1
|
Butterworth LJ, Welikala MU, Klatt CW, Rheney KE, Trakselis MA. Replisomal coupling between the α-pol III core and the τ-subunit of the clamp loader complex (CLC) are essential for genomic integrity in Escherichia coli. J Biol Chem 2025; 301:108177. [PMID: 39798872 PMCID: PMC11869525 DOI: 10.1016/j.jbc.2025.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025] Open
Abstract
Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli. Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains. These α-Pol III mutations eliminated the interaction with τ-CLC but retained WT polymerase and exonuclease activities. The most severely affected mutant strains, dnaE:Y1119A and dnaE:L1097/8S, had significantly reduced doubling times, reduced fitness, and increased cellular length phenotypes as a result of this targeted decoupling of the replisome and the generation of replication stress. Those strains also showed significant SOS induction from unwound but unreplicated regions within the genome. In support, significant ssDNA gaps were detected by fluorescence microscopy and quantified by fluorescence activated cytometry using an in situ PLUG assay for those dnaE:mut strains. By comparing the biochemical and genomic consequences of disrupting the τ-CLC-α-Pol III coupling contacts, we have unveiled a more cohesive picture and mechanistic understanding of replisome dynamics and the essential interactions required to maintain overall fitness through a stable genome.
Collapse
Affiliation(s)
| | - Malisha U Welikala
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Cody W Klatt
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Kaitlyn E Rheney
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA.
| |
Collapse
|
2
|
Vaisman A, Łazowski K, Reijns MAM, Walsh E, McDonald JP, Moreno KC, Quiros DR, Schmidt M, Kranz H, Yang W, Makiela-Dzbenska K, Woodgate R. Novel Escherichia coli active site dnaE alleles with altered base and sugar selectivity. Mol Microbiol 2021; 116:909-925. [PMID: 34181784 PMCID: PMC8485763 DOI: 10.1111/mmi.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
The Escherichia coli dnaE gene encodes the α‐catalytic subunit (pol IIIα) of DNA polymerase III, the cell’s main replicase. Like all high‐fidelity DNA polymerases, pol III possesses stringent base and sugar discrimination. The latter is mediated by a so‐called “steric gate” residue in the active site of the polymerase that physically clashes with the 2′‐OH of an incoming ribonucleotide. Our structural modeling data suggest that H760 is the steric gate residue in E.coli pol IIIα. To understand how H760 and the adjacent S759 residue help maintain genome stability, we generated DNA fragments in which the codons for H760 or S759 were systematically changed to the other nineteen naturally occurring amino acids and attempted to clone them into a plasmid expressing pol III core (α‐θ‐ε subunits). Of the possible 38 mutants, only nine were successfully sub‐cloned: three with substitutions at H760 and 6 with substitutions at S759. Three of the plasmid‐encoded alleles, S759C, S759N, and S759T, exhibited mild to moderate mutator activity and were moved onto the chromosome for further characterization. These studies revealed altered phenotypes regarding deoxyribonucleotide base selectivity and ribonucleotide discrimination. We believe that these are the first dnaE mutants with such phenotypes to be reported in the literature.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Martin A M Reijns
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Erin Walsh
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kristiniana C Moreno
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dominic R Quiros
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marlen Schmidt
- Gen-H Genetic Engineering Heidelberg GmbH, Heidelberg, Germany
| | - Harald Kranz
- Gen-H Genetic Engineering Heidelberg GmbH, Heidelberg, Germany
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karolina Makiela-Dzbenska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
High-accuracy lagging-strand DNA replication mediated by DNA polymerase dissociation. Proc Natl Acad Sci U S A 2018; 115:4212-4217. [PMID: 29610333 DOI: 10.1073/pnas.1720353115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fidelity of DNA replication is a critical factor in the rate at which cells incur mutations. Due to the antiparallel orientation of the two chromosomal DNA strands, one strand (leading strand) is replicated in a mostly processive manner, while the other (lagging strand) is synthesized in short sections called Okazaki fragments. A fundamental question that remains to be answered is whether the two strands are copied with the same intrinsic fidelity. In most experimental systems, this question is difficult to answer, as the replication complex contains a different DNA polymerase for each strand, such as, for example, DNA polymerases δ and ε in eukaryotes. Here we have investigated this question in the bacterium Escherichia coli, in which the replicase (DNA polymerase III holoenzyme) contains two copies of the same polymerase (Pol III, the dnaE gene product), and hence the two strands are copied by the same polymerase. Our in vivo mutagenesis data indicate that the two DNA strands are not copied with the same accuracy, and that, remarkably, the lagging strand has the highest fidelity. We postulate that this effect results from the greater dissociative character of the lagging-strand polymerase, which provides additional options for error removal. Our conclusion is strongly supported by results with dnaE antimutator polymerases characterized by increased dissociation rates.
Collapse
|
4
|
Grabowska E, Wronska U, Denkiewicz M, Jaszczur M, Respondek A, Alabrudzinska M, Suski C, Makiela-Dzbenska K, Jonczyk P, Fijalkowska IJ. Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast. Mol Microbiol 2014; 92:659-80. [PMID: 24628792 DOI: 10.1111/mmi.12580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/26/2022]
Abstract
The role of replicative DNA polymerases in ensuring genome stability is intensively studied, but the role of other components of the replisome is still not fully understood. One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication. Until now, the understanding of the physiological role of GINS mostly originated from biochemical studies. In this article, we present genetic evidence for an essential role of GINS in the maintenance of replication fidelity in Saccharomyces cerevisiae. In our studies we employed the psf1-1 allele (Takayama et al., 2003) and a novel psf1-100 allele isolated in our laboratory. Analysis of the levels and specificity of mutations in the psf1 strains indicates that the destabilization of the GINS complex or its impaired interaction with DNA polymerase epsilon increases the level of spontaneous mutagenesis and the participation of the error-prone DNA polymerase zeta. Additionally, a synergistic mutator effect was found for the defects in Psf1p and in the proofreading activity of Pol epsilon, suggesting that proper functioning of GINS is crucial for facilitating error-free processing of terminal mismatches created by Pol epsilon.
Collapse
Affiliation(s)
- Ewa Grabowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kraszewska J, Garbacz M, Jonczyk P, Fijalkowska IJ, Jaszczur M. Defect of Dpb2p, a noncatalytic subunit of DNA polymerase ɛ, promotes error prone replication of undamaged chromosomal DNA in Saccharomyces cerevisiae. Mutat Res 2012; 737:34-42. [PMID: 22709919 DOI: 10.1016/j.mrfmmm.2012.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 06/01/2023]
Abstract
The Saccharomyces cerevisiae DNA polymerase epsilon holoenzyme (Pol ɛ HE) is composed of four subunits: Pol2p, Dpb2p, Dpb3p and Dpb4p. The biological functions of Pol2p, the catalytic subunit of Pol ɛ, are subject of active investigation, while the role of the other three, noncatalytic subunits, is not well defined. We showed previously that mutations in Dpb2p, a noncatalytic but essential subunit of Pol ɛ HE, influence the fidelity of DNA replication in yeast cells. The strength of the mutator phenotype due to the different dpb2 alleles was inversely proportional to the strength of protein-protein interactions between Pol2p and the mutated forms of Dpb2p. To understand better the mechanisms of the contribution of Dpb2p to the controlling of the level of spontaneous mutagenesis we undertook here a further genetic analysis of the mutator phenotype observed in dpb2 mutants. We demonstrate that the presence of mutated forms of Dpb2p in the cell not only influences the intrinsic fidelity of Pol ɛ but also facilitates more frequent participation of error-prone DNA polymerase zeta (Pol ζ) in DNA replication. The obtained results suggest that the structural integrity of Pol ɛ HE is a crucial contributor to accurate chromosomal DNA replication and, when compromised, favors participation of error prone DNA Pol ζ in this process.
Collapse
Affiliation(s)
- Joanna Kraszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
6
|
Fijalkowska IJ, Schaaper RM, Jonczyk P. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev 2012; 36:1105-21. [PMID: 22404288 DOI: 10.1111/j.1574-6976.2012.00338.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/21/2022] Open
Abstract
High accuracy (fidelity) of DNA replication is important for cells to preserve the genetic identity and to prevent the accumulation of deleterious mutations. The error rate during DNA replication is as low as 10(-9) to 10(-11) errors per base pair. How this low level is achieved is an issue of major interest. This review is concerned with the mechanisms underlying the fidelity of the chromosomal replication in the model system Escherichia coli by DNA polymerase III holoenzyme, with further emphasis on participation of the other, accessory DNA polymerases, of which E. coli contains four (Pols I, II, IV, and V). Detailed genetic analysis of mutation rates revealed that (1) Pol II has an important role as a back-up proofreader for Pol III, (2) Pols IV and V do not normally contribute significantly to replication fidelity, but can readily do so under conditions of elevated expression, (3) participation of Pols IV and V, in contrast to that of Pol II, is specific to the lagging strand, and (4) Pol I also makes a lagging-strand-specific fidelity contribution, limited, however, to the faithful filling of the Okazaki fragment gaps. The fidelity role of the Pol III τ subunit is also reviewed.
Collapse
Affiliation(s)
- Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
7
|
Maciąg M, Nowicki D, Szalewska-Pałasz A, Węgrzyn G. Central carbon metabolism influences fidelity of DNA replication in Escherichia coli. Mutat Res 2011; 731:99-106. [PMID: 22198407 DOI: 10.1016/j.mrfmmm.2011.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/19/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Recent studies indicated that there is a direct link between central carbon metabolism (CCM) and initiation and elongation of DNA replication in Eschericha coli. Namely, effects of certain mutations in genes coding for replication proteins (dnaA, dnaB, dnaE, dnaG, and dnaN) could be specifically suppressed by deletions of some genes, whose products are involved in CCM reactions (pta, ackA, pgi, tktB, and gpmA). Here, we demonstrate that the link between CCM and DNA synthesis can be extended to the DNA replication fidelity, as we report changes of the mutator phenotypes of E. coli dnaQ49 and dnaX36 mutants (either suppression or enhancement) by dysfunctions of zwf, pta, ackA, acnB, and icdA genes. Overexpression of appropriate wild-type CCM genes in double mutants resulted in reversions to the initial mutator phenotypes, indicating that the effects were specific. Moreover, the observed suppression and enhancement effects were not caused by changes in bacterial growth rates. These results suggest that there is a genetic correlation between CCM and DNA replication fidelity in E. coli, apart from the already documented link between CCM and DNA replication initiation control and elongation efficiency.
Collapse
Affiliation(s)
- Monika Maciąg
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland.
| | | | | | | |
Collapse
|
8
|
Proofreading deficiency of Pol I increases the levels of spontaneous rpoB mutations in E. coli. Mutat Res 2011; 712:28-32. [PMID: 21459099 DOI: 10.1016/j.mrfmmm.2011.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/07/2011] [Accepted: 03/24/2011] [Indexed: 11/23/2022]
Abstract
The fidelity role of DNA polymerase I in chromosomal DNA replication in E. coli was investigated using the rpoB forward target. These experiments indicated that in a strain carrying a proofreading-exonuclease-defective form of Pol I (polAexo mutant) the frequency of rpoB mutations increased by about 2-fold, consistent with a model that the fidelity of DNA polymerase I is important in controlling the overall fidelity of chromosomal DNA replication. DNA sequencing of rpoB mutants revealed that the Pol I exonuclease deficiency lead to an increase in a variety of base-substitution mutations. A polAexo mutator effect was also observed in strains defective in DNA mismatch repair and carrying the dnaE915 antimutator allele. Overall, the data are consistent with a proposed role of Pol I in the faithful completion of Okazaki fragment gaps at the replication fork.
Collapse
|
9
|
Le HT, Gautier V, Kthiri F, Kohiyama M, Katayama T, Richarme G. DNA replication defects in a mutant deficient in the thioredoxin homolog YbbN. Biochem Biophys Res Commun 2010; 405:52-7. [PMID: 21195694 DOI: 10.1016/j.bbrc.2010.12.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 11/16/2022]
Abstract
Escherichia coli contains two thioredoxins, Trx1 and Trx2, and a thioredoxin-like protein, YbbN, that displays both redox and chaperone properties. Since three out of the six proteins of the YbbN interactome (Butland et al., 2005) are components of DNA polymerase 3 holoenzyme (i.e. the β-clamp DnaN, the θ subunit HolE and the δ' subunit HolB), we investigated whether the ybbN mutant presents DNA replication defects. We found that this mutant incorporates (3)H-thymidine at higher rates than the parental strain and displays overinitiation, hypermutator and filamentation phenotypes with the occurrence of anucleated cells. Moreover, YbbN functions as a bona fide chaperone in the refolding of the urea-unfolded β-clamp. These results suggest that the DNA replication and cell division defects of the ybbN mutant might best be explained by chaperone functions of YbbN in the biogenesis of DNA polymerase 3 holoenzyme.
Collapse
Affiliation(s)
- Hai-Tuong Le
- Institut Jacques Monod, Université Paris 7, Paris, France
| | | | | | | | | | | |
Collapse
|
10
|
dnaX36 Mutator of Escherichia coli: effects of the {tau} subunit of the DNA polymerase III holoenzyme on chromosomal DNA replication fidelity. J Bacteriol 2010; 193:296-300. [PMID: 21036999 DOI: 10.1128/jb.01191-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli dnaX36 mutant displays a mutator effect, reflecting a fidelity function of the dnaX-encoded τ subunit of the DNA polymerase III (Pol III) holoenzyme. We have shown that this fidelity function (i) applies to both leading- and lagging-strand synthesis, (ii) is independent of Pol IV, and (iii) is limited by Pol II.
Collapse
|
11
|
Affiliation(s)
- R Jayaraman
- R. H. 35, Palaami Enclave, New Natham Road, Madurai 625 014, India.
| |
Collapse
|
12
|
Makiela-Dzbenska K, Jaszczur M, Banach-Orlowska M, Jonczyk P, Schaaper RM, Fijalkowska IJ. Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol 2009; 74:1114-27. [PMID: 19843230 DOI: 10.1111/j.1365-2958.2009.06921.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3'-->5' exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5- to 4-fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error-producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.
Collapse
Affiliation(s)
- Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
13
|
Jaszczur M, Rudzka J, Kraszewska J, Flis K, Polaczek P, Campbell JL, Fijalkowska IJ, Jonczyk P. Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae. Mutat Res 2009; 669:27-35. [PMID: 19463834 DOI: 10.1016/j.mrfmmm.2009.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 03/12/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Most of the prokaryotic and eukaryotic replicative polymerases are multi-subunit complexes. There are several examples indicating that noncatalytic subunits of DNA polymerases may function as fidelity factors during replication process. In this work, we have further investigated the role of Dpb2p, a noncatalytic subunit of DNA polymerase epsilon holoenzyme from Saccharomyces cerevisiae in controlling the level of spontaneous mutagenesis. The data presented indicate that impaired interaction between catalytic Pol2p subunit and Dpb2p is responsible for the observed mutator phenotype in S. cerevisiae strains carrying different mutated alleles of the DPB2 gene. We observed a significant correlation between the decreased level of interaction between different mutated forms of Dpb2p towards a wild-type form of Pol2p and the strength of mutator phenotype that they confer. We propose that structural integrity of the Pol epsilon holoenzyme is essential for genetic stability in S. cerevisiae cells.
Collapse
Affiliation(s)
- Malgorzata Jaszczur
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Genetics 2008; 178:633-47. [PMID: 18245343 DOI: 10.1534/genetics.107.082818] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3' --> 5' proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3' --> 5' exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells.
Collapse
|
16
|
Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. J Bacteriol 2007; 190:1730-42. [PMID: 18156258 DOI: 10.1128/jb.01463-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (-1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the tau subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of tau, essential for interaction of tau with the alpha (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered alpha-tau interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of tau subunit, in securing a high fidelity of replication.
Collapse
|
17
|
Al Mamun AAM, Gautam S, Humayun MZ. Hypermutagenesis in mutA cells is mediated by mistranslational corruption of polymerase, and is accompanied by replication fork collapse. Mol Microbiol 2007; 62:1752-63. [PMID: 17427291 DOI: 10.1111/j.1365-2958.2006.05490.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated mistranslation induces a mutator response termed translational stress-induced mutagenesis (TSM) that is mediated by an unidentified modification of DNA polymerase III. Here we address two questions: (i) does TSM result from direct polymerase corruption, or from an indirect pathway triggered by increased protein turnover? (ii) Why are homologous recombination functions required for the expression of TSM under certain conditions, but not others? We show that replication of bacteriophage T4 in cells expressing the mutA allele of the glyVtRNA gene (Asp-Gly mistranslation), leads to both increased mutagenesis, and to an altered mutational specificity, results that strongly support mistranslational corruption of DNA polymerase. We also show that expression of mutA, which confers a recA-dependent mutator phenotype, leads to increased lambdoid prophage induction (selectable in vivo expression technology assay), suggesting that replication fork collapse occurs more frequently in mutA cells relative to control cells. No such increase in prophage induction is seen in cells expressing alaVGlu tRNA (Glu-->Ala mistranslation), in which the mutator phenotype is recA-independent. We propose that replication fork collapse accompanies episodic hypermutagenic replication cycles in mutA cells, requiring homologous recombination functions for fork recovery, and therefore, for mutation recovery. These findings highlight hitherto under-appreciated links among translation, replication and recombination, and suggest that translational fidelity, which is affected by genetic and environmental signals, is a key modulator of replication fidelity.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, 225 Warren Street, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
18
|
Su XC, Jergic S, Keniry MA, Dixon NE, Otting G. Solution structure of Domains IVa and V of the tau subunit of Escherichia coli DNA polymerase III and interaction with the alpha subunit. Nucleic Acids Res 2007; 35:2825-32. [PMID: 17452361 PMCID: PMC1888800 DOI: 10.1093/nar/gkm080] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The solution structure of the C-terminal Domain V of the τ subunit of E. coli DNA polymerase III was determined by nuclear magnetic resonance (NMR) spectroscopy. The fold is unique to τ subunits. Amino acid sequence conservation is pronounced for hydrophobic residues that form the structural core of the protein, indicating that the fold is representative for τ subunits from a wide range of different bacteria. The interaction between the polymerase subunits τ and α was studied by NMR experiments where α was incubated with full-length C-terminal domain (τC16), and domains shortened at the C-terminus by 11 and 18 residues, respectively. The only interacting residues were found in the C-terminal 30-residue segment of τ, most of which is structurally disordered in free τC16. Since the N- and C-termini of the structured core of τC16 are located close to each other, this limits the possible distance between α and the pentameric δτ2γδ′ clamp–loader complex and, hence, between the two α subunits involved in leading- and lagging-strand DNA synthesis. Analysis of an N-terminally extended construct (τC22) showed that τC14 presents the only part of Domains IVa and V of τ which comprises a globular fold in the absence of other interaction partners.
Collapse
Affiliation(s)
| | | | | | | | - Gottfried Otting
- *To whom correspondence should be addressed. +61-2-61256507+61-2-61250750
| |
Collapse
|
19
|
Kuban W, Banach-Orlowska M, Schaaper RM, Jonczyk P, Fijalkowska IJ. Role of DNA polymerase IV in Escherichia coli SOS mutator activity. J Bacteriol 2006; 188:7977-80. [PMID: 16980447 PMCID: PMC1636302 DOI: 10.1128/jb.01088-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Constitutive expression of the SOS regulon in Escherichia coli recA730 strains leads to a mutator phenotype (SOS mutator) that is dependent on DNA polymerase V (umuDC gene product). Here we show that a significant fraction of this effect also requires DNA polymerase IV (dinB gene product).
Collapse
Affiliation(s)
- Wojciech Kuban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02 106 Warsaw, Poland
| | | | | | | | | |
Collapse
|