1
|
Gutiérrez-Corona JF, González-Hernández GA, Padilla-Guerrero IE, Olmedo-Monfil V, Martínez-Rocha AL, Patiño-Medina JA, Meza-Carmen V, Torres-Guzmán JC. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023; 12:2239. [PMID: 37759461 PMCID: PMC10526403 DOI: 10.3390/cells12182239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.
Collapse
Affiliation(s)
- J. Félix Gutiérrez-Corona
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Gloria Angélica González-Hernández
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Vianey Olmedo-Monfil
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Ana Lilia Martínez-Rocha
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Juan Carlos Torres-Guzmán
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| |
Collapse
|
2
|
Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans. mBio 2021; 13:e0373421. [PMID: 35164551 PMCID: PMC8844935 DOI: 10.1128/mbio.03734-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.
Collapse
|
3
|
Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, Lu G. Carbon Catabolite Repression in Filamentous Fungi. Int J Mol Sci 2017; 19:ijms19010048. [PMID: 29295552 PMCID: PMC5795998 DOI: 10.3390/ijms19010048] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022] Open
Abstract
Carbon Catabolite Repression (CCR) has fascinated scientists and researchers around the globe for the past few decades. This important mechanism allows preferential utilization of an energy-efficient and readily available carbon source over relatively less easily accessible carbon sources. This mechanism helps microorganisms to obtain maximum amount of glucose in order to keep pace with their metabolism. Microorganisms assimilate glucose and highly favorable sugars before switching to less-favored sources of carbon such as organic acids and alcohols. In CCR of filamentous fungi, CreA acts as a transcription factor, which is regulated to some extent by ubiquitination. CreD-HulA ubiquitination ligase complex helps in CreA ubiquitination, while CreB-CreC deubiquitination (DUB) complex removes ubiquitin from CreA, which causes its activation. CCR of fungi also involves some very crucial elements such as Hexokinases, cAMP, Protein Kinase (PKA), Ras proteins, G protein-coupled receptor (GPCR), Adenylate cyclase, RcoA and SnfA. Thorough study of molecular mechanism of CCR is important for understanding growth, conidiation, virulence and survival of filamentous fungi. This review is a comprehensive revision of the regulation of CCR in filamentous fungi as well as an updated summary of key regulators, regulation of different CCR-dependent mechanisms and its impact on various physical characteristics of filamentous fungi.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Arif
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Alam MA, Kelly JM. Proteins interacting with CreA and CreB in the carbon catabolite repression network in Aspergillus nidulans. Curr Genet 2016; 63:669-683. [PMID: 27915380 DOI: 10.1007/s00294-016-0667-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
Abstract
In Aspergillus nidulans, carbon catabolite repression (CCR) is mediated by the global repressor protein CreA. The deubiquitinating enzyme CreB is a component of the CCR network. Genetic interaction was confirmed using a strain containing complete loss-of-function alleles of both creA and creB. No direct physical interaction was identified between tagged versions of CreA and CreB. To identify any possible protein(s) that may form a bridge between CreA and CreB, we purified both proteins from mycelia grown in media that result in repression or derepression. The purified proteins were analysed by LC/MS and identified using MaxQuant and Mascot databases. For both CreA and CreB, 47 proteins were identified in repressing and derepressing conditions. Orthologues of the co-purified proteins were identified in S. cerevisiae and humans. Gene ontology analyses of A. nidulans proteins and yeast and human orthologues were performed. Functional annotation analysis revealed that proteins that preferentially interact with CreA in repressing conditions include histones and histone transcription regulator 3 (Hir3). Proteins interacting with CreB tend to be involved in cellular transportation and organization. Similar findings were obtained using yeast and human orthologues, although the yeast background generated a number of other biological processes involving Mig1p which were not present in the A. nidulans or human background analyses. Hir3 was present in repressing conditions for CreA and in both growth conditions for CreB, suggesting that Hir3, or proteins interacting with Hir3, could be a possible target of CreB.
Collapse
Affiliation(s)
- Md Ashiqul Alam
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Joan M Kelly
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, SA, Australia.
| |
Collapse
|
5
|
The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016; 63:647-667. [DOI: 10.1007/s00294-016-0666-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
|
6
|
Alam MA, Kamlangdee N, Kelly JM. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016:10.1007/s00294-016-0643-x. [PMID: 27589970 DOI: 10.1007/s00294-016-0643-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.
Collapse
Affiliation(s)
- Md Ashiqul Alam
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
| | - Niyom Kamlangdee
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
- Walailak University, 222 Thaiburi Thasala, Nakhonsithamrat, Nakhon Si Thammarat, 80160, Thailand
| | - Joan M Kelly
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
7
|
Brown NA, Ries LNA, Reis TF, Rajendran R, Corrêa dos Santos RA, Ramage G, Riaño-Pachón DM, Goldman GH. RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:145. [PMID: 27437031 PMCID: PMC4950808 DOI: 10.1186/s13068-016-0558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/24/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Sugarcane is one of the world's most profitable crops. Waste steam-exploded sugarcane bagasse (SEB) is a cheap, abundant, and renewable lignocellulosic feedstock for the next-generation biofuels. In nature, fungi seldom exist as planktonic cells, similar to those found in the nutrient-rich environment created within an industrial fermenter. Instead, fungi predominantly form biofilms that allow them to thrive in hostile environments. RESULTS In turn, we adopted an RNA-sequencing approach to interrogate how the model fungus, Aspergillus nidulans, adapts to SEB, revealing the induction of carbon starvation responses and the lignocellulolytic machinery, in addition to morphological adaptations. Genetic analyses showed the importance of hydrophobins for growth on SEB. The major hydrophobin, RodA, was retained within the fungal biofilm on SEB fibres. The StuA transcription factor that regulates fungal morphology was up-regulated during growth on SEB and controlled hydrophobin gene induction. The absence of the RodA or DewC hydrophobins reduced biofilm formation. The loss of a RodA or a functional StuA reduced the retention of the hydrolytic enzymes within the vicinity of the fungus. Hence, hydrophobins promote biofilm formation on SEB, and may enhance lignocellulose utilisation via promoting a compact substrate-enzyme-fungus structure. CONCLUSION This novel study highlights the importance of hydrophobins to the formation of biofilms and the efficient deconstruction of lignocellulose.
Collapse
Affiliation(s)
- Neil Andrew Brown
- />Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire UK
| | - Laure N. A. Ries
- />Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila F. Reis
- />Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ranjith Rajendran
- />Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Renato Augusto Corrêa dos Santos
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Gordon Ramage
- />Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Diego Mauricio Riaño-Pachón
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Gustavo H. Goldman
- />Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Kiesenhofer D, Mach-Aigner AR, Mach RL. Understanding the Mechanism of Carbon Catabolite Repression to Increase Protein Production in Filamentous Fungi. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Silvestrini L, Rossi B, Gallmetzer A, Mathieu M, Scazzocchio C, Berardi E, Strauss J. Interaction of Yna1 and Yna2 Is Required for Nuclear Accumulation and Transcriptional Activation of the Nitrate Assimilation Pathway in the Yeast Hansenula polymorpha. PLoS One 2015; 10:e0135416. [PMID: 26335797 PMCID: PMC4559421 DOI: 10.1371/journal.pone.0135416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022] Open
Abstract
A few yeasts, including Hansenula polymorpha are able to assimilate nitrate and use it as nitrogen source. The genes necessary for nitrate assimilation are organised in this organism as a cluster comprising those encoding nitrate reductase (YNR1), nitrite reductase (YNI1), a high affinity transporter (YNT1), as well as the two pathway specific Zn(II)2Cys2 transcriptional activators (YNA1, YNA2). Yna1p and Yna2p mediate induction of the system and here we show that their functions are interdependent. Yna1p activates YNA2 as well as its own (YNA1) transcription thus forming a nitrate-dependent autoactivation loop. Using a split-YFP approach we demonstrate here that Yna1p and Yna2p form a heterodimer independently of the inducer and despite both Yna1p and Yna2p can occupy the target promoter as mono- or homodimer individually, these proteins are transcriptionally incompetent. Subsequently, the transcription factors target genes containing a conserved DNA motif (termed nitrate-UAS) determined in this work by in vitro and in vivo protein-DNA interaction studies. These events lead to a rearrangement of the chromatin landscape on the target promoters and are associated with the onset of transcription of these target genes. In contrast to other fungi and plants, in which nuclear accumulation of the pathway-specific transcription factors only occur in the presence of nitrate, Yna1p and Yna2p are constitutively nuclear in H. polymorpha. Yna2p is needed for this nuclear accumulation and Yna1p is incapable of strictly positioning in the nucleus without Yna2p. In vivo DNA footprinting and ChIP analyses revealed that the permanently nuclear Yna1p/Yna2p heterodimer only binds to the nitrate-UAS when the inducer is present. The nitrate-dependent up-regulation of one partner protein in the heterodimeric complex is functionally similar to the nitrate-dependent activation of nuclear accumulation in other systems.
Collapse
Affiliation(s)
- Lucia Silvestrini
- Fungal Genetics and Genomics Unit, Division of Microbial Genetics and Pathogen Interactions, BOKU-University of Natural Resources and Life Sciences Vienna, University and Research Center Tulln, Konrad Lorenz Strasse 24, 3430, Tulln/Donau, Austria
- Laboratorio di Genetica Microbica, DiSA, Universitá Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Beatrice Rossi
- Laboratorio di Genetica Microbica, DiSA, Universitá Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Universitè Paris-Sud, Orsay, France
| | - Andreas Gallmetzer
- Fungal Genetics and Genomics Unit, Division of Microbial Genetics and Pathogen Interactions, BOKU-University of Natural Resources and Life Sciences Vienna, University and Research Center Tulln, Konrad Lorenz Strasse 24, 3430, Tulln/Donau, Austria
| | - Martine Mathieu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Universitè Paris-Sud, Orsay, France
| | - Claudio Scazzocchio
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Universitè Paris-Sud, Orsay, France
- Department of Microbiology, Imperial College, London, United Kingdom
| | - Enrico Berardi
- Laboratorio di Genetica Microbica, DiSA, Universitá Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Division of Microbial Genetics and Pathogen Interactions, BOKU-University of Natural Resources and Life Sciences Vienna, University and Research Center Tulln, Konrad Lorenz Strasse 24, 3430, Tulln/Donau, Austria
- Health and Environment Department, Austrian Institute of Technology GmbH (AIT), University and Research Center Tulln, Konrad Lorenz Strasse 24, 3430, Tulln/Donau, Austria
- * E-mail:
| |
Collapse
|
10
|
Brown NA, Ries LNA, Goldman GH. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet Biol 2014; 72:48-63. [PMID: 25011009 DOI: 10.1016/j.fgb.2014.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
The utilisation of lignocellulosic plant biomass as an abundant, renewable feedstock for green chemistries and biofuel production is inhibited by its recalcitrant nature. In the environment, lignocellulolytic fungi are naturally capable of breaking down plant biomass into utilisable saccharides. Nonetheless, within the industrial context, inefficiencies in the production of lignocellulolytic enzymes impede the implementation of green technologies. One of the primary causes of such inefficiencies is the tight transcriptional control of lignocellulolytic enzymes via carbon catabolite repression. Fungi coordinate metabolism, protein biosynthesis and secretion with cellular energetic status through the detection of intra- and extra-cellular nutritional signals. An enhanced understanding of the signals and signalling pathways involved in regulating the transcription, translation and secretion of lignocellulolytic enzymes is therefore of great biotechnological interest. This comparative review describes how nutrient sensing pathways regulate carbon catabolite repression, metabolism and the utilisation of alternative carbon sources in Saccharomyces cerevisiae and ascomycete fungi.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil; Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, Brazil.
| |
Collapse
|
11
|
Ries L, Belshaw NJ, Ilmén M, Penttilä ME, Alapuranen M, Archer DB. The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl Microbiol Biotechnol 2014; 98:749-62. [PMID: 24241958 DOI: 10.1007/s00253-013-5354-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022]
Abstract
Nucleosome positioning within the promoter and coding regions of the cellobiohydrolase-encoding cbh1 gene of Trichoderma reesei was investigated. T. reesei is a filamentous fungus that is able to degrade dead plant biomass by secreting enzymes such as cellulases, a feature which is exploited in industrial applications. In the presence of different carbon sources, regulation of one of these cellulase-encoding genes, cbh1, is mediated by various transcription factors including CRE1. Deletion or mutation of cre1 caused an increase in cbh1 transcript levels under repressing conditions. CRE1 was shown to bind to several consensus recognition sequences in the cbh1 promoter region in vitro. Under repressing conditions (glucose), the cbh1 promoter and coding regions are occupied by several positioned nucleosomes. Transcription of cbh1 in the presence of the inducer sophorose resulted in a loss of nucleosomes from the coding region and in the re-positioning of the promoter nucleosomes which prevents CRE1 from binding to its recognition sites within the promoter region. Strains expressing a non-functional CRE1 (in strains with mutated CRE1 or cre1-deletion) exhibited a loss of positioned nucleosomes within the cbh1 coding region under repressing conditions only. This indicates that CRE1 is important for correct nucleosome positioning within the cbh1 coding region under repressing conditions.
Collapse
Affiliation(s)
- L Ries
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
12
|
Brown NA, de Gouvea PF, Krohn NG, Savoldi M, Goldman GH. Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:91. [PMID: 23800192 PMCID: PMC3698209 DOI: 10.1186/1754-6834-6-91] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/18/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans. RESULTS Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA::GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathway induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810). CreA::GFP localisation and the restoration of endocellulase activity via the introduction of the ∆creA mutation, was assessed in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose. CONCLUSIONS Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and snfA in the regulation of CreA derepression and hydrolytic enzyme production in A. nidulans. The importance of a carbon starvation-induced signal for CreA derepression, permitting transcriptional activator binding, appeared paramount for hydrolase secretion.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Paula Fagundes de Gouvea
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nádia Graciele Krohn
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, Brazil
| |
Collapse
|
13
|
Robellet X, Oestreicher N, Guitton A, Vélot C. Gene silencing of transgenes inserted in the Aspergillus nidulans alcM and/or alcS loci. Curr Genet 2010; 56:341-8. [PMID: 20495807 DOI: 10.1007/s00294-010-0303-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 11/25/2022]
Abstract
While carrying out a systematic disruption of the genes of unknown function in the alc gene cluster from the filamentous fungus Aspergillus nidulans, we observed a strong diminution of the transcription of markers inserted in the alcS gene. This was found to be the case for the two markers tested, nadA (from A. nidulans) and pyrG (from A. fumigatus) involved in purine utilization and uracil/uridine biosynthetic pathway, respectively. The same phenomenon was also observed with insertion of the nadA gene in the alcM locus, another gene of the alc cluster. In the case of nadA, the level of expression was directly correlated to the ability of the corresponding strains to grow on adenine as a sole nitrogen source. The insertion of the pyrG marker into alcS complemented perfectly vegetative growth, but did not allow a proper sexual cycle. This suggests that the lowered pyrG expression is not sufficient to provide the intracellular concentration of pyrimidines required for the sexual cycle. Thus, due caution must be exercised when disrupting genes with pyrG, one of the most commonly employed markers, especially if the gene to be disrupted is involved or suspected to be involved in the sexual cycle.
Collapse
Affiliation(s)
- Xavier Robellet
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239/ENS-Lyon/UCBL, France
| | | | | | | |
Collapse
|
14
|
ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1039-48. [PMID: 20495057 DOI: 10.1128/ec.00080-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acetyl coenzyme A (CoA) is a central metabolite in carbon and energy metabolism and in the biosynthesis of cellular molecules. A source of cytoplasmic acetyl-CoA is essential for the production of fatty acids and sterols and for protein acetylation, including histone acetylation in the nucleus. In Saccharomyces cerevisiae and Candida albicans acetyl-CoA is produced from acetate by cytoplasmic acetyl-CoA synthetase, while in plants and animals acetyl-CoA is derived from citrate via ATP-citrate lyase. In the filamentous ascomycete Aspergillus nidulans, tandem divergently transcribed genes (aclA and aclB) encode the subunits of ATP-citrate lyase, and we have deleted these genes. Growth is greatly diminished on carbon sources that do not result in cytoplasmic acetyl-CoA, such as glucose and proline, while growth is not affected on carbon sources that result in the production of cytoplasmic acetyl-CoA, such as acetate and ethanol. Addition of acetate restores growth on glucose or proline, and this is dependent on facA, which encodes cytoplasmic acetyl-CoA synthetase, but not on the regulatory gene facB. Transcription of aclA and aclB is repressed by growth on acetate or ethanol. Loss of ATP-citrate lyase results in severe developmental effects, with the production of asexual spores (conidia) being greatly reduced and a complete absence of sexual development. This is in contrast to Sordaria macrospora, in which fruiting body formation is initiated but maturation is defective in an ATP-citrate lyase mutant. Addition of acetate does not repair these defects, indicating a specific requirement for high levels of cytoplasmic acetyl-CoA during differentiation. Complementation in heterokaryons between aclA and aclB deletions for all phenotypes indicates that the tandem gene arrangement is not essential.
Collapse
|
15
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
16
|
Brosch G, Loidl P, Graessle S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 2008; 32:409-39. [PMID: 18221488 PMCID: PMC2442719 DOI: 10.1111/j.1574-6976.2007.00100.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 11/13/2007] [Indexed: 12/19/2022] Open
Abstract
The readout of the genetic information of eukaryotic organisms is significantly regulated by modifications of DNA and chromatin proteins. Chromatin alterations induce genome-wide and local changes in gene expression and affect a variety of processes in response to internal and external signals during growth, differentiation, development, in metabolic processes, diseases, and abiotic and biotic stresses. This review aims at summarizing the roles of histone H1 and the acetylation and methylation of histones in filamentous fungi and links this knowledge to the huge body of data from other systems. Filamentous fungi show a wide range of morphologies and have developed a complex network of genes that enables them to use a great variety of substrates. This fact, together with the possibility of simple and quick genetic manipulation, highlights these organisms as model systems for the investigation of gene regulation. However, little is still known about regulation at the chromatin level in filamentous fungi. Understanding the role of chromatin in transcriptional regulation would be of utmost importance with respect to the impact of filamentous fungi in human diseases and agriculture. The synthesis of compounds (antibiotics, immunosuppressants, toxins, and compounds with adverse effects) is also likely to be regulated at the chromatin level.
Collapse
Affiliation(s)
- Gerald Brosch
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, Innsbruck, Austria
| | | | | |
Collapse
|
17
|
Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. EUKARYOTIC CELL 2008; 7:656-63. [PMID: 18296621 DOI: 10.1128/ec.00184-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Aspergillus nidulans, proline can be used as a carbon and nitrogen source, and its metabolism requires the integration of three signals, including proline induction and nitrogen and carbon metabolite derepression. We have previously shown that the bidirectional promoter in the prnD-prnB intergenic region undergoes drastic chromatin rearrangements such that proline induction leads to the loss of positioned nucleosomes, whereas simultaneous carbon and nitrogen metabolite repression results in the partial repositioning of these nucleosomes. In the proline cluster, the inhibition of deacetylases by trichostatin A leads to partial derepression and is associated with a lack of nucleosome positioning. Here, we investigate the effect of histone acetylation in the proline cluster using strains deleted of essential components of putative A. nidulans histone acetyltransferase complexes, namely, gcnE and adaB, the orthologues of the Saccharomyces cerevisiae GCN5 and ADA2 genes, respectively. Surprisingly, GcnE and AdaB are not required for transcriptional activation and chromatin remodeling but are required for the repression of prnB and prnD and for the repositioning of nucleosomes in the divergent promoter region. Chromatin immunoprecipitation directed against histone H3 lysines K9 and K14 revealed that GcnE and AdaB participate in increasing the acetylation level of at least one nucleosome in the prnD-prnB intergenic region during activation, but these activities do not determine nucleosome positioning. Our results are consistent with a function of GcnE and AdaB in gene repression of the proline cluster, probably an indirect effect related to the function of CreA, the DNA-binding protein mediating carbon catabolite repression in A. nidulans.
Collapse
|
18
|
Ziv C, Gorovits R, Yarden O. Carbon source affects PKA-dependent polarity of Neurospora crassa in a CRE-1-dependent and independent manner. Fungal Genet Biol 2008; 45:103-16. [PMID: 17625933 DOI: 10.1016/j.fgb.2007.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/07/2007] [Accepted: 05/22/2007] [Indexed: 11/21/2022]
Abstract
A defect in mcb, encoding the cAMP-dependent protein kinase A (PKA) regulatory subunit in Neurospora crassa, which confers an apolar growth phenotype, is accompanied by an increase in PKA activity levels. Both PKA and CRE-1 [a key carbon catabolite repression (CCR) regulator] mediate the cellular response to carbon-source availability. Inactivation of the cre-1 gene resulted in reduced growth rate, abnormal hyphal morphology and altered CCR. Both PKA and CRE-1 affected morphology in a carbon-dependent manner, as fructose suppressed the apolar morphology of the mcb strain and enabled faster growth of the Deltacre-1 mutant. An increase in cre-1 transcript abundance was observed in mcb and a reduction in PKA activity levels was measured in Deltacre-1. CRE-1 is involved in determining PKA-dependent polarity, as an mcb;Deltacre-1 strain displayed partial reestablishment of hyphal polarity. Taken together, our results demonstrate regulatory interactions between PKA and CRE-1 that affect cell polarity in a filamentous fungus.
Collapse
Affiliation(s)
- Carmit Ziv
- Department of Plant Pathology and Microbiology, The Otto Warburg Minerva Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
19
|
Mogensen J, Nielsen HB, Hofmann G, Nielsen J. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. Fungal Genet Biol 2006; 43:593-603. [PMID: 16698295 DOI: 10.1016/j.fgb.2006.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/28/2006] [Indexed: 11/27/2022]
Abstract
Here, we describe how the recently published Aspergillus nidulans genome sequence [Galagan, J.E., Calvo, S.E., Cuomo, C., Li-Jun, M., Wortman, J.R., et al., 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438 (7071), 1105-1115] was used to design a high-density oligo array with probes for 3,278 selected genes using the Febit Geniom One array system. For this purpose, the program OligoWiz II was used to design 24,125 probes to cover the 3,278 selected genes. Subsequently, the Febit system was used to investigate carbon catabolite repression by comparing the gene expression of a creA deleted mutant strain with a reference strain grown either with glucose or ethanol as the sole carbon source. In order to identify co-regulated genes and genes influenced by either the carbon source or CreA, the most significantly regulated genes (p<or=0.01) were grouped in eight clusters based on their expression profile. Analysis of the clusters allowed identification of numerous genes that are presumably not regulated by CreA, or alternatively are either directly or indirectly regulated by CreA. Surprisingly, we found evidence that more than 25% of the genes (54 out of the 200 significantly regulated) that are repressed by glucose are not completely de-repressed during growth on ethanol, as deletion of the creA resulted in increased expression of the genes in question even during growth on ethanol. Thus, the expression profiles obtained in the eight clusters indicate that the carbon catabolite repression is not a simple on/off switch but a more complex system not only dependent on the presence or absence of CreA but also on the carbon source.
Collapse
Affiliation(s)
- Jesper Mogensen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|