm900 is facultatively selenium-dependent with a single pathway of Sec-tRNA(Sec) formation.
Collapse
Affiliation(s)
- Michael J. Hohn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Sotiria Palioura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
21
|
Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011; 35:577-608. [PMID: 21265868 DOI: 10.1111/j.1574-6976.2011.00265.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
22
|
Baltazar CSA, Marques MC, Soares CM, DeLacey AM, Pereira IAC, Matias PM. Nickel–Iron–Selenium Hydrogenases – An Overview. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001127] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carla S. A. Baltazar
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Marta C. Marques
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Cláudio M. Soares
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Antonio M. DeLacey
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain, Fax: +34‐915854760
| | - Inês A. C. Pereira
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
| | - Pedro M. Matias
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| |
Collapse
|
23
|
Abstract
Methanogenic archaea are a unique group of strictly anaerobic microorganisms characterized by their ability, and dependence, to convert simple C1 and C2 compounds to methane for growth. The major models for studying the biology of methanogens are members of the Methanococcus and Methanosarcina species. Recent development of sophisticated tools for molecular analysis and for genetic manipulation allows investigating not only their metabolism but also their cell cycle, and their interaction with the environment in great detail. One aspect of such analyses is assessment and dissection of methanoarchaeal gene regulation, for which, at present, only a handful of cases have been investigated thoroughly, partly due to the great methodological effort required. However, it becomes more and more evident that many new regulatory paradigms can be unraveled in this unique archaeal group. Here, we report both molecular and physiological/genetic methods to assess gene regulation in Methanococcus maripaludis and Methanosarcina acetivorans, which should, however, be applicable for other methanogens as well.
Collapse
Affiliation(s)
- Michael Rother
- Institut fu¨ r Molekulare Biowissenschaften, Molekulare Mikrobiologie & Bioenergetik, Johann Wolfgang Goethe-Universita¨t, Frankfurt am Main, Germany
| | | | | |
Collapse
|
24
|
Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S. Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H2Storage. Annu Rev Biochem 2010; 79:507-36. [DOI: 10.1146/annurev.biochem.030508.152103] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany;
| |
Collapse
|
25
|
Matson EG, Zhang X, Leadbetter JR. Selenium controls transcription of paralogous formate dehydrogenase genes in the termite gut acetogen, Treponema primitia. Environ Microbiol 2010; 12:2245-58. [PMID: 21966917 DOI: 10.1111/j.1462-2920.2010.02188.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The termite gut spirochete, Treponema primitia, is a CO(2)-reductive acetogen that is phylogenetically distinct from other distantly related and more extensively studied acetogens such as Moorella thermoacetica. Research on T. primitia has revealed details about the role of spirochetes in CO(2)-reductive acetogenesis, a process important to the mutualism occurring between termites and their gut microbial communities. Here, a locus of the T. primitia genome containing Wood-Ljungdahl pathway genes for CO(2)-reductive acetogenesis was sequenced. This locus contained methyl-branch genes of the pathway (i.e. for the reduction of CO(2) to the level of methyl-tetrahydrofolate) including paralogous genes for cysteine and selenocysteine (Sec) variants of formate dehydrogenase (FDH) and genes for Sec incorporation. The FDH variants affiliated phylogenetically with hydrogenase-linked FDH enzymes, suggesting that T. primitia FDH enzymes utilize electrons derived directly from molecular H(2). Sub-nanomolar concentrations of selenium decreased transcript levels of the cysteine variant FDH gene. Selenium concentration did not markedly influence the level of mRNA upstream of the Sec-codon in the Sec variant FDH; however, the level of transcript extending downstream of the Sec-codon increased incrementally with increasing selenium concentrations. The features and regulation of these FDH genes are an indication that T. primitia may experience dynamic selenium availability in its H(2)-rich gut environment.
Collapse
Affiliation(s)
- Eric G Matson
- Ronald and Maxine Linde Center for Global Environmental Science, Mailcode 138-78, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
26
|
Stock T, Selzer M, Rother M. In vivo requirement of selenophosphate for selenoprotein synthesis in archaea. Mol Microbiol 2009; 75:149-60. [PMID: 19919669 DOI: 10.1111/j.1365-2958.2009.06970.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biosynthesis of selenocysteine, the 21st proteinogenic amino acid, occurs bound to a dedicated tRNA in all three domains of life, Bacteria, Eukarya and Archaea, but differences exist between the mechanism employed by bacteria and eukaryotes/archaea. The role of selenophosphate and the enzyme providing it, selenophosphate synthetase, in archaeal selenoprotein synthesis was addressed by mutational analysis. Surprisingly, MMP0904, encoding a homologue of eukaryal selenophosphate synthetase in Methanococcus maripaludis S2, could not be deleted unless selD, encoding selenophosphate synthetase of Escherichia coli, was present in trans, demonstrating that the factor is essential for the organism. In contrast, the homologous gene of M. maripaludis JJ could be readily deleted, obviating the strain's ability to synthesize selenoproteins. Complementing with selD restored selenoprotein synthesis, demonstrating that the deleted gene encodes selenophosphate synthetase and that selenophosphate is the in vivo selenium donor for selenoprotein synthesis of this organism. We also showed that this enzyme is a selenoprotein itself and that M. maripaludis contains another, HesB-like selenoprotein previously only predicted from genome analyses. The data highlight the use of genetic methods in archaea for a causal analysis of their physiology and, by comparing two closely related strains of the same species, illustrate the evolution of the selenium-utilizing trait.
Collapse
Affiliation(s)
- Tilmann Stock
- Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
27
|
López-Sánchez A, Rivas-Marín E, Martínez-Pérez O, Floriano B, Santero E. Co-ordinated regulation of two divergent promoters through higher-order complex formation by the LysR-type regulator ThnR. Mol Microbiol 2009; 73:1086-100. [PMID: 19682246 DOI: 10.1111/j.1365-2958.2009.06834.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genes required for tetralin biodegradation by Sphingomonas macrogolitabida strain TFA are clustered in two divergent and closely linked operons. ThnR, a LysR-type regulator, activates transcription from each operon in response to tetralin. The regulatory thnR gene is co-transcribed with the catabolic genes thnC, thnA3 and thnA4, resulting in positive autoregulation. ThnR binds with different affinity to two primary binding sites, designated B and C, in the intervening region between the two operons and makes additional contact with secondary sites that extend towards the promoters. In addition, ThnR may interact with itself when bound to each site via the formation of a DNA loop, as evidenced by the distortion of the DNA between the primary binding sites and the elimination of the higher-order complexes following the introduction of a half-turn of the DNA helix between the primary binding sites. Transcription from each promoter is not fully independent since mutations in each binding site affected transcription from both promoters. Based on these results, we propose a model of transcription activation that involves the formation of a complex structure by interactions between ThnR molecules bound to distant binding sites and favours transcription from one promoter to the detriment of the other.
Collapse
Affiliation(s)
- Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, Carretera de Utrera, Sevilla, Spain
| | | | | | | | | |
Collapse
|
28
|
Stock T, Rother M. Selenoproteins in Archaea and Gram-positive bacteria. Biochim Biophys Acta Gen Subj 2009; 1790:1520-32. [PMID: 19344749 DOI: 10.1016/j.bbagen.2009.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 01/23/2023]
Abstract
Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.
Collapse
Affiliation(s)
- Tilmann Stock
- Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | |
Collapse
|
29
|
Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. MICROBIOLOGY-SGM 2009; 154:3609-3623. [PMID: 19047729 DOI: 10.1099/mic.0.2008/022772-0] [Citation(s) in RCA: 658] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The LysR family of transcriptional regulators represents the most abundant type of transcriptional regulator in the prokaryotic kingdom. Members of this family have a conserved structure with an N-terminal DNA-binding helix-turn-helix motif and a C-terminal co-inducer-binding domain. Despite considerable conservation both structurally and functionally, LysR-type transcriptional regulators (LTTRs) regulate a diverse set of genes, including those involved in virulence, metabolism, quorum sensing and motility. Numerous structural and transcriptional studies of members of the LTTR family are helping to unravel a compelling paradigm that has evolved from the original observations and conclusions that were made about this family of transcriptional regulators.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | |
Collapse
|
30
|
Bose A, Metcalf WW. Distinct regulators control the expression of methanol methyltransferase isozymes inMethanosarcina acetivoransC2A. Mol Microbiol 2008; 67:649-61. [DOI: 10.1111/j.1365-2958.2007.06075.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Vignais PM, Billoud B. Occurrence, Classification, and Biological Function of Hydrogenases: An Overview. Chem Rev 2007; 107:4206-72. [PMID: 17927159 DOI: 10.1021/cr050196r] [Citation(s) in RCA: 1060] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paulette M. Vignais
- CEA Grenoble, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF 5092, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble cedex 9, France, and Atelier de BioInformatique Université Pierre et Marie Curie (Paris 6), 12 rue Cuvier, 75005 Paris, France
| | - Bernard Billoud
- CEA Grenoble, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF 5092, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble cedex 9, France, and Atelier de BioInformatique Université Pierre et Marie Curie (Paris 6), 12 rue Cuvier, 75005 Paris, France
| |
Collapse
|
32
|
Valente FMA, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IAC. Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 2006; 188:3228-35. [PMID: 16621815 PMCID: PMC1447438 DOI: 10.1128/jb.188.9.3228-3235.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Desulfovibrio vulgaris Hildenborough is a good model organism to study hydrogen metabolism in sulfate-reducing bacteria. Hydrogen is a key compound for these organisms, since it is one of their major energy sources in natural habitats and also an intermediate in the energy metabolism. The D. vulgaris Hildenborough genome codes for six different hydrogenases, but only three of them, the periplasmic-facing [FeFe], [FeNi]1, and [FeNiSe] hydrogenases, are usually detected. In this work, we studied the synthesis of each of these enzymes in response to different electron donors and acceptors for growth as well as in response to the availability of Ni and Se. The formation of the three hydrogenases was not very strongly affected by the electron donors or acceptors used, but the highest levels were observed after growth with hydrogen as electron donor and lowest with thiosulfate as electron acceptor. The major effect observed was with inclusion of Se in the growth medium, which led to a strong repression of the [FeFe] and [NiFe]1 hydrogenases and a strong increase in the [NiFeSe] hydrogenase that is not detected in the absence of Se. Ni also led to increased formation of the [NiFe]1 hydrogenase, except for growth with H2, where its synthesis is very high even without Ni added to the medium. Growth with H2 results in a strong increase in the soluble forms of the [NiFe]1 and [NiFeSe] hydrogenases. This study is an important contribution to understanding why D. vulgaris Hildenborough has three periplasmic hydrogenases. It supports their similar physiological role in H2 oxidation and reveals that element availability has a strong influence in their relative expression.
Collapse
Affiliation(s)
- Filipa M A Valente
- Instituto de Tecnologia Química e Biológica, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Böck A, Rother M. A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue. Arch Microbiol 2004; 183:148-50. [PMID: 15611862 DOI: 10.1007/s00203-004-0744-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/14/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Methanococcus maripaludis possesses two sets of F(420)-non-reducing hydrogenases which are differentially expressed in response to the selenium content of the medium. One of the subunits of the selenium-containing hydrogenase, VhuD, contains two selenocysteine residues, whereas the homologue of M. voltae possesses cysteine residues in the equivalent positions. Analysis of the 3' non-translated region of the M. voltae vhuD mRNA revealed the existence of a structure resembling the consensus of archaeal SECIS elements but with deviations rendering it non-functional in determining selenocysteine insertion. The presence of a pseudo-SECIS element in the 3' non-translated region of the vhuD mRNA from M. voltae suggests that VhuD from this organism has developed from a selenocysteine-containing ancestor. The 3' non-translated region from the VhcD homologues neither contained a SECIS nor a pseudo SECIS element.
Collapse
Affiliation(s)
- August Böck
- Department I, Faculty of Biology, University of Munich, Maria Ward Strasse 1a, 80638 Munich, Germany.
| | | |
Collapse
|
34
|
Heinicke I, Müller J, Pittelkow M, Klein A. Mutational analysis of genes encoding chromatin proteins in the archaeon Methanococcus voltae indicates their involvement in the regulation of gene expression. Mol Genet Genomics 2004; 272:76-87. [PMID: 15241681 DOI: 10.1007/s00438-004-1033-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
Several genes for chromatin proteins are known in Archaea. These include histones and histone-like proteins in Euryarchaeota, and a DNA binding protein, Alba, which was first detected in the crenarchaeote Sulfolobus solfataricus and is thought to be involved in transcriptional regulation. The methanogenic archaeon Methanococcus voltae harbors four genes coding for all these three types of chromatin proteins. Deletion mutants for the two histone genes ( hstAand hstB), the gene encoding the histone-like protein ( hmvA) and the gene for the Alba homologue ( albA) have now been constructed in this organism. Although all single mutants were viable, deletion of hstA resulted in slow growth. Two transcripts were detected for each of the two histone genes. These were expressed in different relative amounts, which were correlated with different growth phases. Cell extracts obtained from the different mutants exhibited altered protein patterns, as revealed by 2D gel electrophoresis, indicating that the chromatin proteins are involved in gene regulation in M. voltae.
Collapse
Affiliation(s)
- I Heinicke
- Fachbereich Biologie-Genetik, Philipps-Universität Marburg, Karl-v.-Frisch-Str 8, 35043 Marburg, Germany.
| | | | | | | |
Collapse
|