1
|
Wang CD, Mansky R, LeBlanc H, Gravel CM, Berry KE. Optimization of a bacterial three-hybrid assay through in vivo titration of an RNA-DNA adapter protein. RNA (NEW YORK, N.Y.) 2021; 27:513-526. [PMID: 33500316 PMCID: PMC7962490 DOI: 10.1261/rna.077404.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
Noncoding RNAs regulate gene expression in every domain of life. In bacteria, small RNAs (sRNAs) regulate gene expression in response to stress and are often assisted by RNA-chaperone proteins, such as Hfq. We have recently developed a bacterial three-hybrid (B3H) assay that detects the strong binding interactions of certain E. coli sRNAs with proteins Hfq and ProQ. Despite the promise of this system, the signal-to-noise has made it challenging to detect weaker interactions. In this work, we use Hfq-sRNA interactions as a model system to optimize the B3H assay, so that weaker RNA-protein interactions can be more reliably detected. We find that the concentration of the RNA-DNA adapter is an important parameter in determining the signal in the system and have modified the plasmid expressing this component to tune its concentration to optimal levels. In addition, we have systematically perturbed the binding affinity of Hfq-RNA interactions to define, for the first time, the relationship between B3H signal and in vitro binding energetics. The new pAdapter construct presented here substantially expands the range of detectable interactions in the B3H assay, broadening its utility. This improved assay will increase the likelihood of identifying novel protein-RNA interactions with the B3H system and will facilitate exploration of the binding mechanisms of these interactions.
Collapse
Affiliation(s)
- Clara D Wang
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Rachel Mansky
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| |
Collapse
|
2
|
Shi J, Wen A, Zhao M, You L, Zhang Y, Feng Y. Structural basis of σ appropriation. Nucleic Acids Res 2019; 47:9423-9432. [PMID: 31392983 PMCID: PMC6755090 DOI: 10.1093/nar/gkz682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteriophage T4 middle promoters are activated through a process called σ appropriation, which requires the concerted effort of two T4-encoded transcription factors: AsiA and MotA. Despite extensive biochemical and genetic analyses, puzzle remains, in part, because of a lack of precise structural information for σ appropriation complex. Here, we report a single-particle cryo-electron microscopy (cryo-EM) structure of an intact σ appropriation complex, comprising AsiA, MotA, Escherichia coli RNA polymerase (RNAP), σ70 and a T4 middle promoter. As expected, AsiA binds to and remodels σ region 4 to prevent its contact with host promoters. Unexpectedly, AsiA undergoes a large conformational change, takes over the job of σ region 4 and provides an anchor point for the upstream double-stranded DNA. Because σ region 4 is conserved among bacteria, other transcription factors may use the same strategy to alter the landscape of transcription immediately. Together, the structure provides a foundation for understanding σ appropriation and transcription activation.
Collapse
Affiliation(s)
- Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aijia Wen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
3
|
Chen B, Akusobi C, Fang X, Salmond GPC. Environmental T4-Family Bacteriophages Evolve to Escape Abortive Infection via Multiple Routes in a Bacterial Host Employing "Altruistic Suicide" through Type III Toxin-Antitoxin Systems. Front Microbiol 2017; 8:1006. [PMID: 28620370 PMCID: PMC5449768 DOI: 10.3389/fmicb.2017.01006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/19/2017] [Indexed: 11/28/2022] Open
Abstract
Abortive infection is an anti-phage mechanism employed by a bacterium to initiate its own death upon phage infection. This reduces, or eliminates, production of viral progeny and protects clonal siblings in the bacterial population by an act akin to an "altruistic suicide." Abortive infection can be mediated by a Type III toxin-antitoxin system called ToxINPa consisting of an endoribonuclease toxin and RNA antitoxin. ToxINPa is a heterohexameric quaternary complex in which pseudoknotted RNA inhibits the toxicity of the toxin until infection by certain phages causes destabilization of ToxINPa, leading to bacteriostasis and, eventually, lethality. However, it is still unknown why only certain phages are able to activate ToxINPa. To try to address this issue we first introduced ToxINPa into the Gram-negative enterobacterium, Serratia sp. ATCC 39006 (S 39006) and then isolated new environmental S 39006 phages that were scored for activation of ToxINPa and abortive infection capacity. We isolated three T4-like phages from a sewage treatment outflow point into the River Cam, each phage being isolated at least a year apart. These phages were susceptible to ToxINPa-mediated abortive infection but produced spontaneous "escape" mutants that were insensitive to ToxINPa. Analysis of these resistant mutants revealed three different routes of escaping ToxINPa, namely by mutating asiA (the product of which is a phage transcriptional co-activator); by mutating a conserved, yet functionally unknown, orf84; or by deleting a 6.5-10 kb region of the phage genome. Analysis of these evolved escape mutants may help uncover the nature of the corresponding phage product(s) involved in activation of ToxINPa.
Collapse
|
4
|
James TD, Cardozo T, Abell LE, Hsieh ML, Jenkins LMM, Jha SS, Hinton DM. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase. Nucleic Acids Res 2016; 44:7974-88. [PMID: 27458207 PMCID: PMC5027511 DOI: 10.1093/nar/gkw656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/05/2016] [Indexed: 11/13/2022] Open
Abstract
The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation.
Collapse
Affiliation(s)
- Tamara D James
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University School of Medicine, 180 Varick Street, Room 637, New York, NY 10014, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University School of Medicine, 180 Varick Street, Room 637, New York, NY 10014, USA
| | - Lauren E Abell
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa M Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saheli S Jha
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Bonocora RP, Decker PK, Glass S, Knipling L, Hinton DM. Bacteriophage T4 MotA activator and the β-flap tip of RNA polymerase target the same set of σ70 carboxyl-terminal residues. J Biol Chem 2011; 286:39290-6. [PMID: 21911499 DOI: 10.1074/jbc.m111.278762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sigma factors, the specificity subunits of RNA polymerase, are involved in interactions with promoter DNA, the core subunits of RNA polymerase, and transcription factors. The bacteriophage T4-encoded activator, MotA, is one such factor, which engages the C terminus of the Escherichia coli housekeeping sigma factor, σ(70). MotA functions in concert with a phage-encoded co-activator, AsiA, as a molecular switch. This process, termed sigma appropriation, inhibits host transcription while activating transcription from a class of phage promoters. Previous work has demonstrated that MotA contacts the C terminus of σ(70), H5, a region that is normally bound within RNA polymerase by its interaction with the β-flap tip. To identify the specific σ(70) residues responsible for interacting with MotA and the β-flap tip, we generated single substitutions throughout the C terminus of σ(70). We find that MotA targets H5 residues that are normally engaged by the β-flap. In two-hybrid assays, the interaction of σ(70) with either the β-flap tip or MotA is impaired by alanine substitutions at residues Leu-607, Arg-608, Phe-610, Leu-611, and Asp-613. Transcription assays identify Phe-610 and Leu-611 as the key residues for MotA/AsiA-dependent transcription. Phe-610 is a crucial residue in the H5/β-flap tip interaction using promoter clearance assays with RNA polymerase alone. Our results show how the actions of small transcriptional factors on a defined local region of RNA polymerase can fundamentally change the specificity of polymerase.
Collapse
Affiliation(s)
- Richard P Bonocora
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
6
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
7
|
A mutation within the β subunit of Escherichia coli RNA polymerase impairs transcription from bacteriophage T4 middle promoters. J Bacteriol 2010; 192:5580-7. [PMID: 20729353 DOI: 10.1128/jb.00338-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During infection of Escherichia coli, bacteriophage T4 usurps the host transcriptional machinery, redirecting it to the expression of early, middle, and late phage genes. Middle genes, whose expression begins about 1 min postinfection, are transcribed both from the extension of early RNA into middle genes and by the activation of T4 middle promoters. Middle-promoter activation requires the T4 transcriptional activator MotA and coactivator AsiA, which are known to interact with σ(70), the specificity subunit of RNA polymerase. T4 motA amber [motA(Am)] or asiA(Am) phage grows poorly in wild-type E. coli. However, previous work has found that T4 motA(Am)does not grow in the E. coli mutant strain TabG. We show here that the RNA polymerase in TabG contains two mutations within its β-subunit gene: rpoB(E835K) and rpoB(G1249D). We find that the G1249D mutation is responsible for restricting the growth of either T4 motA(Am)or asiA(Am) and for impairing transcription from MotA/AsiA-activated middle promoters in vivo. With one exception, transcription from tested T4 early promoters is either unaffected or, in some cases, even increases, and there is no significant growth phenotype for the rpoB(E835K G1249D) strain in the absence of T4 infection. In reported structures of thermophilic RNA polymerase, the G1249 residue is located immediately adjacent to a hydrophobic pocket, called the switch 3 loop. This loop is thought to aid in the separation of the RNA from the DNA-RNA hybrid as RNA enters the RNA exit channel. Our results suggest that the presence of MotA and AsiA may impair the function of this loop or that this portion of the β subunit may influence interactions among MotA, AsiA, and RNA polymerase.
Collapse
|