1
|
Lazebnik LB, Sarsenbaeva AS, Avalueva EB, Oreshko LS, Sitkin SI, Golovanova EV, Turkina SV, Khlynova OV, Sagalova OI, Mironchev OV. Clinical guidelines “Chronic diarrhea in adults”. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:7-67. [DOI: 10.31146/1682-8658-ecg-188-4-7-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Affiliation(s)
- L. B. Lazebnik
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | | | - E. B. Avalueva
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - L. S. Oreshko
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. I. Sitkin
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation;
Federal State Budgetary Institution “Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation
| | - E. V. Golovanova
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - S. V. Turkina
- State-funded Educational Establishment of Higher Professional Education “Volgograd State Medical University of the Ministry of Public Health of the Russian Federation”
| | - O. V. Khlynova
- Perm State Medical University named after academician E. A. Vagner Ministry of Health care of Russia
| | | | | |
Collapse
|
2
|
Colon Myoelectric Activity Measured After Open Abdominal Surgery with a Noninvasive Wireless Patch System Predicts Time to First Flatus. J Gastrointest Surg 2019; 23:982-989. [PMID: 30390183 DOI: 10.1007/s11605-018-4030-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Passage of flatus after abdominal surgery signals resolution of physiological postoperative ileus (POI) and often, particularly after complex open surgeries, serves as the trigger to initiate oral feeding. To date, there is no objective tool that can predict time to flatus allowing for timely feeding and optimizing recovery. In an open, prospective study, we examine the use of a noninvasive wireless patch system that measures electrical activity from gastrointestinal smooth muscles in predicting time to first flatus. METHODS Eighteen patients who underwent open abdominal surgery at El Camino Hospital, Mountain View, CA, were consented and studied. Immediately following surgery, wireless patches were placed on the patients' anterior abdomen. Colonic frequency peaks in the spectra were identified in select time intervals and the area under the curve of each peak times its duration was summed to calculate cumulative myoelectrical activity. RESULTS Patients with early flatus had stronger early colonic activity than patients with late flatus. At 36 h post-surgery, a linear fit of time to flatus vs cumulative colonic myoelectrical activity predicted first flatus as much as 5 days (± 22 h) before occurrence. CONCLUSIONS In this open, prospective pilot study, noninvasive measurement of colon activity after open abdominal surgery was feasible and predictive of time to first flatus. Interventions such as feeding can potentially be optimized based on this prediction, potentially improving outcomes, decreasing length of stay, and lowering costs.
Collapse
|
3
|
Arasaradnam RP, Brown S, Forbes A, Fox MR, Hungin P, Kelman L, Major G, O'Connor M, Sanders DS, Sinha R, Smith SC, Thomas P, Walters JRF. Guidelines for the investigation of chronic diarrhoea in adults: British Society of Gastroenterology, 3rd edition. Gut 2018; 67:1380-1399. [PMID: 29653941 PMCID: PMC6204957 DOI: 10.1136/gutjnl-2017-315909] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023]
Abstract
Chronic diarrhoea is a common problem, hence clear guidance on investigations is required. This is an updated guideline from 2003 for the investigations of chronic diarrhoea commissioned by the Clinical Services and Standards Committee of the British Society of Gastroenterology (BSG). This document has undergone significant revision in content through input by 13 members of the Guideline Development Group (GDG) representing various institutions. The GRADE system was used to appraise the quality of evidence and grading of recommendations.
Collapse
Affiliation(s)
- Ramesh P Arasaradnam
- University Hospital Coventry, Coventry, UK
- Department of Applied Biological Sciences, University of Coventry, Coventry, UK
- Clinical Sciences Research Institute, University of Warwick, Warwick, UK
| | | | - Alastair Forbes
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Mark R Fox
- University of Zürich, Zürich, Switzerland
- Abdominal Centre, St Claraspital, Basel, Switzerland
| | - Pali Hungin
- School of Medicine, Pharmacy & Health, University of Durham, Durham, UK
| | | | - Giles Major
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | | | | | - Rakesh Sinha
- Department of Radiology, South Warwickshire Hospitals, Warwick, UK
| | - Stephen Charles Smith
- Department of Clinical Biochemistry, Midlands and NW Bowel Cancer Screening Hub, Rugby, UK
| | - Paul Thomas
- Department of Gastroenterology, Musgrave Park Hospital, Taunton, UK
| | | |
Collapse
|
4
|
Lentle RG, Hulls CM. Quantifying Patterns of Smooth Muscle Motility in the Gut and Other Organs With New Techniques of Video Spatiotemporal Mapping. Front Physiol 2018; 9:338. [PMID: 29686624 PMCID: PMC5900429 DOI: 10.3389/fphys.2018.00338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/20/2018] [Indexed: 01/12/2023] Open
Abstract
The uses and limitations of the various techniques of video spatiotemporal mapping based on change in diameter (D-type ST maps), change in longitudinal strain rate (L-type ST maps), change in area strain rate (A-type ST maps), and change in luminous intensity of reflected light (I-maps) are described, along with their use in quantifying motility of the wall of hollow structures of smooth muscle such as the gut. Hence ST-methods for determining the size, speed of propagation and frequency of contraction in the wall of gut compartments of differing geometric configurations are discussed. We also discuss the shortcomings and problems that are inherent in the various methods and the use of techniques to avoid or minimize them. This discussion includes, the inability of D-type ST maps to indicate the site of a contraction that does not reduce the diameter of a gut segment, the manipulation of axis [the line of interest (LOI)] of L-maps to determine the true axis of propagation of a contraction, problems with anterior curvature of gut segments and the use of adjunct image analysis techniques that enhance particular features of the maps.
Collapse
Affiliation(s)
- Roger G Lentle
- Physiology Department, Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Corrin M Hulls
- Physiology Department, Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Editorial: Identifying Colonic Motor Dysfunction in Chronic Constipation with High-Resolution Manometry: Pan-Colonic Pressurizations. Am J Gastroenterol 2017; 112:490-492. [PMID: 28270671 PMCID: PMC5436910 DOI: 10.1038/ajg.2016.601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
In selected centers, colonic manometry with non-high-resolution catheters is used to document colonic motor dysfunction in chronic constipation. Recently, high-resolution manometry (HRM) catheters, with more closely spaced sensors have been used for this purpose. Corestti et al. assessed colonic pressures with HRM in 17 healthy people and 10 constipated patients. The main finding was pan-colonic pressurizations, which occurred frequently, increased after eating and cholinergic stimulation, were associated with the desire to pass flatus, and were less frequent in slow-transit constipation. These events resemble esophageal common cavity pressure waves. Further studies are necessary to understand the pathogenesis, functional consequences, and clinical utility of pan-colonic pressurizations.
Collapse
|
6
|
Lam C, Chaddock G, Marciani L, Costigan C, Paul J, Cox E, Hoad C, Menys A, Pritchard S, Garsed K, Taylor S, Atkinson D, Gowland P, Spiller R. Colonic response to laxative ingestion as assessed by MRI differs in constipated irritable bowel syndrome compared to functional constipation. Neurogastroenterol Motil 2016; 28:861-70. [PMID: 26871949 PMCID: PMC4949702 DOI: 10.1111/nmo.12784] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/31/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Functional constipation (FC) and irritable bowel syndrome with constipation (IBS-C) share many symptoms but underlying mechanisms may be different. We have developed a magnetic resonance imaging (MRI) technique to measure intestinal volumes, transit, and motility in response to a laxative, Moviprep(®) . We aim to use these biomarkers to study the pathophysiology in IBS-C and FC. METHODS Twenty-four FC and 24 IBS-C were studied. Transit was assessed using the weighted average position score (WAPS) of five MRI marker pills, taken 24 h before MRI scanning. Following baseline scan, participants ingested 1 L of Moviprep(®) followed by hourly scans. Magnetic resonance imaging parameters and bowel symptoms were scored from 0 to 4 h. KEY RESULTS Weighted average position score for FC was 3.6 (2.5-4.2), significantly greater than IBS-C at 2.0 (1.5-3.2), p = 0.01, indicating slower transit for FC. Functional constipation showed greater fasting small bowel water content, 83 (63-142) mL vs 39 (15-70) mL in IBS-C, p < 0.01 and greater ascending colon volume (AC), 314 (101) mL vs 226 (71) mL in IBS-C, p < 0.01. FC motility index was lower at 0.055 (0.044) compared to IBS-C, 0.107 (0.070), p < 0.01. Time to first bowel movement following ingestion of Moviprep(®) was greater for FC, being 295 (116-526) min, compared to IBS-C at 84 (49-111) min, p < 0.01, and correlated with AC volume 2 h after Moviprep(®) , r = 0.44, p < 0.01. Using a cut-off >230 min distinguishes FC from IBS-C with low sensitivity of 55% but high specificity of 95%. CONCLUSION & INFERENCES Our objective MRI biomarkers allow a distinction between FC and IBS-C.
Collapse
Affiliation(s)
- C. Lam
- NIHR Nottingham Digestive Diseases Biomedical Research Unit and Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - G. Chaddock
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - L. Marciani
- NIHR Nottingham Digestive Diseases Biomedical Research Unit and Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - C. Costigan
- NIHR Nottingham Digestive Diseases Biomedical Research Unit and Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - J. Paul
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - E. Cox
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - C. Hoad
- NIHR Nottingham Digestive Diseases Biomedical Research Unit and Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK,Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - A. Menys
- Centre for Medical ImagingDivision of MedicineUniversity College LondonLondonUK
| | - S. Pritchard
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - K. Garsed
- Royal Derby Hospitals Foundation TrustDerbyUK
| | - S. Taylor
- Centre for Medical ImagingDivision of MedicineUniversity College LondonLondonUK
| | - D. Atkinson
- Centre for Medical ImagingDivision of MedicineUniversity College LondonLondonUK
| | - P. Gowland
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - R. Spiller
- NIHR Nottingham Digestive Diseases Biomedical Research Unit and Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
7
|
Kendig DM, Hurst NR, Grider JR. Spatiotemporal Mapping of Motility in Ex Vivo Preparations of the Intestines. J Vis Exp 2016:e53263. [PMID: 26863156 PMCID: PMC4781693 DOI: 10.3791/53263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple approaches have been used to record and evaluate gastrointestinal motility including: recording changes in muscle tension, intraluminal pressure, and membrane potential. All of these approaches depend on measurement of activity at one or multiple locations along the gut simultaneously which are then interpreted to provide a sense of overall motility patterns. Recently, the development of video recording and spatiotemporal mapping (STmap) techniques have made it possible to observe and analyze complex patterns in ex vivo whole segments of colon and intestine. Once recorded and digitized, video records can be converted to STmaps in which the luminal diameter is converted to grayscale or color [called diameter maps (Dmaps)]. STmaps can provide data on motility direction (i.e., stationary, peristaltic, antiperistaltic), velocity, duration, frequency and strength of contractile motility patterns. Advantages of this approach include: analysis of interaction or simultaneous development of different motility patterns in different regions of the same segment, visualization of motility pattern changes over time, and analysis of how activity in one region influences activity in another region. Video recordings can be replayed with different timescales and analysis parameters so that separate STmaps and motility patterns can be analyzed in more detail. This protocol specifically details the effects of intraluminal fluid distension and intraluminal stimuli that affect motility generation. The use of luminal receptor agonists and antagonists provides mechanistic information on how specific patterns are initiated and how one pattern can be converted into another pattern. The technique is limited by the ability to only measure motility that causes changes in luminal diameter, without providing data on intraluminal pressure changes or muscle tension, and by the generation of artifacts based upon experimental setup; although, analysis methods can account for these issues. When compared to previous techniques the video recording and STmap approach provides a more comprehensive understanding of gastrointestinal motility.
Collapse
Affiliation(s)
- Derek M Kendig
- Department of Physiology and Biophysics, Virginia Commonwealth University; Department of Biology, Loyola University Maryland;
| | - Norm R Hurst
- Department of Physiology and Biophysics, Virginia Commonwealth University
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University
| |
Collapse
|
8
|
Smith TK, Park KJ, Hennig GW. Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil 2014; 20:423-46. [PMID: 25273115 PMCID: PMC4204412 DOI: 10.5056/jnm14092] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
The colonic migrating motor complex (CMMC) is a critical neurally mediated rhythmic propulsive contraction observed in the large intestine of many mammals. It seems to be equivalent to the high amplitude propagating contractions (HAPCs) in humans. This review focuses on the probable neural mechanisms involved in producing the CMMC or HAPC, their likely dependence on mucosal and neuronal serotonin and pacemaker insterstitial cells of Cajal networks and how intrinsic neural reflexes affect them. Discussed is the possibility that myenteric 5-hydroxytryptamine (5-HT) neurons are not only involved in tonic inhibition of the colon, but are also involved in generating the CMMC and modulation of the entire enteric nervous system, including coupling motility to secretion and blood flow. Mucosal 5-HT appears to be important for the initiation and effective propagation of CMMCs, although this mechanism is a longstanding controversy since the 1950s, which we will address. We argue that the slow apparent propagation of the CMMC/HAPC down the colon is unlikely to result from a slowly conducting wave front of neural activity, but more likely because of an interaction between ascending excitatory and descending (serotonergic) inhibitory neural pathways interacting both within the myenteric plexus and at the level of the muscle. That is, CMMC/HAPC propagation appears to be similar to esophageal peristalsis. The suppression of inhibitory (neuronal nitric oxide synthase) motor neurons and mucosal 5-HT release by an upregulation of prostaglandins has important implications in a number of gastrointestinal disorders, especially slow transit constipation.
Collapse
Affiliation(s)
- Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Kyu Joo Park
- Department of Surgery, School of Medicine, Seoul National University, Seoul Korea
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
9
|
Wiklendt L, Mohammed SD, Scott SM, Dinning PG. Classification of normal and abnormal colonic motility based on cross-correlations of pancolonic manometry data. Neurogastroenterol Motil 2013; 25:e215-23. [PMID: 23360122 DOI: 10.1111/nmo.12077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Manual analysis of data acquired from manometric studies of colonic motility is laborious, subject to laboratory bias and not specific enough to differentiate all patients from control subjects. Utilizing a cross-correlation technique, we have developed an automated analysis technique that can reliably differentiate the motor patterns of patients with slow transit constipation (STC) from those recorded in healthy controls. METHODS Pancolonic manometric data were recorded from 17 patients with STC and 14 healthy controls. The automated analysis involved calculation of an indicator value derived from cross-correlations calculated between adjacent recording sites in a manometric trace. The automated technique was conducted on blinded real data sets (observed) and then to determine the likelihood of positive indicator values occurring by chance, the channel number within each individual data set were randomized (expected) and reanalyzed. KEY RESULTS In controls, the observed indicator value (3.2 ± 1.4) was significantly greater than that predicted by chance (0.8 ± 1.5; P < 0.0001). In patients, the observed indicator value (-2.7 ± 1.8) did not differ from that predicted by chance (-3.5 ± 1.6; P = 0.1). The indicator value for controls differed significantly from that of patients (P < 0.0001), with all individual patients falling outside of the range of indicator values for controls. CONCLUSIONS & INFERENCES Automated analysis of colonic manometry data using cross-correlation separated all patients from controls. This automated technique indicates that the contractile motor patterns in STC patients differ from those recorded in healthy controls. The analytical technique may represent a means for defining subtypes of constipation.
Collapse
Affiliation(s)
- L Wiklendt
- St. George Clinical School, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
10
|
Abstract
Human defecation involves integrated and coordinated sensorimotor functions, orchestrated by central, spinal, peripheral (somatic and visceral), and enteric neural activities, acting on a morphologically intact gastrointestinal tract (including the final common path, the pelvic floor, and anal sphincters). The multiple factors that ultimately result in defecation are best appreciated by describing four temporally and physiologically fairly distinct phases. This article details our current understanding of normal defecation, including recent advances, but importantly identifies those areas where knowledge or consensus is still lacking. Appreciation of normal physiology is central to directed treatment of constipation and also of fecal incontinence, which are prevalent in the general population and cause significant morbidity.
Collapse
Affiliation(s)
- Somnath Palit
- Academic Surgical Unit (GI Physiology Unit), Barts and the London School of Medicine and Dentistry, Blizard Institute, Queen Mary University, London, UK.
| | | | | |
Collapse
|
11
|
Bove A, Pucciani F, Bellini M, Battaglia E, Bocchini R, Altomare DF, Dodi G, Sciaudone G, Falletto E, Piloni V, Gambaccini D, Bove V. Consensus statement AIGO/SICCR: Diagnosis and treatment of chronic constipation and obstructed defecation (part I: Diagnosis). World J Gastroenterol 2012; 18:1555-64. [PMID: 22529683 PMCID: PMC3325520 DOI: 10.3748/wjg.v18.i14.1555] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/21/2011] [Accepted: 03/10/2012] [Indexed: 02/06/2023] Open
Abstract
Chronic constipation is a common and extremely trou-blesome disorder that significantly reduces the quality of life, and this fact is consistent with the high rate at which health care is sought for this condition. The aim of this project was to develop a consensus for the diagnosis and treatment of chronic constipation and obstructed defecation. The commission presents its results in a “Question-Answer” format, including a set of graded recommendations based on a systematic review of the literature and evidence-based medicine. This section represents the consensus for the diagnosis. The history includes information relating to the onset and duration of symptoms and may reveal secondary causes of constipation. The presence of alarm symptoms and risk factors requires investigation. The physical examination should assess the presence of lesions in the anal and perianal region. The evidence does not support the routine use of blood testing and colonoscopy or barium enema for constipation. Various scoring systems are available to quantify the severity of constipation; the Constipation Severity Instrument for constipation and the obstructed defecation syndrome score for obstructed defecation are the most reliable. The Constipation-Related Quality of Life is an excellent tool for evaluating the patient‘s quality of life. No single test provides a pathophysiological basis for constipation. Colonic transit and anorectal manometry define the pathophysiologic subtypes. Balloon expulsion is a simple screening test for defecatory disorders, but it does not define the mechanisms. Defecography detects structural abnormalities and assesses functional parameters. Magnetic resonance imaging and/or pelvic floor sonography can further complement defecography by providing information on the movement of the pelvic floor and the organs that it supports. All these investigations are indicated to differentiate between slow transit constipation and obstructed defecation because the treatments differ between these conditions.
Collapse
|
12
|
The pathophysiology of chronic constipation. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2012. [PMID: 22114753 DOI: 10.1155/2011/715858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Constipation is broadly defined as an unsatisfactory defecation characterized by infrequent stools, difficult stool passage or both. The common approach to the pathophysiology of constipation groups the disorder into primary and secondary causes. Primary causes are intrinsic problems of colonic or anorectal function, whereas secondary causes are related to organic disease, systemic disease or medications. The normal process of colonic transit and defecation is discussed, and the etiology of constipation is reviewed.
Collapse
|
13
|
Dinning PG, Scott SM. Novel diagnostics and therapy of colonic motor disorders. Curr Opin Pharmacol 2011; 11:624-9. [DOI: 10.1016/j.coph.2011.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 12/18/2022]
|
14
|
Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S. Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 2011; 5:93. [PMID: 21833164 PMCID: PMC3153851 DOI: 10.3389/fnins.2011.00093] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
Normal motility of the colon is critical for quality of life and efforts to normalize abnormal colon function have had limited success. A better understanding of control systems of colonic motility is therefore essential. We report here a hypothesis with supporting experimental data to explain the origin of rhythmic propulsive colonic motor activity induced by general distention. The theory holds that both networks of interstitial cells of Cajal (ICC), those associated with the submuscular plexus (ICC-SMP) and those associated with the myenteric plexus (ICC-MP), orchestrate propagating contractions as pacemaker cells in concert with the enteric nervous system (ENS). ICC-SMP generate an omnipresent slow wave activity that causes propagating but non-propulsive contractions ("rhythmic propagating ripples") enhancing absorption. The ICC-MP generate stimulus-dependent cyclic depolarizations propagating anally and directing propulsive activity ("rhythmic propulsive motor complexes"). The ENS is not essential for both rhythmic motor patterns since distention and pharmacological means can produce the motor patterns after blocking neural activity, but it supplies the primary stimulus in vivo. Supporting data come from studies on segments of the rat colon, simultaneously measuring motility through spatiotemporal mapping of video recordings, intraluminal pressure, and outflow measurements.
Collapse
Affiliation(s)
- Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Davidson JB, O'Grady G, Arkwright JW, Zarate N, Scott SM, Pullan AJ, Dinning PJ. Anatomical registration and three-dimensional visualization of low and high-resolution pan-colonic manometry recordings. Neurogastroenterol Motil 2011; 23:387-90, e171. [PMID: 21199536 PMCID: PMC3080460 DOI: 10.1111/j.1365-2982.2010.01651.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Colonic propagating sequences (PS) are important for the movement of colonic content and defecation, and aberrant PS patterning has been associated with slow transit constipation. However, because these motor patterns are typically recorded over long periods (24 h +), the visualization of PS spatiotemporal patterning is difficult. Here, we develop a novel method for displaying pan-colonic motility patterns. METHODS A 3D mesh representing the geometry of the human colon was created as follows: (i) Human colon images from the Visible Human Dataset were digitized to create a 3D data cloud, and (ii) A surface mesh was fitted to the cloud using a least-squares minimization technique. Colonic manometry catheters were placed in the ascending colon of healthy controls and patients with slow transit constipation (STC), with the aid of a colonoscope. The colonic manometry data were interpolated and mapped to the model according to the following anatomical landmarks: cecum, hepatic flexure, splenic flexure, sigmoid-descending junction, and anus. KEY RESULTS These 3D images clearly and intuitively communicate characteristics of normal and abnormal colonic motility. Specifically we have shown the reduced amplitude of the antegrade propagating pressure waves (PPW) throughout the colon and reduced frequency of PPWs at the mid-colon in patients with STC. CONCLUSIONS AND INFERENCES A novel method for the 3D visualization of PS is presented, providing an intuitive method for representing a large volume of physiological data. These techniques can be used to display frequency, amplitude or velocity data, and will help to convey regions of abnormally in patient populations.
Collapse
Affiliation(s)
- J B Davidson
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
16
|
Dinning PG, Arkwright JW, Costa M, Wiklendt L, Hennig G, Brookes SJH, Spencer NJ. Temporal relationships between wall motion, intraluminal pressure, and flow in the isolated rabbit small intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300:G577-85. [PMID: 21193528 DOI: 10.1152/ajpgi.00532.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intraluminal manometry is a tool commonly used to record motility in the human digestive tract. The recorded signal results from a combination of factors, including the hydrodynamic pressure transmitted through the intestinal contents due to contraction of the gut wall and the force of the gut wall acting on the sensors in regions of a luminal occlusion. However, the actual relationships between small bowel wall contraction, the measured intraluminal pressure, and the resultant flow have not been directly addressed. Video recording and high-resolution fiber-optic manometry were used to create spatiotemporal video maps of diameter and intraluminal pressure from isolated segments of rabbit small intestine. In the unstimulated gut, longitudinal muscle contractions were the only detectable motor pattern; circular muscle contractions were elicited by distension or erythromycin (1 μM). Longitudinal muscle contractions were not lumen-occlusive, although they caused measurable low-amplitude changes in pressure. Localized nonpropagating circular muscle contractions caused small localized, nonpropagating peaks of intraluminal pressure. Propagating contractions of circular muscle evoked larger, propagating pressure changes that were associated with outflow. Propagating circular muscle contractions often caused dilation of aboral receiving segments, corresponding to "common cavities"; these were propulsive, despite their low intraluminal pressure. The highest-amplitude pressure events were caused by lumen-occlusive circular muscle contractions that squeezed directly against the catheter. These data allow us to define the complex relationships between wall motion, intraluminal pressure, and flow. A strong correlation between circular and longitudinal muscle contraction and intraluminal pressure was demonstrated. Common-cavity pressure events, caused by propulsion of content by circular muscle contractions into a receptive segment, were often of low amplitude but were highly propulsive. Studies of wall motion in isolated preparations, combined with manometry, can assist in interpretation of pressure recordings in vivo.
Collapse
Affiliation(s)
- P G Dinning
- St. George Clinical School, University of New South Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Dinning PG, Zarate N, Hunt LM, Fuentealba SE, Mohammed SD, Szczesniak MM, Lubowski DZ, Preston SL, Fairclough PD, Lunniss PJ, Scott SM, Cook IJ. Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurogastroenterol Motil 2010; 22:e340-9. [PMID: 20879994 DOI: 10.1111/j.1365-2982.2010.01597.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The morphology, motor responses and spatiotemporal organization among colonic propagating sequences (PS) have never been defined throughout the entire colon of patients with slow transit constipation (STC). Utilizing the technique of spatiotemporal mapping, we aimed to demonstrate 'manometric signatures' that may serve as biomarkers of the disorder. METHODS In 14 female patients with scintigraphically confirmed STC, and eight healthy female controls, a silicone catheter with 16 recording sites spanning the colon at 7.5 cm intervals was positioned colonoscopically with the tip clipped to the cecum. Intraluminal pressures were recorded for 24 h. KEY RESULTS Pan-colonic, 24 h, spatiotemporal mapping identified for the first time in STC patients: a marked paucity of propagating pressure waves in the midcolon (P = 0.01), as a consequence of a significant (P < 0.0001) decrease in extent of propagation of PS originating in the proximal colon; an increase in frequency of retrograde PS in the proximal colon; a significant reduction in the spatiotemporal organization among PS (P < 0.001); absence of the normal nocturnal suppression of PS. CONCLUSIONS & INFERENCES Pancolonic, 24 h, spatiotemporal pressure mapping readily identifies characteristic disorganization among consecutive PS, regions of diminished activity and absent or deficient fundamental motor patterns and responses to physiological stimuli. These features are all likely to be important in the pathophysiology of slow transit constipation.
Collapse
Affiliation(s)
- P G Dinning
- Department of Gastroenterology, St George Hospital, University of New South Wales, Kogarah, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dinning PG, Benninga MA, Southwell BR, Scott SM. Paediatric and adult colonic manometry: A tool to help unravel the pathophysiology of constipation. World J Gastroenterol 2010; 16:5162-72. [PMID: 21049550 PMCID: PMC2975087 DOI: 10.3748/wjg.v16.i41.5162] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colonic motility subserves large bowel functions, including absorption, storage, propulsion and defaecation. Colonic motor dysfunction remains the leading hypothesis to explain symptom generation in chronic constipation, a heterogeneous condition which is extremely prevalent in the general population, and has huge socioeconomic impact and individual suffering. Physiological testing plays a crucial role in patient management, as it is now accepted that symptom-based assessment, although important, is unsatisfactory as the sole means of directing therapy. Colonic manometry provides a direct method for studying motor activities of the large bowel, and this review provides a contemporary understanding of how this technique has enhanced our knowledge of normal colonic motor physiology, as well as helping to elucidate pathophysiological mechanisms underlying constipation. Methodological approaches, including available catheter types, placement technique and recording protocols, are covered, along with a detailed description of recorded colonic motor activities. This review also critically examines the role of colonic manometry in current clinical practice, and how manometric assessment may aid diagnosis, classification and guide therapeutic intervention in the constipated individual. Most importantly, this review considers both adult and paediatric patients. Limitations of the procedure and a look to the future are also addressed.
Collapse
|
19
|
Pan C, Tian SP, Yan GZ, Wang KD. Colonic pressure data processing based on independent component analysis. J Med Eng Technol 2010; 34:415-21. [DOI: 10.3109/03091902.2010.514973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Heredia DJ, Dickson EJ, Bayguinov PO, Hennig GW, Smith TK. Colonic elongation inhibits pellet propulsion and migrating motor complexes in the murine large bowel. J Physiol 2010; 588:2919-34. [PMID: 20547675 DOI: 10.1113/jphysiol.2010.191445] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The colonic migrating motor complex (CMMC) is a rhythmically occurring neurally mediated motor pattern. Although the CMMC spontaneously propagates along an empty colon it is responsible for faecal pellet propulsion in the murine large bowel. Unlike the peristaltic reflex, the CMMC is an 'all or none' event that appears to be dependent upon Dogiel Type II/AH neurons for its regenerative slow propagation down the colon. A reduction in the amplitude of CMMCs or an elongated colon have both been thought to underlie slow transit constipation, although whether these phenomena are related has not been considered. In this study we examined the mechanisms by which colonic elongation might affect the CMMC using video imaging of the colon, tension and electrophysiological recordings from the muscle and Ca(2+) imaging of myenteric neurons. As faecal pellets were expelled from the murine colon, it shortened by up to 29%. Elongation of the colon resulted in a linear reduction in the velocity of a faecal pellet and the amplitude of spontaneous CMMCs. Elongation of the oral end of a colonic segment reduced the amplitude of CMMCs, whereas elongation of the anal end of the colon evoked a premature CMMC, and caused the majority of CMMCs to propagate in an anal to oral direction. Dogiel Type II/AH sensory neurons and most other myenteric neurons responded to oral elongation with reduced amplitude and frequency of spontaneous Ca(2+) transients, whereas anal elongation increased their amplitude and frequency in most neurons. The inhibitory effects of colonic elongation were reduced by blocking nitric oxide (NO) production with l-NA (100 mum) and soluble guanylate cyclase with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 mum); whereas, l-arginine (1-2 mm) enhanced the inhibitory effects of colonic elongation. In conclusion, polarized neural reflexes can be triggered by longitudinal stretch. The dominant effect of elongation is to reduce CMMCs primarily by inhibiting Dogiel Type II/AH neurons, thus facilitating colonic accommodation and slow transit.
Collapse
Affiliation(s)
- Dante J Heredia
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
21
|
Dinning PG, Zarate N, Szczesniak MM, Mohammed SD, Preston SL, Fairclough PD, Lunniss PJ, Cook IJ, Scott SM. Bowel preparation affects the amplitude and spatiotemporal organization of colonic propagating sequences. Neurogastroenterol Motil 2010; 22:633-e176. [PMID: 20180824 DOI: 10.1111/j.1365-2982.2010.01480.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Colonic manometry is performed using either colonoscopically assisted catheter placement, after bowel preparation, or nasocolonic intubation of the unprepared bowel. There has been little systematic evaluation of the effects of bowel cleansing upon colonic propagating pressure wave sequences. METHODS Eight healthy volunteers underwent nasocolonic placement of a water-perfused silicone catheter which recorded pressures at 16 recording sites each spaced 7.5 cm apart in the unprepared colon for 24 h. These measures were compared with those obtained in another eight healthy volunteers in whom the catheter was placed to the caecum at colonoscopy in the prepared colon. KEY RESULTS The colonic motor responses to meals and morning waking, and the normal nocturnal suppression did not differ between the two groups, nor were the overall frequency, regional dependence nor extent of propagating sequences (PS) influenced by bowel preparation. Bowel preparation did result in a significant increase in the frequency of high amplitude PS (22 +/- 7 vs 8 +/- 4 HAPS/24 h; P = 0.003). Additionally, a number of the measures of spatiotemporal organization among consecutive PS (linkage among sequences and predefecatory stereotypical patterning) were significantly altered by bowel preparation. CONCLUSIONS & INFERENCES The overall frequency of PSs, the colonic responses to physiological stimuli such a meal and morning waking and nocturnal suppression, are not influenced by prior bowel preparation. However, investigators wishing to study HAPS frequency, or the more complex spatiotemporal relationships among consecutive PSs, should control for bowel preparation when making comparisons among study groups.
Collapse
Affiliation(s)
- P G Dinning
- Department of Gastroenterology, The St George Hospital, University of New South Wales, Kogarah, NSW 2217, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dinning PG, Arkwright JW, Gregersen H, o'grady G, Scott SM. Technical advances in monitoring human motility patterns. Neurogastroenterol Motil 2010; 22:366-80. [PMID: 20377792 DOI: 10.1111/j.1365-2982.2010.01488.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abnormal motor patterns are implicated in many motility disorders. However, for many regions of the gut, our knowledge of normal and abnormal motility behaviors and mechanisms remains incomplete. There have been many recent advances in the development of techniques to increase our knowledge of gastrointestinal motility, some readily available while others remain confined to research centers. This review highlights a range of these recent developments and examines their potential to help diagnose and guide treatment for motility disorders.
Collapse
Affiliation(s)
- P G Dinning
- University of New South Wales, Department of Gastroenterology, St George Hospital, Sydney, Australia.
| | | | | | | | | |
Collapse
|
23
|
Dudding TC, Vaizey CJ. Current Concepts in Evaluation and Testing of Posterior Pelvic Floor Disorders. SEMINARS IN COLON AND RECTAL SURGERY 2010. [DOI: 10.1053/j.scrs.2009.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Abstract
PURPOSE OF REVIEW Disorders of colonic motor and sensory function are common among children and adults and pose significant diagnostic and therapeutic challenges; the purpose of this review, therefore, was to critically assess the recent literature on this topic. RECENT FINDINGS Considerable progress has been made at the ultrastructural, molecular and electrophysiological level in understanding the normal functions of the muscles, nerves and interstitial cells that generate and control colonic motility. Furthermore, abnormalities in these cell types and in the interstitial cells of Cajal, in particular, have been identified in a number of disease states. Testing of colonic motor and sensory function in clinical practice continues to be a challenge due, in part, not only to the technical issues presented by accessing the organ but also to the intrinsic variability of its physiology. These have not been auspicious times for advances in the therapy of disturbed colonic motility; new agents or new applications for 'old' agents continue to be explored as are more innovative approaches such as those based on neural stimulation and cell therapy. SUMMARY Considerable progress has been made in understanding the basic pathophysiology of colonic dysmotility; clinical diagnostics and therapeutics continue to lag behind.
Collapse
|
25
|
Brookes SJ, Dinning PG, Gladman MA. Neuroanatomy and physiology of colorectal function and defaecation: from basic science to human clinical studies. Neurogastroenterol Motil 2009; 21 Suppl 2:9-19. [PMID: 19824934 DOI: 10.1111/j.1365-2982.2009.01400.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colorectal physiology is complex and involves programmed, coordinated interaction between muscular and neuronal elements. Whilst a detailed understanding remains elusive, novel information has emerged from recent basic science and human clinical studies concerning normal sensorimotor mechanisms and the organization and function of the key elements involved in the control of motility. This chapter summarizes these observations to provide a contemporary review of the neuroanatomy and physiology of colorectal function and defaecation.
Collapse
Affiliation(s)
- S J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | | | | |
Collapse
|
26
|
Bayguinov PO, Hennig GW, Smith TK. Calcium activity in different classes of myenteric neurons underlying the migrating motor complex in the murine colon. J Physiol 2009; 588:399-421. [PMID: 19948652 DOI: 10.1113/jphysiol.2009.181172] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The spontaneous colonic migrating motor complex (CMMC) is a cyclical contractile and electrical event that is the primary motor pattern underlying fecal pellet propulsion along the murine colon. We have combined Ca(2+) imaging with immunohistochemistry to determine the role of different classes of myenteric neurons during the CMMC. Between CMMCs, myenteric neurons usually displayed ongoing but uncoordinated activity. Stroking the mucosa at the oral or anal end of the colon resulted in a CMMC (latency: 6 to 10 s; duration: 28 s) that consisted of prolonged increases in activity in many myenteric neurons that was correlated to Ca(2+) transients in and displacement of the muscle. These neurons were likely excitatory motor neurons. Activity in individual neurons during the CMMC was similar regardless of whether the CMMC occurred spontaneously or was evoked by anal or oral mucosal stimulation. This suggests that convergent interneuronal pathways exist which generate CMMCs. Interestingly, Ca(2+) transients in a subset of NOS +ve neurons were substantially reduced during the CMMC. These neurons are likely to be inhibitory motor neurons that reduce their activity during a complex (disinhibition) to allow full excitation of the muscle. Local stimulation of the mucosa evoked synchronized Ca(2+) transients in Dogiel Type II (mitotracker/calbindin-positive) neurons after a short delay (1-2 s), indicating they were the sensory neurons underlying the CMMC. These local responses were observed in hexamethonium, but were blocked by ondansetron (5-HT(3) antagonist), suggesting Dogiel Type II neurons were activated by 5-HT release from enterochromaffin cells in the mucosa. In fact, removal of the mucosa yielded no spontaneous CMMCs, although many neurons (NOS +ve and NOS ve) exhibited ongoing activity, including Dogiel Type II neurons. These results suggest that spontaneous or evoked 5-HT release from the mucosa is necessary for the activation of Dogiel Type II neurons that generate CMMCs.
Collapse
Affiliation(s)
- Peter O Bayguinov
- Department of Physiology and Cell Biology, Anderson Medical Sciences Building/352, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | |
Collapse
|
27
|
Dinning PG, Szczesniak MM, Cook IJ. Spatio-temporal analysis reveals aberrant linkage among sequential propagating pressure wave sequences in patients with symptomatically defined obstructed defecation. Neurogastroenterol Motil 2009; 21:945-e75. [PMID: 19453517 DOI: 10.1111/j.1365-2982.2009.01323.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Available evidence implicates abnormal colonic contractility in patients suffering from constipation. Traditional analysis of colonic manometry focuses on the frequency, extent and amplitude of propagating sequences (PS). We tested the hypotheses that the spatio-temporal linkage among sequential PSs exists throughout the healthy human colon and is disrupted during constipation. In eight patients with severe constipation and eight healthy volunteers, we recorded colonic pressures from 16 regions (caecum-rectum) for 24 h. Sequential PSs were regionally linked if the two PSs originated from different colonic regions but the segments of colon traversed by each PS overlapped. In order to determine whether this linkage occurred by chance, a computer program was used to randomly rearrange all PSs in time. Data were re-analysed to compare regional linkage between randomly re-ordered PSs (expected) and the natural distribution of PSs (observed). In controls the observed regional linkage (82.5 +/- 9.0%) was significantly greater than the expected value (60.5 +/- 4.3%; P = 0.0001). In patients the observed and expected regional linkage did not differ. The (observed - expected) delta value of regional linkage in controls was significantly greater than in patients (21.7 +/- 8.5%vs-2.3 +/- 7.0%; P = 0.01). Regional linkage among sequential PSs in the healthy colon appears to be a real phenomenon and this linkage is lost in patients with constipation. Regional linkage may be important for normal colonic transit and loss of linkage might have pathophysiological relevance to and provide a useful biomarker of severe constipation.
Collapse
Affiliation(s)
- P G Dinning
- Department of Gastroenterology, The St George Hospital, University of New South Wales, Kogarah, NSW, Australia.
| | | | | |
Collapse
|
28
|
Hiroz P, Schlageter V, Givel JC, Kucera P. Colonic movements in healthy subjects as monitored by a Magnet Tracking System. Neurogastroenterol Motil 2009; 21:838-e57. [PMID: 19400925 DOI: 10.1111/j.1365-2982.2009.01298.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Magnet Tracking System (MTS) is a minimally-invasive technique of continuous evaluation of gastrointestinal motility. In this study, MTS was used to analyse colonic propulsive dynamics and compare the transit of a magnetic pill with that of standard radio-opaque markers. MTS monitors the progress in real time of a magnetic pill through the gut. Ten men and 10 women with regular daily bowel movements swallowed this pill and 10 radio-opaque markers at 8 pm. Five hours of recordings were conducted during 2 following mornings. Origin, direction, amplitude and velocity of movements were analysed relative to space-time plots of the pill trajectory. Abdominal radiographs were taken to compare the progress of both pill and markers. The magnetic pill lay idle for 90% of its sojourn in the colon; its total retrograde displacement accounted for only 20% of its overall movement. Analysis of these movements showed a bimodal distribution of velocities: around 1.5 and 50 cm min(-1), the latter being responsible for 2/3 of distance traversed. There were more movements overall and more mass movements in males. Net hourly forward progress was greater in the left than right colon, and greater in males. The position of the magnetic pill correlated well with the advancement of markers. MTS showed patterns and propulsion dynamics of colonic segments with as yet unmet precision. Detailed analysis of slow and fast patterns of colonic progress makes it possible to specify the motility of colonic segments, and any variability in gender. Such analysis opens up promising avenues in studies of motility disorders.
Collapse
Affiliation(s)
- P Hiroz
- Department of Visceral Surgery, University Hospital, Lausanne, Switzerland
| | | | | | | |
Collapse
|
29
|
HEREDIA DANTEJ, DICKSON EAMONNJ, BAYGUINOV PETERO, HENNIG GRANTW, SMITH TERENCEK. Localized release of serotonin (5-hydroxytryptamine) by a fecal pellet regulates migrating motor complexes in murine colon. Gastroenterology 2009; 136:1328-38. [PMID: 19138686 PMCID: PMC2982771 DOI: 10.1053/j.gastro.2008.12.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/25/2008] [Accepted: 12/04/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The colonic migrating motor complex (CMMC) is a motor pattern that regulates the movement of fecal matter through a rhythmic sequence of electrical activity and/or contractions along the large bowel. CMMCs have largely been studied in empty preparations; we investigated whether local reflexes generated by a fecal pellet modify the CMMC to initiate propulsive activity. METHODS Recordings of CMMCs were made from the isolated murine large bowel, with or without a fecal pellet. Transducers were placed along the colon to record muscle tension and propulsive force on the pellet and microelectrodes were used to record electrical activity from either side of a fecal pellet, circular muscle cells oral and anal of a pellet, and in colons without the mucosa. RESULTS Spontaneous CMMCs propagated in both an oral or anal direction. When a pellet was inserted, CMMCs increased in frequency and propagated anally, exerting propulsive force on the pellet. The amplitude of slow waves increased during the CMMC. Localized mucosal stimulation/circumferential stretch evoked a CMMC, regardless of stimulus strength. The serotonin (5-hydroxytryptamine-3) receptor antagonist ondansetron reduced the amplitude of the CMMC, the propulsive force on the pellet, and the response to mucosal stroking, but increased the apparent conduction velocity of the CMMC. Removing the mucosa abolished spontaneous CMMCs, which still could be evoked by electrical stimulation. CONCLUSIONS The fecal pellet activates local mucosal reflexes, which release serotonin (5-hydroxytryptamine) from enterochromaffin cells, and stretch reflexes that determine the site of origin and propagation of the CMMC, facilitating propulsion.
Collapse
|