1
|
Dvořák P, Galvão TC, Pflüger‐Grau K, Banks AM, de Lorenzo V, Jiménez JI. Water potential governs the effector specificity of the transcriptional regulator XylR of Pseudomonas putida. Environ Microbiol 2023; 25:1041-1054. [PMID: 36683138 PMCID: PMC10946618 DOI: 10.1111/1462-2920.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
The biodegradative capacity of bacteria in their natural habitats is affected by water availability. In this work, we have examined the activity and effector specificity of the transcriptional regulator XylR of the TOL plasmid pWW0 of Pseudomonas putida mt-2 for biodegradation of m-xylene when external water potential was manipulated with polyethylene glycol PEG8000. By using non-disruptive luxCDEAB reporter technology, we noticed that the promoter activated by XylR (Pu) restricted its activity and the regulator became more effector-specific towards head TOL substrates when cells were grown under water subsaturation. Such a tight specificity brought about by water limitation was relaxed when intracellular osmotic stress was counteracted by the external addition of the compatible solute glycine betaine. With these facts in hand, XylR variants isolated earlier as effector-specificity responders to the non-substrate 1,2,4-trichlorobenzene under high matric stress were re-examined and found to be unaffected by water potential in vivo. All these phenomena could be ultimately explained as the result of water potential-dependent conformational changes in the A domain of XylR and its effector-binding pocket, as suggested by AlphaFold prediction of protein structures. The consequences of this scenario for the evolution of specificities in regulators and the emergence of catabolic pathways are discussed.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | | | - Katharina Pflüger‐Grau
- Specialty Division for Systems BiotechnologyTechnische Universität MünchenGarchingGermany
| | - Alice M. Banks
- Department of Life SciencesImperial College LondonLondonUK
| | - Víctor de Lorenzo
- Systems Biology DepartmentCentro Nacional de Biotecnología‐CSICMadridSpain
| | | |
Collapse
|
2
|
Dvořák P, Alvarez-Carreño C, Ciordia S, Paradela A, de Lorenzo V. An updated structural model of the A domain of the Pseudomonas putida XylR regulator poses an atypical interplay with aromatic effectors. Environ Microbiol 2021; 23:4418-4433. [PMID: 34097798 DOI: 10.1111/1462-2920.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/16/2021] [Accepted: 06/06/2021] [Indexed: 01/14/2023]
Abstract
A revised model of the aromatic binding A domain of the σ54 -dependent regulator XylR of Pseudomonas putida mt-2 was produced based on the known 3D structures of homologous regulators PoxR, MopR and DmpR. The resulting frame was instrumental for mapping a number of mutations known to alter effector specificity, which were then reinterpreted under a dependable spatial reference. Some of these changes involved the predicted aromatic binding pocket but others occurred in distant locations, including dimerization interfaces and putative zinc binding site. The effector pocket was buried within the protein structure and accessible from the outside only through a narrow tunnel. Yet, several loop regions of the A domain could provide the flexibility required for widening such a tunnel for passage of aromatic ligands. The model was experimentally validated by treating the cells in vivo and the purified protein in vitro with benzyl bromide, which reacts with accessible nucleophilic residues on the protein surface. Structural and proteomic analyses confirmed the predicted in/out distribution of residues but also supported two additional possible scenarios of interaction of the A domain with aromatic effectors: a dynamic interaction of the fully structured yet flexible protein with the aromatic partner and/or inducer-assisted folding of the A domain.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Brno, Kamenice 753/5, 62500, Czech Republic
| | - Carlos Alvarez-Carreño
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain.,Centro Tecnológico José Lladó, División de Desarrollo de Tecnologías Propias, Técnicas Reunidas, Calle Sierra Nevada, 16, San Fernando de Henares, Madrid, 28830, Spain
| | - Sergio Ciordia
- Proteomics Core Facilit, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Alberto Paradela
- Proteomics Core Facilit, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
3
|
Agranat AJ, Kabessa Y, Shemer B, Shpigel E, Schwartsglass O, Atamneh L, Uziel Y, Ejzenberg M, Mizrachi Y, Garcia Y, Perepelitsa G, Belkin S. An autonomous bioluminescent bacterial biosensor module for outdoor sensor networks, and its application for the detection of buried explosives. Biosens Bioelectron 2021; 185:113253. [PMID: 33930754 DOI: 10.1016/j.bios.2021.113253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
We describe a miniaturized field-deployable biosensor module, designed to function as an element in a sensor network for standoff monitoring and mapping of environmental hazards. The module harbors live bacterial sensor cells, genetically engineered to emit a bioluminescent signal in the presence of preselected target materials, which act as its core sensing elements. The module, which detects and processes the biological signal, composes a digital record that describes its findings, and can be transmitted to a remote receiver. The module is an autonomous self-contained unit that can function either as a standalone sensor, or as a node in a sensor network. The biosensor module can potentially be used for detecting any target material to which the sensor cells were engineered to respond. The module described herein was constructed to detect the presence of buried landmines underneath its footprint. The demonstrated detection sensitivity was 0.25 mg 2,4-dinitrotoluene per Kg soil.
Collapse
Affiliation(s)
- Aharon J Agranat
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yossef Kabessa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Benjamin Shemer
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Etai Shpigel
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Offer Schwartsglass
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Loay Atamneh
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yonatan Uziel
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Meir Ejzenberg
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yosef Mizrachi
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yehudit Garcia
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Galina Perepelitsa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shimshon Belkin
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
4
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|
5
|
Liu Y, Zhuang Y, Ding D, Xu Y, Sun J, Zhang D. Biosensor-Based Evolution and Elucidation of a Biosynthetic Pathway in Escherichia coli. ACS Synth Biol 2017; 6:837-848. [PMID: 28121425 DOI: 10.1021/acssynbio.6b00328] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The successful evolution of metabolite-producing microbes requires a high-throughput screening method to obtain the desired properties within a short time. In this study, we developed a transcription-factor-driven device that combines a metabolite-responsive element and a selection module. This device was able to specifically sense intracellular l-phenylalanine (l-Phe) and convert this signal into an observable phenotype. Applying this device, we successfully improved l-Phe production by screening hyperproducing phenotypes from a ribonucleotide binding site library and a random mutagenesis library. In addition, several site mutations introduced by random mutagenesis were identified and elucidated to facilitate the improvement of l-Phe production. Our results present a paradigm for screening of compounds that are not easily observable to raise the yield of targeted compounds from a large candidate library. This approach may guide further applications in rewiring metabolic circuits and facilitate the directed evolution of recombinant strains.
Collapse
Affiliation(s)
- Yongfei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yinyin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dongqin Ding
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yiran Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
6
|
Shemer B, Koshet O, Yagur-Kroll S, Belkin S. Microbial bioreporters of trace explosives. Curr Opin Biotechnol 2017; 45:113-119. [PMID: 28319855 DOI: 10.1016/j.copbio.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/27/2022]
Abstract
Since its introduction as an explosive in the late 19th century, 2,4,6-trinitrotoluene (TNT), along with other explosive compounds, has left numerous environmental marks. One of these is widespread soil and water pollution by trace explosives in military proving grounds, manufacturing facilities, or actual battlefields. Another dramatic impact is that exerted by the millions of landmines and other explosive devices buried in large parts of the world, causing extensive loss of life, injuries, and economical damage. In this review we highlight recent advances in the design and construction of microbial bioreporters, molecularly engineered to generate a quantifiable dose-dependent signal in the presence of trace amounts of explosives. Such sensor strains may be employed for monitoring environmental pollution as well as for the remote detection of buried landmines.
Collapse
Affiliation(s)
- Benjamin Shemer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Koshet
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Yagur-Kroll
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Wynn D, Deo S, Daunert S. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors. Methods Enzymol 2017; 589:51-85. [PMID: 28336074 DOI: 10.1016/bs.mie.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field.
Collapse
Affiliation(s)
- Daniel Wynn
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sapna Deo
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sylvia Daunert
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
8
|
Büsing I, Kant M, Dörries M, Wöhlbrand L, Rabus R. The predicted σ(54)-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in "Aromatoleum aromaticum" EbN1. BMC Microbiol 2015; 15:251. [PMID: 26526497 PMCID: PMC4630880 DOI: 10.1186/s12866-015-0571-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
Background The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 anaerobically utilizes a multitude of aromatic compounds via specific peripheral degradation routes. Compound-specific formation of these catabolic modules is assumed to be mediated by specific transcriptional activators. In case of the recently elucidated p-ethylphenol/p-hydroxyacetophenone pathway, the highly substrate-specific regulation was implicated to involve the predicted σ54-dependent, NtrC-type regulator EbA324. The latter was suggested to control the expression of the two neighboring gene clusters encoding the catabolic enzymes as well as a corresponding putative solvent efflux system. In the present study, a molecular genetic approach was used to study the predicted function of EbA324. Results An unmarked in frame ΔebA324 (here renamed as ΔetpR; p-ethylphenol regulator) deletion mutation was generated. The ΔetpR mutant was unable to grow anaerobically with either p-ethylphenol or p-hydroxyacetophenone. Growth similar to the wild type was restored in the ΔetpR mutant background by in trans expression of plasmid-born etpR. Furthermore, expression of the "p-ethylphenol" gene clusters as well as corresponding protein formation was shown to depend on the presence of both, EtpR and either p-ethylphenol or p-hydroxyacetophenone. In the wild type, the etpR gene appears to be constitutively expressed and its expression level not to be modulated upon effector presence. Comparison with the regulatory domains of known phenol- and alkylbenzene-responsive NtrC-type regulators of Pseudomonas spp. and Thauera aromatica allowed identifying >60 amino acid residues in the regulatory domain (in particular positions 149 to 192 of EtpR) that may contribute to the effector specificity viz. presumptively restricted effector spectrum of EtpR. Conclusions This study provides experimental evidence for the genome predicted σ54-dependent regulator EtpR (formerly EbA324) of "A. aromaticum" EbN1 to be responsive to p-ethylphenol, as well as its degradation intermediate p-hydroxyacetophenone, and to control the expression of genes involved in the anaerobic degradation of these two aromatic growth substrates. Overall, the presented results advance our understanding on the regulation of anaerobic aromatic compound catabolism, foremost based on the sensory discrimination of structurally similar substrates. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0571-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Imke Büsing
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Mirjam Kant
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Marvin Dörries
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
9
|
Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015; 6:648. [PMID: 26191047 PMCID: PMC4486848 DOI: 10.3389/fmicb.2015.00648] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Collapse
Affiliation(s)
| | | | | | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria – Consejo Superior de Investigaciones CientíficasSantander, Spain
| |
Collapse
|
10
|
Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution. Appl Microbiol Biotechnol 2015; 99:7177-88. [DOI: 10.1007/s00253-015-6607-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 11/26/2022]
|
11
|
Díaz E, Jiménez JI, Nogales J. Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 2013; 24:431-42. [DOI: 10.1016/j.copbio.2012.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/04/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022]
|
12
|
Protein Engineering as an Enabling Tool for Synthetic Biology. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
13
|
de las Heras A, Fraile S, de Lorenzo V. Increasing signal specificity of the TOL network of Pseudomonas putida mt-2 by rewiring the connectivity of the master regulator XylR. PLoS Genet 2012; 8:e1002963. [PMID: 23071444 PMCID: PMC3469447 DOI: 10.1371/journal.pgen.1002963] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022] Open
Abstract
Prokaryotic transcription factors (TFs) that bind small xenobiotic molecules (e.g., TFs that drive genes that respond to environmental pollutants) often display a promiscuous effector profile for analogs of the bona fide chemical signals. XylR, the master TF for expression of the m-xylene biodegradation operons encoded in the TOL plasmid pWW0 of Pseudomonas putida, responds not only to the aromatic compound but also, albeit to a lesser extent, to many other aromatic compounds, such as 3-methylbenzylalcohol (3MBA). We have examined whether such a relaxed regulatory scenario can be reshaped into a high-capacity/high-specificity regime by changing the connectivity of this effector-sensing TF within the rest of the circuit rather than modifying XylR structure itself. To this end, the natural negative feedback loop that operates on xylR transcription was modified with a translational attenuator that brings down the response to 3MBA while maintaining the transcriptional output induced by m-xylene (as measured with a luxCDABE reporter system). XylR expression was then subject to a positive feedback loop in which the TF was transcribed from its own target promoters, each known to hold different input/output transfer functions. In the first case (xylR under the strong promoter of the upper TOL operon, Pu), the reporter system displayed an increased transcriptional capacity in the resulting network for both the optimal and the suboptimal XylR effectors. In contrast, when xylR was expressed under the weaker Ps promoter, the resulting circuit unmistakably discriminated m-xylene from 3MBA. The non-natural connectivity engineered in the network resulted both in a higher promoter activity and also in a much-increased signal-to-background ratio. These results indicate that the working regimes of given genetic circuits can be dramatically altered through simple changes in the way upstream transcription factors are self-regulated by positive or negative feedback loops. It is generally taken for granted that promoters regulated by transcriptional factors (TFs) that respond to small molecules control their specificity to given effectors by tightening or relaxing the intrinsic dual interaction between the TF and the particular inducer. One such promoter is Pu, which drives expression of an operon for the biodegradation of m-xylene by the soil bacterium P. putida mt-2. While XylR, the chief TF of this system, binds this substrate and activates Pu, the same regulator responds, to a lesser extent, to 3-methylbenzylalcohol and thus also activates the promoter. This work provides evidence that such natural effector promiscuity of the system can be altogether suppressed by replacing the naturally occurring negative autoregulation loop that governs XylR expression with an equivalent positive feedback loop. Based on this result, we argue that signal specificity of a given regulatory device depends not only on the TF involved but also on TF connectivity to upstream signals and downstream targets.
Collapse
Affiliation(s)
| | | | - Victor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 2012; 13:R40. [PMID: 22640862 PMCID: PMC3446293 DOI: 10.1186/gb-2012-13-5-r40] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/16/2012] [Accepted: 05/28/2012] [Indexed: 12/23/2022] Open
Abstract
We present a novel method for visualizing intracellular metabolite concentrations within single cells of Escherichia coli and Corynebacterium glutamicum that expedites the screening process of producers. It is based on transcription factors and we used it to isolate new L-lysine producing mutants of C. glutamicum from a large library of mutagenized cells using fluorescence-activated cell sorting (FACS). This high-throughput method fills the gap between existing high-throughput methods for mutant generation and genome analysis. The technology has diverse applications in the analysis of producer populations and screening of mutant libraries that carry mutations in plasmids or genomes.
Collapse
Affiliation(s)
- Stephan Binder
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Arce-Rodríguez A, Durante-Rodríguez G, Platero R, Krell T, Calles B, de Lorenzo V. The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. Environ Microbiol 2011; 14:702-13. [PMID: 22040086 DOI: 10.1111/j.1462-2920.2011.02622.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the genome of Pseudomonas putida KT2440 encodes an orthologue of the crp gene of Escherichia coli (encoding the cAMP receptor protein), the regulatory scope of this factor seems to be predominantly co-opted in this bacterium for controlling non-metabolic functions. In order to investigate the reasons for such a functional divergence in otherwise nearly identical proteins, the Crp regulator of P. putida (Crp(P. putida)) was purified to apparent homogeneity and subject to a battery of in vitro assays aimed at determining its principal physicochemical properties. Analytical ultracentrifugation indicated effector-free Crp(P. putida) to be a dimer in solution that undergoes a significant change in its hydrodynamic shape in the presence of cAMP. Such a conformational transition was confirmed by limited proteolysis of the protein in the absence or presence of the inducer. Thermodynamic parameters calculated by isothermal titration calorimetry revealed a tight cAMP-Crp(P. putida) association with an apparent K(D) of 22.5 ± 2.8 nM, i.e. much greater affinity than that reported for the E. coli's counterpart. The regulator also bound cGMP, but with a K(D) = 2.6 ± 0.3 µM. An in vitro transcription system was then set up with purified P. putida's RNA polymerase for examining the preservation of the correct protein-protein architecture that makes Crp to activate target promoters. These results, along with cognate gel retardation assays indicated that all basic features of the reference Crp(E. coli) protein are kept in the P. putida's counterpart, albeit operating under a different set of parameters, the extraordinarily high affinity for cAMP being the most noticeable.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Gredell JA, Frei CS, Cirino PC. Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J 2011; 7:477-99. [PMID: 22031507 DOI: 10.1002/biot.201100266] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/20/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022]
Abstract
Nature takes advantage of the malleability of protein and RNA sequence and structure to employ these macromolecules as molecular reporters whose conformation and functional roles depend on the presence of a specific ligand (an "effector" molecule). By following nature's example, ligand-responsive proteins and RNA molecules are now routinely engineered and incorporated into customized molecular reporting systems (biosensors). Microbial small-molecule biosensors and endogenous molecular reporters based on these sensing components find a variety of applications that include high-throughput screening of biosynthesis libraries, environmental monitoring, and novel gene regulation in synthetic biology. Here, we review recent advances in engineering small-molecule recognition by proteins and RNA and in coupling in vivo ligand binding to reporter-gene expression or to allosteric activation of a protein conferring a detectable phenotype. Emphasis is placed on microbial screening systems that serve as molecular reporters and facilitate engineering the ligand-binding component to recognize new molecules.
Collapse
Affiliation(s)
- Joseph A Gredell
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
17
|
de Las Heras A, Chavarría M, de Lorenzo V. Association of dnt genes of Burkholderia sp. DNT with the substrate-blind regulator DntR draws the evolutionary itinerary of 2,4-dinitrotoluene biodegradation. Mol Microbiol 2011; 82:287-99. [PMID: 21923773 DOI: 10.1111/j.1365-2958.2011.07825.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regulation of the DNT pathway for biodegradation of 2,4-dinitrotoluene of Burkholderia sp. DNT has been examined by exporting each of its components to Pseudomonas putida KT2440. The cognate regulator DntR does not respond to the pathway substrate, but to the non-substrate salicylate. In order to examine whether such a response to an unrelated inducer was specific or rather a vestige of a previous evolutionary stage, the complete dnt complement or parts of it were expressed functionally for accumulation of various metabolic intermediates. Their effect on expression of dnt genes was then followed both biochemically and by means of a luminescent reporter engineered in the surrogate host. DntR was not only unresponsive to DNT biodegradation products, but it also failed to influence expression of dnt genes at all. Comparison of the dntR/dntA divergent promoter region with similar ones found in various catabolic systems indicated that the leading segment of the DNT biodegradation pathway evolved from a matching portion of naphthalene biodegradation routes existing in other bacteria. That a useless but still active transcriptional factor occurs along enzymes that have already evolved a new substrate specificity suggests that emergence of novel catalytic abilities precedes their submission to cognate regulatory devices, not vice versa.
Collapse
Affiliation(s)
- Aitor de Las Heras
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
18
|
Kivisaar M. Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria. Mol Microbiol 2011; 82:265-8. [PMID: 21895794 DOI: 10.1111/j.1365-2958.2011.07824.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evolution of catabolic pathways for the degradation of synthetic nitroaromatic compounds is currently ongoing process because these compounds have been in nature only for a short time. Bacteria isolated from contaminated areas contain pathways for the degradation of nitroaromatic compounds at different stages of progression. Therefore, the emergence of pathways for the degradation of such chemicals provides a good opportunity to investigate evolutionary processes leading to the emergence of new metabolic routes and their regulatory systems. In Burkholderia sp. strain DNT the regulatory gene encoding the LysR-type transcriptional regulator DntR is placed divergently of the dinitrotoluene (DNT) dioxygenase genes. This regulator still recognizes salicylate, an effector of its NagR-like ancestor but not DNT. In this issue of Molecular Microbiology, de las Heras et al. demonstrate that the DntR does not respond to any metabolic intermediates of the DNT catabolic pathway. The results of this study suggest that the catabolic pathway for the degradation of DNT has reached to an early stage of evolution when novel specificities of the catabolic enzymes have already acquired but the cognate regulatory system is still missing. This research addresses some fundamental questions about bottlenecks to be solved during evolution of new catabolic operons.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia.
| |
Collapse
|