1
|
Palheta RC, da Silva MTB, Georgii ADNP, Silva CMS, Siqueira RCL, Reis WL, Ruginsk SG, Elias LLK, Antunes-Rodrigues J, Santos AA. Role of atrial natriuretic peptide and oxytocin in gastric emptying delay induced by right atrial stretch in rats. Am J Physiol Regul Integr Comp Physiol 2025; 328:R396-R407. [PMID: 39938916 DOI: 10.1152/ajpregu.00172.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Fluid volume and osmolality balance are maintained by complex neuroendocrine and liquid-salt intake behavior, cardiovascular and renal mechanisms, and gastrointestinal adjustments. Mechanical stretching of the right atrium [atrial stretch (AS)] enhances central venous pressure and heart rate while decreasing gastric emptying (GE) of liquid in rats. We evaluated the effect of AS on GE and plasma levels of atrial natriuretic peptide (ANP), oxytocin (OT), and corticosterone (CORT) to determine whether ANP contributes to the OT-mediated GE delay of liquids due to AS in awake rats. Initially, we performed thoracotomy followed by right appendectomy (AX) or sham thoracotomy. One week later, rats were randomly subjected to pretreatment with NaCl 0.15 M (control), atosiban (AT, OT-antagonist), anantin (ANT, ANP-antagonist), or dexamethasone (DEX). Afterward, 50 µL of AS was administered for 5 min or not (sham). Then, the rats were fed a test meal, and GE of liquids or solids was performed. The other animals were pretreated with NaCl 0.15 M, atosiban, anantin, or dexamethasone, followed by OT treatment for GE assessment. Compared with the sham group, 50 µL of AS decreased the GE of the liquid and solid test meals. This phenomenon was prevented by AT, ANT, DEX, and surgical procedures with AX. AS also increased plasma levels of ANP, OT, and CORT. In turn, oxytocin treatment decreased GE and increased plasma ANP, OT, and CORT levels, while AT, ANT, and DEX prevented OT-induced GE delay. Hence, AS delayed GE of liquid in rats, a phenomenon that involves oxytocinergic pathways and ANP activities.NEW & NOTEWORTHY We suggest a cardiogastric reflex with the participation of neuroendocrine mediators, which contributes to regulating liquid balance in the animal's body. Atrial natriuretic peptide and oxytocin are substances recognized for participating in diuresis and regulating the transit of liquids in the gastrointestinal tract in situations of cardiac volume overload, as was simulated with atrial stretching in the present experimental model.
Collapse
Affiliation(s)
- Raimundo C Palheta
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Moisés T B da Silva
- Laboratory of Physiology, MedinUP/RISE-Health, Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | | | - Camila M S Silva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Rômmulo C L Siqueira
- Federal Institute of Education, Science and Technology of Ceará, Limoeiro do Norte, Brazil
| | - Wagner L Reis
- Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Silvia G Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - Lucila L K Elias
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Armênio A Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
2
|
Li S, Shi Y, Zhu J, Li J, Wang S, Liu C. Protective effect of oxytocin on vincristine-induced gastrointestinal dysmotility in mice. Front Pharmacol 2024; 15:1270612. [PMID: 38655179 PMCID: PMC11037254 DOI: 10.3389/fphar.2024.1270612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Aims: Vincristine (VCR), an antineoplastic drug, induces peripheral neuropathy characterized by nerve damage, limiting its use and reducing the quality of life of patients. VCR causes myenteric neuron damage, inhibits gastrointestinal motility, and results in constipation or paralytic ileus in patients. Oxytocin (OT) is an endogenous neuropeptide produced by the enteric nerve system, which regulates gastrointestinal motility and exerts neuroprotective effects. This study aimed to investigate whether OT can improve VCR-induced gastrointestinal dysmotility and evaluate the underlying mechanism. Methods: Mice were injected either with saline or VCR (0.1 mg/kg/d, i. p.) for 14 days, and OT (0.1 mg/kg/d, i.p.) was applied 1 h before each VCR injection. Gastrointestinal transit and the contractile activity of the isolated colonic segments were assessed. The concentration of OT in plasma was measured using ELISA. Immunofluorescence staining was performed to analyze myenteric neurons and reactive oxygen species (ROS) levels. Furthermore, the indicators of oxidative stress were detected. The protein expressions of Nrf2, ERK1/2, P-ERK1/2, p38, and P-p38 in the colon were tested using Western blot. Results: VCR reduced gastrointestinal transit and the responses of isolated colonic segments to electrical field stimulation and decreased the amount of neurons. Furthermore, VCR reduced neuronal nitric oxide synthase and choline acetyltransferase immunopositive neurons in the colonic myenteric nerve plexus. VCR increased the concentration of OT in plasma. Exogenous OT pretreatment ameliorated the inhibition of gastrointestinal motility and the injury of myenteric neurons caused by VCR. OT pretreatment also prevented the decrease of superoxide dismutase activity, glutathione content, total antioxidative capacity, and Nrf2 expression, the increase of ROS levels, and the phosphorylation of ERK1/2 and p38 MAPK following VCR treatment. Conclusion: Our results suggest that OT pretreatment can protect enteric neurons from VCR-induced injury by inhibiting oxidative stress and MAPK pathways (ERK1/2, p38). This may be the underlying mechanism by which it alleviates gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Shuang Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| | - Yao Shi
- Ministry of Education Key Laboratory of Protein, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianchun Zhu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| | - Shuanglian Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
- Provincial Key Lab of Mental Disorders, Shandong University, Jinan, China
| |
Collapse
|
3
|
Yang W, Guo H, Niu J, Liu J, Su R, Bai Y, Zhang S, Liu Q, Sun N. Phloroglucinol inhibits oxytocin-induced contraction in rat gastric circular muscle and uterine smooth muscle. J OBSTET GYNAECOL 2023; 43:2130208. [PMID: 36227618 DOI: 10.1080/01443615.2022.2130208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phloroglucinol is commonly used to alleviate dysmenorrhoea and stomach cramps. However, there is little evidence of phloroglucinol in the mechanism of primary dysmenorrhoea (PD) development. In this study, a PD rat model was established. The effects of phloroglucinol on the contraction of rat gastric circular muscle and uterine smooth muscle induced by oxytocin (OT) were investigated. The writhing response, and levels of oestradiol (E2), prostaglandin e2 (PGE2), and prostaglandin f2α (PGF2α) were determined. The protein and mRNA levels of OT receptor (OTR) were detected. OT showed a significant promoting effect on gastric circular muscle and uterine smooth muscle contraction. However, phloroglucinol strongly inhibited the contraction induced by 10-6 mol/L of OT. We also found that phloroglucinol reduced writhing response and attenuated uterine damage. Compared to the blank group, E2 and PGF2α were significantly increased, but PGE2 was significantly decreased in the PD model group. Phloroglucinol was found to reverse the changes of E2, PGF2α and PGE2. Moreover, phloroglucinol reduced the protein and mRNA levels of OTR. In conclusion, phloroglucinol could attenuate PD and inhibit the contraction of rat gastric circular muscle and uterine smooth muscle induced by OT. The mechanism might be related with the regulation of OTR expression.IMPACT STATEMENTWhat is already known on this subject? Phloroglucinol is commonly used to alleviate dysmenorrhoea and stomach cramps. However, there is little evidence of phloroglucinol in the mechanism of primary dysmenorrhoea (PD) development.What do the results of this study add? Phloroglucinol could attenuate PD and inhibit the contraction of rat gastric circular muscle and uterine smooth muscle induced by OT. The underlying mechanisms of phloroglucinol for PD treatment may be associated with OTR.What are the implications of these findings for clinical practice and/or further research? These findings provide novel ideas for the role of phloroglucinol in PD development.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Hua Guo
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Jinbo Niu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Junya Liu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Ran Su
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Yingde Bai
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Shuang Zhang
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Qian Liu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Nan Sun
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| |
Collapse
|
4
|
Makwana R, Sanger GJ. Characterization of rat gastric myogenic contractions and modulation by oxytocin and arginine-vasopressin. Eur J Pharmacol 2023; 955:175906. [PMID: 37429518 DOI: 10.1016/j.ejphar.2023.175906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Interstitial cells of Cajal generate slow wave gastric electrical activity, initiating spontaneous muscle contractions. This becomes dysrhythmic during nausea when [Arg8]-vasopressin (AVP) is also released. In human stomach AVP increased spontaneous contraction activity and muscle tone, not neuronally-mediated contractions. Rodents cannot vomit, releasing the related hormone, oxytocin (OT) instead. We hypothesised that rat stomach would behave differently. EXPERIMENTAL APPROACH Spontaneous and electrically-evoked (EFS) contractions were measured in rat forestomach and antrum circular muscle. Custom software defined spontaneous contractions by analysing eight motility parameters. RESULTS The forestomach was quiescent. Irregular antrum contractions became regular adjacent to the pylorus (1.7 ± 0.4 mN; 1.2 ± 0.1 contractions/min, n = 12). These were unaffected by tetrodotoxin (10-6 M), atropine (10-6 M) and L-NAME (3 × 10-4 M). In both regions, AVP (pEC50∼9.0) and OT (∼0.5 log10-unit less potent) caused contraction (greater in antrum), competitively antagonized by, respectively, SR49059 (pKB∼9.5) and L371257 (pKB∼9.0), reduced by tetrodotoxin but unaffected by atropine. In the antrum, AVP and OT (∼2 log10-units less potent/efficacious) regularized and increased spontaneous contraction amplitude, frequency, rates of contraction/decay. In both regions, EFS-evoked contractions, abolished by atropine/tetrodotoxin, were reduced by AVP and OT, with AVP more potent and efficacious, particularly in forestomach. CONCLUSION Irregular spontaneous contractions of gastric antrum suggest variable ICC-muscle coupling. AVP and less potently, OT, enhanced frequency and force of contractions via V1A and OT receptors. Compared with human, differences in contraction regularity, potency and ability of AVP/OT to affect neuronal function suggests caution when using rat stomach to model ICC functions and nauseagenic stimuli.
Collapse
Affiliation(s)
- Raj Makwana
- Blizard Institute, Queen Mary University of London, UK
| | | |
Collapse
|
5
|
Yao S, Chen Y, Zhuang Q, Zhang Y, Lan C, Zhu S, Becker B, Kendrick KM. Sniffing oxytocin: Nose to brain or nose to blood? Mol Psychiatry 2023; 28:3083-3091. [PMID: 37185959 PMCID: PMC10615745 DOI: 10.1038/s41380-023-02075-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
In recent years ample studies have reported that intranasal administration of the neuropeptide oxytocin can facilitate social motivation and cognition in healthy and clinical populations. However, it is still unclear how effects are mediated since intranasally administered oxytocin can both directly enter the brain (nose to brain) and increase peripheral vascular concentrations (nose to blood). The relative functional contributions of these routes are not established and have received insufficient attention in the field. The current study used vasoconstrictor pretreatment to prevent intranasal oxytocin (24 IU) from increasing peripheral concentrations and measured effects on both resting-state neural (electroencephalography) and physiological responses (electrocardiogram, electrogastrogram and skin conductance). Results demonstrated that intranasal oxytocin alone produced robust and widespread increases of delta-beta cross-frequency coupling (CFC) from 30 min post-treatment but did not influence peripheral physiological measures. As predicted, vasoconstrictor pretreatment greatly reduced the normal increase in peripheral oxytocin concentrations and, importantly, abolished the majority of intranasal oxytocin effects on delta-beta CFC. Furthermore, time-dependent positive correlations were found between increases in plasma oxytocin concentrations and corresponding increases in delta-beta CFC following oxytocin treatment alone. Our findings suggest a critical role of peripheral vasculature-mediated routes on neural effects of exogenous oxytocin administration with important translational implications for its use as an intervention in psychiatric disorders.
Collapse
Affiliation(s)
- Shuxia Yao
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuanshu Chen
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Zhuang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yingying Zhang
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Chunmei Lan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyu Zhu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Niu J, Tong J, Blevins JE. Oxytocin as an Anti-obesity Treatment. Front Neurosci 2021; 15:743546. [PMID: 34720864 PMCID: PMC8549820 DOI: 10.3389/fnins.2021.743546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is a growing health concern, as it increases risk for heart disease, hypertension, type 2 diabetes, cancer, COVID-19 related hospitalizations and mortality. However, current weight loss therapies are often associated with psychiatric or cardiovascular side effects or poor tolerability that limit their long-term use. The hypothalamic neuropeptide, oxytocin (OT), mediates a wide range of physiologic actions, which include reproductive behavior, formation of prosocial behaviors and control of body weight. We and others have shown that OT circumvents leptin resistance and elicits weight loss in diet-induced obese rodents and non-human primates by reducing both food intake and increasing energy expenditure (EE). Chronic intranasal OT also elicits promising effects on weight loss in obese humans. This review evaluates the potential use of OT as a therapeutic strategy to treat obesity in rodents, non-human primates, and humans, and identifies potential mechanisms that mediate this effect.
Collapse
Affiliation(s)
- JingJing Niu
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Jenny Tong
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
7
|
Taussat S, Boussaha M, Ramayo-Caldas Y, Martin P, Venot E, Cantalapiedra-Hijar G, Hozé C, Fritz S, Renand G. Gene networks for three feed efficiency criteria reveal shared and specific biological processes. Genet Sel Evol 2020; 52:67. [PMID: 33167870 PMCID: PMC7653997 DOI: 10.1186/s12711-020-00585-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Background French beef producers suffer from the decrease in profitability of their farms mainly because of the continuous increase in feed costs. Selection for feed efficiency in beef cattle represents a relevant solution to face this problem. However, feed efficiency is a complex trait that can be assessed by three major criteria: residual feed intake (RFI), residual gain (RG) and feed efficiency ratio (FE), which involve different genetic determinisms. An analysis that combines phenotype and whole-genome sequence data provides a unique framework for genomic studies. The aim of our study was to identify the gene networks and the biological processes that are responsible for the genetic determinism that is shared between these three feed efficiency criteria. Results A population of 1477 French Charolais young bulls was phenotyped for feed intake (FI), average daily gain (ADG) and final weight (FW) to estimate RFI, RG and FE. A subset of 789 young bulls was genotyped on the BovineSNP50 single nucleotide polymorphism (SNP) array and imputed at the sequence level using RUN6 of the 1000 Bull Genomes Project. We conducted a genome-wide association study (GWAS) to estimate the individual effect of 8.5 million SNPs and applied an association weight matrix (AWM) approach to analyse the results, one for each feed efficiency criterion. The results highlighted co-association networks including 626 genes for RFI, 426 for RG and 564 for FE. Enrichment assessment revealed the biological processes that show the strongest association with RFI, RG and FE, i.e. digestive tract (salivary, gastric and mucin secretion) and metabolic processes (cellular and cardiovascular). Energetic functions were more associated with RFI and FE and cardio-vascular and cellular processes with RG. Several hormones such as apelin, glucagon, insulin, aldosterone, the gonadotrophin releasing hormone and the thyroid hormone were also identified, and these should be tested in future studies as candidate biomarkers for feed efficiency. Conclusions The combination of network and pathway analyses at the sequence level led to the identification of both common and specific mechanisms that are involved in RFI, RG and FE, and to a better understanding of the genetic determinism underlying these three criteria. The effects of the genes involved in each of the identified processes need to be tested in genomic evaluations to confirm the potential gain in reliability of using functional variants to select animals for feed efficiency.
Collapse
Affiliation(s)
- Sébastien Taussat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France. .,Allice, 75012, Paris, France.
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Pauline Martin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Eric Venot
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 75012, Paris, France
| | - Sébastien Fritz
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 75012, Paris, France
| | - Gilles Renand
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
8
|
Johnson KVA, Burnet PWJ. Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci 2020; 21:32. [PMID: 32698770 PMCID: PMC7374917 DOI: 10.1186/s12868-020-00583-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent research has revealed that the community of microorganisms inhabiting the gut affects brain development, function and behaviour. In particular, disruption of the gut microbiome during critical developmental windows can have lasting effects on host physiology. Both antibiotic exposure and germ-free conditions impact the central nervous system and can alter multiple aspects of behaviour. Social impairments are typically displayed by antibiotic-treated and germ-free animals, yet there is a lack of understanding of the underlying neurobiological changes. Since the μ-opioid, oxytocin and vasopressin systems are key modulators of mammalian social behaviour, here we investigate the effect of experimentally manipulating the gut microbiome on the expression of these pathways. Results We show that social neuropeptide signalling is disrupted in germ-free and antibiotic-treated mice, which may contribute to the behavioural deficits observed in these animal models. The most notable finding is the reduction in neuroreceptor gene expression in the frontal cortex of mice administered an antibiotic cocktail post-weaning. Additionally, the changes observed in germ-free mice were generally in the opposite direction to the antibiotic-treated mice. Conclusions Antibiotic treatment when young can impact brain signalling pathways underpinning social behaviour and pain regulation. Since antibiotic administration is common in childhood and adolescence, our findings highlight the potential adverse effects that antibiotic exposure during these key neurodevelopmental periods may have on the human brain, including the possible increased risk of neuropsychiatric conditions later in life. In addition, since antibiotics are often considered a more amenable alternative to germ-free conditions, our contrasting results for these two treatments suggest that they should be viewed as distinct models.
Collapse
Affiliation(s)
- Katerina V A Johnson
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK. .,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
9
|
Ma M, Li L, Chen H, Feng Y. Oxytocin Inhibition of Metastatic Colorectal Cancer by Suppressing the Expression of Fibroblast Activation Protein-α. Front Neurosci 2020; 13:1317. [PMID: 31920487 PMCID: PMC6923180 DOI: 10.3389/fnins.2019.01317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (OXT) and its receptor (OXTR) are present in the gastrointestinal system and are involved in gastrointestinal tumorigenesis. However, the effect of OXTR signaling on the development of colorectal cancer (CRC) and its underlying mechanisms remain unexplored. To address these issues, we first examined the expressions of OXT, OXTR, and several cancer-associated proteins using colon “tissue chips” from a spectrum of malignant progression of the colon, which included normal colon tissue, chronic colitis, colorectal adenoma, and colorectal adenocarcinoma (CAC). The results showed that the expressions of OXT and OXTR decreased gradually with the malignant progression of the disease. Stimulation of CAC tissues with OXT increased OXTR expression while down-regulated FAPα and CCL-2 protein expressions in a concentration- and time-dependent manner. Moreover, cell invasion experiment showed that OXT treatment reduced the invasion ability of colon cancer cells and blocking OXTR with atosiban blocked OXT-reduced invasion ability of human colon cancer cell lines Ls174T and SW480. The results indicate that OXT has the potential to inhibit CRC development via down-regulating the immunosuppressive proteins FAPα and CCL-2. When the OXTR signaling is weakened, colon tissues may transform to CRC. These findings also highlight the possibility of applying OXT to inhibit CRC development directly.
Collapse
Affiliation(s)
- Mingxing Ma
- Department of Colorectal Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Li Li
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - He Chen
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Yong Feng
- Department of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Leng H, Zhang X, Wang Q, Luan X, Sun X, Guo F, Gao S, Liu X, Xu L. Regulation of stress-induced gastric ulcers via central oxytocin and a potential mechanism through the VTA-NAc dopamine pathway. Neurogastroenterol Motil 2019; 31:e13655. [PMID: 31172654 DOI: 10.1111/nmo.13655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oxytocin (OT) plays an important role in regulating gastric function. How OT regulates stress-induced gastric ulcers is not understood. We investigated OT's protective role in stress-induced gastric ulcers, with a focus on OT's interaction with the ventral tegmental area (VTA) to nucleus accumbens (NAc) dopamine pathway. METHODS Drugs administration into the rats brain nuclei by brain stereotaxic apparatus, to examine related changes in gastric ulcer index, pH of gastric content, and mucus secretion, and to determine complex interactions between OT and DA systems in the regulation of stress and gastric functions. KEY RESULTS Neurons in the VTA were co-immunoreactive for the OT receptor (OTR) and DA. In a rat model of stress-induced ulcer, water-immersion restricted stress, direct administration of OT into the VTA significantly reduced gastric ulcer index and increased the pH of gastric content and mucus secretion. OT's effects were eliminated by pretreatment with the OTR antagonist atosiban in the VTA and weakened with pretreatment of the DA D2 receptor (DA D2R) antagonist raclopride in the NAc. In OTR gene knockout (Oxtr-/- ) mice, OT's protective effect was lost. OT administered to the VTA of dorsal motor nucleus of the vagus (DMV)-lesioned rats had minimal protective effects on gastric mucosa. CONCLUSIONS AND INFERENCES This study provides important data necessary for a deeper understanding of the complex interactions between OT and DA systems in the regulation of stress and gastric functions. It provides relevant mechanistic clues into OT's role as a protective factor against stress-induced changes to gastric function.
Collapse
Affiliation(s)
- Hui Leng
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiaoqian Zhang
- Doctoral School of Biomedical Sciences, Leuven, Belgium.,Family Medicine Department, Qingdao United Family Hospital, Qingdao, China
| | - Qian Wang
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiao Luan
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Shengli Gao
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xuehuan Liu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Simmons TC, Balland JF, Dhauna J, Yang SY, Traina JL, Vazquez J, Bales KL. Early Intranasal Vasopressin Administration Impairs Partner Preference in Adult Male Prairie Voles ( Microtus ochrogaster). Front Endocrinol (Lausanne) 2017; 8:145. [PMID: 28701997 PMCID: PMC5487415 DOI: 10.3389/fendo.2017.00145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022] Open
Abstract
Research supports a modulatory role for arginine vasopressin (AVP) in the expression of socially motivated behaviors in mammals. The acute effects of AVP administration are demonstrably pro-social across species, providing the justification for an ever-increasing measure of clinical interest over the last decade. Combining these results with non-invasive intranasal delivery results in an attractive system for offering intranasal AVP (IN-AVP) as a therapeutic for the social impairments of children with autism spectrum disorder. But, very little is known about the long-term effects of IN-AVP during early development. In this experiment, we explored whether a single week of early juvenile administration of IN-AVP (low = 0.05 IU/kg, medium = 0.5 IU/kg, high = 5.0 IU/kg) could impact behavior across life in prairie voles. We found increases in fecal boli production during open field and novel object recognition testing for the medium dose in both males and females. Medium-dose females also had significantly more play bouts than control when exposed to novel conspecifics during the juvenile period. Following sexual maturity, the medium and high doses of IN-AVP blocked partner preference formation in males, while no such impairment was found for any of the experimental groups in females. Finally, the high-dose selectively increased adult male aggression with novel conspecifics, but only after extended cohabitation with a mate. Our findings confirm that a single week of early IN-AVP treatment can have organizational effects on behavior across life in prairie voles. Specifically, the impairments in pair-bonding behavior experienced by male prairie voles should raise caution when the prosocial effects of acute IN-AVP demonstrated in other studies are extrapolated to long-term treatment.
Collapse
Affiliation(s)
- Trenton C Simmons
- Department of Psychology, University of California Davis, Davis, CA, United States
| | - Jessica F Balland
- Department of Psychology, University of California Davis, Davis, CA, United States
| | - Janeet Dhauna
- Department of Psychology, University of California Davis, Davis, CA, United States
| | - Sang Yun Yang
- Department of Psychology, University of California Davis, Davis, CA, United States
| | - Jason L Traina
- Department of Psychology, University of California Davis, Davis, CA, United States
| | - Jessica Vazquez
- Department of Psychology, University of California Davis, Davis, CA, United States
| | - Karen L Bales
- Department of Psychology, University of California Davis, Davis, CA, United States
| |
Collapse
|
12
|
Arginine Vasopressin Injected into the Dorsal Motor Nucleus of the Vagus Inhibits Gastric Motility in Rats. Gastroenterol Res Pract 2015; 2016:4618672. [PMID: 26843857 PMCID: PMC4710933 DOI: 10.1155/2016/4618672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022] Open
Abstract
Background. Until now, the effect of arginine vasopressin (AVP) in the DMV on gastric motility and the possible modulating pathway between the DMV and the gastrointestinal system remain poorly understood. Objectives. We aimed to explore the role of AVP in the DMV in regulating gastric motility and the possible central and peripheral pathways. Material and Methods. Firstly, we microinjected different doses of AVP into the DMV and investigated its effects on gastric motility in rats. Then, the possible central and peripheral pathways that regulate gastric motility were also discussed by microinjecting SR49059 (a specific AVP receptor antagonist) into the DMV and intravenous injection of hexamethonium (a specific neuronal nicotinic cholinergic receptor antagonist) before AVP microinjection. Results. Following microinjection of AVP (180 pmol and 18 pmol) into the DMV, the gastric motility (including total amplitude, total duration, and motility index of gastric contraction) was significantly inhibited (P < 0.05). Moreover, the inhibitory effect of AVP (180 pmol) on gastric motility could be blocked completely by both SR49059 (320 pmol) and hexamethonium (8 μmol). Conclusions. It is concluded that AVP inhibits the gastric motility by acting on the specific AVP receptor in the DMV, with the potential involvement of the parasympathetic preganglionic cholinergic fibers.
Collapse
|
13
|
Blevins JE, Baskin DG. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans. Physiol Behav 2015; 152:438-49. [PMID: 26013577 DOI: 10.1016/j.physbeh.2015.05.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The fact that more than 78 million adults in the US are considered overweight or obese highlights the need to develop new, effective strategies to treat obesity and its associated complications, including type 2 diabetes, kidney disease and cardiovascular disease. While the neurohypophyseal peptide oxytocin (OT) is well recognized for its peripheral effects to stimulate uterine contraction during parturition and milk ejection during lactation, release of OT within the brain is implicated in prosocial behaviors and in the regulation of energy balance. Previous findings indicate that chronic administration of OT decreases food intake and weight gain or elicits weight loss in diet-induced obese (DIO) mice and rats. Furthermore, chronic systemic treatment with OT largely reproduces the effects of central administration to reduce weight gain in DIO and genetically obese rodents at doses that do not appear to result in tolerance. These findings have now been recently extended to more translational models of obesity showing that chronic subcutaneous or intranasal OT treatment is sufficient to elicit body weight loss in DIO nonhuman primates and pre-diabetic obese humans. This review assesses the potential use of OT as a therapeutic strategy for treatment of obesity in rodents, nonhuman primates, and humans, and identifies potential mechanisms that mediate this effect.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Denis G Baskin
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
14
|
Yang X, Xi TF, Li YX, Wang HH, Qin Y, Zhang JP, Cai WT, Huang MT, Shen JQ, Fan XM, Shi XZ, Xie DP. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors. World J Gastroenterol 2014; 20:10886-10894. [PMID: 25152590 PMCID: PMC4138467 DOI: 10.3748/wjg.v20.i31.10886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/25/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats.
METHODS: Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors.
RESULTS: Colon transit was slower in the cold group than in the control group (P < 0.05). Colonic smooth muscle contractile response to oxytocin decreased, and the inhibitory effect of oxytocin on muscle contractility was enhanced by cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P < 0.05). Atosiban and tetrodotoxin inhibited the effect of oxytocin on colonic motility. Oxytocin receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P < 0.05). Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P < 0.05). However, in ovariectomized rats, estradiol treatment increased blood oxytocin, and the response of colonic muscle strips to oxytocin was attenuated.
CONCLUSION: Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.
Collapse
MESH Headings
- Animals
- Cold Temperature
- Colon/innervation
- Dose-Response Relationship, Drug
- Drinking
- Estradiol/pharmacology
- Estrogen Replacement Therapy
- Female
- Gastrointestinal Motility/drug effects
- Hormone Antagonists/pharmacology
- Muscle, Smooth/innervation
- Myenteric Plexus/drug effects
- Myenteric Plexus/metabolism
- Myenteric Plexus/physiopathology
- Ovariectomy
- Oxytocin/blood
- Oxytocin/pharmacology
- Rats, Sprague-Dawley
- Receptors, Oxytocin/agonists
- Receptors, Oxytocin/antagonists & inhibitors
- Receptors, Oxytocin/metabolism
- Signal Transduction/drug effects
- Stress, Psychological/blood
- Stress, Psychological/drug therapy
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Time Factors
- Water
Collapse
|
15
|
Combes S, Gidenne T, Cauquil L, Bouchez O, Fortun-Lamothe L. Coprophagous behavior of rabbit pups affects implantation of cecal microbiota and health status. J Anim Sci 2014; 92:652-65. [PMID: 24398828 DOI: 10.2527/jas.2013-6394] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During the first few weeks after delivery, female rabbits excrete fecal pellets, which are ingested by their pups. We hypothesized that maternal excretion of hard fecal pellets and the coprophagous behavior of their pups were involved in cecal microbiota implantation. Four groups were compared: in 1 group (FM), pups had free access to maternal fecal pellets; in a second group, ingestion of feces was prevented (NF); and in 2 additional groups, pups had access only to fecal pellets excreted by foreign females receiving either no antibiotic (FF) or tiamulin and tetracycline (FFab). A total of 109 litters in 3 batches were used to quantify excretion and ingestion of feces and mortality. Bacterial composition was assessed by 454 pyrosequencing of the V3 to V4 region of 16S RNA genes and fermentative measurements in 128 rabbits of 1 batch at age 14, 35, 49, and 80 d with 8 rabbits per group for each age with 2 rabbits per litter. The number of fecal pellets excreted by does from 2 to 20 d after delivery ranged widely, but was similar among groups (16.1 ± 12.6 fecal pellets/doe). The excretion peaked during the first 6 d after delivery. Foreign fecal ingestion (FF and FFab groups) was 3 times greater (P < 0.001) than ingestion of maternal feces (9.9 ± 7.8). Ingestion of feces in the FF group was greater than in the FFab groups (35.6 ± 9.3 vs. 29.5 ± 9.7; P < 0.05). Compared with the FM group, ingestion of feces in the FF and FFab groups began later (6 to 7 d vs. 2 to 3 d after birth) and peaked at 14 to 17 d (4.0 ± 1.8 hard fecal pellets·litter(-1) · d(-1)) and 13 to 15 d (3.5 ± 1.7 hard fecal pellets litter(-1) d(-1)), respectively. During the 36 to 49 d period, the FF and NF groups exhibited the least (2.8%) and greatest (9.5%) mortality, respectively (P = 0.03). At age 14 d, the cecal bacterial community was dominated by Bacteroidetes phyla (63.3 ± 15.1%), Bacteroidaceae family (36.0 ± 18.8%), and Bacteriodes genus (36.0 ± 2.3%). With increasing age, Firmicutes phyla, Lachnospiraceae, and Ruminococcaceae families became the dominant taxa (92.0 ± 4.7, 44.0 ± 13.7, 37.9 ± 11.6% at age 80 d, respectively). Impairment of fecal ingestion delayed this ecological succession, with greater and lower relative abundance of Bacteroidaceae and Ruminococcaceae, respectively, than in the other 3 groups at age 35 d (P < 0.10). In conclusion, although excretion of hard fecal pellets by does ranged widely, the coprophagous behavior of their pups affected the implantation of cecal bacterial microbiota.
Collapse
Affiliation(s)
- S Combes
- INRA, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
Obesity and its associated metabolic disorders are growing health concerns in the US and worldwide. In the US alone, more than two-thirds of the adult population is classified as either overweight or obese [1], highlighting the need to develop new, effective treatments for these conditions. Whereas the hormone oxytocin is well known for its peripheral effects on uterine contraction during parturition and milk ejection during lactation, release of oxytocin from somatodendrites and axonal terminals within the central nervous system (CNS) is implicated in both the formation of prosocial behaviors and in the control of energy balance. Recent findings demonstrate that chronic administration of oxytocin reduces food intake and body weight in diet-induced obese (DIO) and genetically obese rodents with impaired or defective leptin signaling. Importantly, chronic systemic administration of oxytocin out to 6 weeks recapitulates the effects of central administration on body weight loss in DIO rodents at doses that do not result in the development of tolerance. Furthermore, these effects are coupled with induction of Fos (a marker of neuronal activation) in hindbrain areas (e.g. dorsal vagal complex (DVC)) linked to the control of meal size and forebrain areas (e.g. hypothalamus, amygdala) linked to the regulation of food intake and body weight. This review assesses the potential central and peripheral targets by which oxytocin may inhibit body weight gain, its regulation by anorexigenic and orexigenic signals, and its potential use as a therapy that can circumvent leptin resistance and reverse the behavioral and metabolic abnormalities associated with DIO and genetically obese models.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, 98108, USA,
| | | |
Collapse
|
17
|
Roh SG, Koiwa K, Sato K, Ohtani Y, Takahashi T, Katoh K. Actions of intravenous injections of AVP and oxytocin on plasma ACTH, GH, insulin and glucagon concentrations in goats. Anim Sci J 2013; 85:286-92. [DOI: 10.1111/asj.12142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/23/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Sang-gun Roh
- Laboratory of Animal Physiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Kohta Koiwa
- Laboratory of Animal Physiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Katsuyoshi Sato
- Laboratory of Animal Physiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | | | | | - Kazuo Katoh
- Laboratory of Animal Physiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| |
Collapse
|
18
|
Xie DP, Yang X, Cao CY, Wang HH, Li YX, Qin Y, Zhang JP, Chang XW. Exogenous oxytocin reverses the decrease of colonic smooth muscle contraction in antenatal maternal hypoxia mice via ganglia. ACTA ACUST UNITED AC 2011; 172:30-4. [PMID: 21889546 DOI: 10.1016/j.regpep.2011.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/11/2011] [Accepted: 08/12/2011] [Indexed: 01/16/2023]
Abstract
Oxytocin (OT) has been reported to have a potential protective effect on stress-induced functional gastrointestinal disorders. This study determined whether colonic contraction in adults was affected by antenatal maternal hypoxia, and whether OT is involved in antenatal maternal hypoxia induced colonic contraction disorder. Isometric spontaneous contractions were recorded in colonic longitudinal muscle strips in order to investigate colonic contractions and the effects of exogenous OT on the contraction in antenatal maternal hypoxia and control mice. Both high potassium and carbachol-induced contractions of proximal colon but not distal colon were reduced in antenatal maternal hypoxia mice. Exogenous OT decreased the contractions of proximal colonic smooth muscle strips in control mice, while it increased contractions in antenatal maternal hypoxia mice. OT increased the contractions of distal colonic smooth muscle strips in both antenatal maternal hypoxia and control mice. Hexamethonium blocked the OT-induced potentiation of proximal colon but not distal colon in antenatal maternal hypoxia mice. These results suggest that exogenous oxytocin reverses the decrease of proximal colonic smooth muscle contraction in antenatal maternal hypoxia mice via ganglia.
Collapse
Affiliation(s)
- Dong-Ping Xie
- Department of Physiology, Tongji University School of Medicine, Shanghai, 200092, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jing H, Qin J, Feng M, Wang T, Zhu J, Wang C, Wang F, Liu K, Li J, Liu C. Nitric oxide in enteric nervous system mediated the inhibitory effect of vasopressin on the contraction of circular muscle strips from colon in male rats. Neurogastroenterol Motil 2011; 23:e125-35. [PMID: 21166960 DOI: 10.1111/j.1365-2982.2010.01646.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Arginine vasopressin (AVP) is widely used in the treatment of critical diseases with hypotension, but the reports about its effect on gastrointestinal motility are controversial. The purpose of this study was to characterize the role of AVP in the regulation of colonic motility and the underlying mechanism. METHODS The contraction of the circular muscle strips (CM) of colon in male rats was monitored by a polygraph. The expressions of cytoplasmic inducible nitric oxide synthase (iNOS), I-κB, and the nuclear P65 in proximal colon were measured by Western blot. The V(1) receptors (V(1) Rs) and iNOS were localized by immunohistochemistry. The content of nitric oxide (NO) in the colon was measured by Griess reagent at the absorbance of 560 nm. KEY RESULTS Arginine vasopressin (10(-10) -10(-6) mol L(-1)) caused a concentration-dependent inhibition on CM contraction. Pretreatment with one of the following chemicals, including V-1880 (10(-7) mol L(-1)), TTX (10(-5) mol L(-1)), L-NAME (10(-4) mol L(-1)), NPLA (10(-7) mol L(-1)), SMT (10(-3) mol L(-1)), and PDTC (10(-3) mol L(-1)), attenuated the inhibitory effect of AVP on CM contraction. Arginine vasopressin increased the expression of iNOS and the content of NO in proximal colon. These effects were attenuated by pretreatment with PDTC (10(-3) mol L(-1)). Following AVP administration, the amount of cytoplasmic I-κB decreased, but that of nuclear P65 increased. Double immunofluorescence labeling revealed that V(1) Rs and iNOS were co-localized on the cells of myenteric plexus in proximal colon. CONCLUSIONS & INFERENCES Arginine vasopressin inhibited the contraction of CM in proximal colon. This effect was mediated by NO produced from NF-κB-iNOS pathway and neuronal NOS activation in myenteric plexus.
Collapse
Affiliation(s)
- H Jing
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lv Y, Feng M, Che T, Sun H, Luo Y, Liu K, Liu C. CCK mediated the inhibitory effect of oxytocin on the contraction of longitudinal muscle strips of duodenum in male rats. Pflugers Arch 2010; 460:1063-71. [PMID: 20922442 DOI: 10.1007/s00424-010-0880-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 01/04/2023]
Abstract
The aim of the present study was to investigate the effect of oxytocin (OT) on duodenum motility in rats and the possibility that cholecystokinin (CCK) was involved in this process. The isometric contraction of longitudinal muscle strips of duodenum was monitored by polygraph. ELISA was used to measure the concentration of CCK and OT in duodenum. CCK mRNA was assayed by RT-PCR. Oxytocin receptor (OTR) and CCK in duodenum were located by immunohistochemistry and immunofluorescence staining. OT (10⁻⁵ and 10⁻⁶ M) inhibited the spontaneous contraction of the muscle strips. On the contrary, atosiban (OT receptor antagonist), lorglumide (CCK₁ receptor antagonist), and tetrodotoxin (TTX, blocker of voltage-dependent Na(+) channel on nerve fiber) excited the contraction. The inhibitory effect of OT on duodenal motility was reversed by pretreatment of atosiban, lorglumide, or TTX. Exogenous OT did not influence the expression of OT mRNA in duodenum but increased the concentration of CCK in the culture medium of the cells isolated from longitudinal muscle myenteric plexus. The OTR and CCK were co-expressed in the neurons of the myenteric plexus in duodenum. We concluded that OT inhibited the contraction of the LD spontaneous contraction of rats in vitro. This effect was mediated by the CCK released from the neurons of the myenteric plexus in duodenum.
Collapse
Affiliation(s)
- Yinglian Lv
- Department of Physiology, Shandong University School of Medicine, Jinan 250012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Bülbül M, Babygirija R, Ludwig K, Takahashi T. Central oxytocin attenuates augmented gastric postprandial motility induced by restraint stress in rats. Neurosci Lett 2010; 479:302-6. [PMID: 20639005 DOI: 10.1016/j.neulet.2010.05.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 01/23/2023]
Abstract
Restraint stress delays gastric emptying via uncoordinated motility pattern in rats. Central oxytocin has anxiolytic effects and attenuates the hypothalamic-pituitary-adrenal (HPA) axis in response to stress and facilitates stress-induced delayed gastric emptying. However, the role of central oxytocin in regulating gastric motility remains unknown. Postprandial gastric motility was recorded via a strain-gauge transducer, implanted on the antrum in Sprague-Dawley (SD) rats. To investigate whether central and peripheral oxytocin are involved in gastric motility, oxytocin (10 microg) was administered intracerebroventricularly (icv) and intraperitoneally (ip). Central and peripheral oxytocin administration did not affect the postprandial gastric motility under non-stressed conditions. Restraint stress augmented gastric contractions. Central administration of oxytocin, but not peripheral administration, abolished the augmented postprandial gastric contractions induced by restraint stress. Oxytocin facilitates stress-induced delayed gastric emptying via alleviating uncoordinated gastric motility. Oxytocin might be a candidate for the treatment of stress-induced GI motility disorders.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, WI 53295, United States
| | | | | | | |
Collapse
|
22
|
Lammers WJEP, Karam SM. Emerging excellence in neurogastroenterology and motility research in the Arabian Peninsula. Neurogastroenterol Motil 2010; 22:946-949. [PMID: 20701686 DOI: 10.1111/j.1365-2982.2010.01579.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W J E P Lammers
- Department of Physiology and Faculty of Medicine & Health Sciences, UAE University, Al Ain, United Arab Emirates.
| | | |
Collapse
|
23
|
Çetinel Ş, Hancıoğlu S, Şener E, Üner C, Kılıç M, Şener G, Yeğen BÇ. Oxytocin treatment alleviates stress-aggravated colitis by a receptor-dependent mechanism. ACTA ACUST UNITED AC 2010; 160:146-52. [DOI: 10.1016/j.regpep.2009.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/16/2009] [Accepted: 11/11/2009] [Indexed: 11/26/2022]
|
24
|
Babygirija R, Zheng J, Ludwig K, Takahashi T. Central oxytocin is involved in restoring impaired gastric motility following chronic repeated stress in mice. Am J Physiol Regul Integr Comp Physiol 2009; 298:R157-65. [PMID: 19889866 DOI: 10.1152/ajpregu.00328.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accumulation of continuous life stress (chronic stress) often causes gastric symptoms. The development of gastric symptoms may depend on how humans adapt to the stressful events in their daily lives. Although acute stress delays gastric emptying and alters upper gastrointestinal motility in rodents, the effects of chronic stress on gastric motility and its adaptation mechanism remains unclear. Central oxytocin has been shown to have antistress effects. We studied whether central oxytocin is involved in mediating the adaptation mechanism following chronic repeated stress. Mice were loaded with acute and chronic stress (repeated stress for five consecutive days), and solid gastric emptying and postprandial gastric motility were compared between acute and chronic repeated stress. Expression of oxytocin and CRF mRNA in the hypothalamus was studied following acute and chronic repeated stress. Delayed gastric emptying during acute stress (43.1 +/- 7.8%; n = 6, P < 0.05) was completely restored to normal levels (72.1 +/- 2.4%; n = 6) following chronic repeated stress. Impaired gastric motility induced by acute stress was also restored following chronic repeated stress. Intracerebroventricular injection of oxytocin (0.1 and 0.5 microg) restored the impaired gastric emptying and motility induced by acute stress. The restored gastric emptying and motility following chronic repeated stress were antagonized by intracerebroventricular injection of oxytocin antagonists. Oxytocin mRNA expression in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus was significantly increased following chronic repeated stress. In contrast, increased CRF mRNA expression in the SON and PVN in response to acute stress was significantly reduced following chronic repeated stress. Our study suggests the novel finding that the upregulation of central oxytocin expression is involved in mediating the adaptation mechanism following chronic repeated stress in mice.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|
25
|
Qin J, Liu K, Wang PS, Liu C. V1 receptor in ENS mediates the excitatory effect of vasopressin on circular muscle strips of gastric body in vitro in rats. ACTA ACUST UNITED AC 2009; 157:32-6. [DOI: 10.1016/j.regpep.2009.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 05/01/2009] [Accepted: 06/03/2009] [Indexed: 12/14/2022]
|
26
|
Qin J, Feng M, Wang C, Ye Y, Wang PS, Liu C. Oxytocin receptor expressed on the smooth muscle mediates the excitatory effect of oxytocin on gastric motility in rats. Neurogastroenterol Motil 2009; 21:430-8. [PMID: 19309416 DOI: 10.1111/j.1365-2982.2009.01282.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to localize oxytocin receptor (OTR) in the stomach and to investigate the effect of OT on gastric motility in rats. Western blot and immunohistochemistry methods were used to localize OTR in stomach. The motility of stomach was recorded in vivo (recording of the intragastric pressure), in vitro (recording of the contraction of muscle strips) and on isolated smooth muscle cells. OTR was expressed on cells of both circular and longitudinal muscle of stomach. Systemic administration of OT induced an early transient decrease and a subsequent increase on intragastric pressure. Devazepide (1 mg kg(-1), i.v.), a cholecystokinin-1 (CCK(1)) receptor antagonist, completely abolished the transient response but did not influence the subsequent one. OT (10(-9)-10(-6) mol L(-1)) dose-dependently increased the contraction of the muscle strips of gastric body, antrum, and pyloric sphincter, and decreased the average cell length of isolated smooth muscle cells. Tetrodotoxin and atropine did not influence the effect of OT on muscle strips. Pretreatment with atosiban, an OTR antagonist, inhibited the spontaneous contraction of muscle strips and abolished the excitatory effect of OT on the muscle strips and the isolated cells. These results suggest that the OTR is expressed on the smooth muscle of the stomach and mediates excitatory effect of OT on gastric motility.
Collapse
Affiliation(s)
- J Qin
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | |
Collapse
|
27
|
Charoenphandhu N, Wongdee K, Teerapornpuntakit J, Thongchote K, Krishnamra N. Transcriptome responses of duodenal epithelial cells to prolactin in pituitary-grafted rats. Mol Cell Endocrinol 2008; 296:41-52. [PMID: 18951951 DOI: 10.1016/j.mce.2008.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 11/27/2022]
Abstract
Chronic prolactin (PRL) exposure can affect several functions of duodenal epithelia, especially those associated with fluid and electrolyte transport. However, little is known regarding its molecular mechanism. To identify PRL-regulated genes, microarray analysis was performed on RNA samples from duodenal epithelial cells of anterior pituitary (AP)-grafted hyperprolactinemic rats. Herein, we identified 321 transcripts upregulated and 241 transcripts downregulated after 4 weeks of AP transplantation. Results from real-time PCR analyses of 15 selected genes were consistent with the microarray results. Gene ontology analysis demonstrated pleiotropic effects of PRL on several cellular processes, including cellular metabolic process, cell communication and cell adhesion. Interestingly, 17 upregulated transcripts and 12 downregulated transcripts are involved in the transport of ions and nutrients, e.g., Ca(2+), Na(+), K(+), Cl(-) and glucose, thus agreeing with the established action of PRL on electrolyte homeostasis. The present results provided fundamental information for further investigations on mechanism of PRL actions in the intestine.
Collapse
|