1
|
Anantama NA, Du Cheyne C, Martens A, Roth SP, Burk J, De Spiegelaere W, Michler JK. The granulation (t)issue: A narrative and scoping review of basic and clinical research of the equine distal limb exuberant wound healing disorder. Vet J 2022; 280:105790. [PMID: 35093532 DOI: 10.1016/j.tvjl.2022.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Exuberant granulation tissue (EGT) is often observed during second intention wound healing in horses. Despite its impact on wound care, the basic mechanisms leading to EGT are still unclear and effective strategies to prevent and/or treat EGT are lacking. The development of EGT is a poorly understood, multifactorial process involving hyperproliferating fibroblasts and malfunctional differentiation of keratinocytes, suboptimal wound contraction, dysfunctional vascularisation, and chronic inflammation. To consolidate and describe basic and clinical research literature on EGT and to identify knowledge gaps and opportunities for future research, a search was systematically conducted using predefined search terms. Subsequently, a scoping review was conducted using specific criteria to select the peer-reviewed literature that described methods to treat and/or prevent EGT. Proposed mechanisms of effects as well as results and main conclusions were extracted and tabulated. The systematic search resulted in 1062 publications in PubMed and 767 in Web of Science. Twenty additional studies were later included. Of these, 327 studies were reviewed for the narrative review on basic research and 35 controlled clinical trials were eligible for the scoping review. All 35 studies were conducted in university hospitals, and all but one involved surgically induced non-infected wounds. The study population was predominantly horses (n = 230) with a small number of ponies (n = 18) and donkeys (n = 14). In conclusion, there remains a strong need for evidence-based recommendations on EGT treatment, preferably using multi-centre studies that represent the general population of horses, include higher numbers of animals, and are performed in naturally occurring wounds. This narrative and scoping review also emphasises the importance of incorporating basic research knowledge in the study design of clinical trials.
Collapse
Affiliation(s)
- Nadia Ayurini Anantama
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Charis Du Cheyne
- Laboratory of Morphology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Susanne Pauline Roth
- Veterinary Teaching Hospital, Department for Horses, Leipzig University, An den Tierkliniken 21, 04103 Leipzig, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Giessen University, Frankfurter Str. 108, 35392 Gießen, Germany
| | - Ward De Spiegelaere
- Laboratory of Morphology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Jule Kristin Michler
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Harman RM, Theoret CL, Van de Walle GR. The Horse as a Model for the Study of Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:381-399. [PMID: 34042536 DOI: 10.1089/wound.2018.0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significance: Cutaneous wounds are a major problem in both human and equine medicine. The economic cost of treating skin wounds and related complications in humans and horses is high, and in both species, particular types of chronic wounds do not respond well to current therapies, leading to suffering and morbidity. Recent Advances: Conventional methods for the treatment of cutaneous wounds are generic and have not changed significantly in decades. However, as more is learned about the mechanisms involved in normal skin wound healing, and how failure of these processes leads to chronic nonhealing wounds, novel therapies targeting the specific pathologies of hard-to-heal wounds are being developed and evaluated. Critical Issues: Physiologically relevant animal models are needed to (1) study the mechanisms involved in normal and impaired skin wound healing and (2) test newly developed therapies. Future Directions: Similarities in normal wound healing in humans and horses, and the natural development of distinct types of hard-to-heal chronic wounds in both species, make the horse a physiologically relevant model for the study of mechanisms involved in wound repair. Horses are also well-suited models to test novel therapies. In addition, studies in horses have the potential to benefit veterinary, as well as human medicine.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
3
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
4
|
Jørgensen E, Pirone A, Jacobsen S, Miragliotta V. Epithelial-to-mesenchymal transition and keratinocyte differentiation in equine experimental body and limb wounds healing by second intention. Vet Dermatol 2019; 30:417-e126. [PMID: 31328349 DOI: 10.1111/vde.12774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND The re-epithelialization process in equine wound healing is incompletely described. For epithelial cells to migrate during embryogenesis they undergo epithelial-to-mesenchymal transition (EMT); this phenotypic transition occurs during wound healing in humans and rodents, but it has not been investigated in horses. HYPOTHESIS/OBJECTIVES To investigate keratinocyte differentiation and EMT in equine experimental excisional limb and body wounds healing by second intention. ANIMALS Six adult research horses. METHODS AND MATERIALS Immunohistochemical analysis was used to detect expression of the differentiation markers cytokeratin (CK)10, CK14, loricrin and peroxisome proliferator-activated receptor alpha (PPAR-α), and of the EMT markers E-cadherin and N-cadherin in normal limb and body skin, and biopsies from limb and body wounds. RESULTS Loricrin and CK10 were expressed in normal skin and periwound skin but not in migrating epithelium of body and limb wounds. However, they reappeared at the migrating epithelial tip of body wounds only. CK14 and PPAR-α had uniform distribution throughout the migrating epithelium. N-cadherin was not expressed in normal unwounded skin but was detected in periwound skin adjacent to the wound margin. E-cadherin expression decreased at the wound margin. CONCLUSIONS AND CLINICAL IMPORTANCE Presence of N-cadherin suggests that cadherin switching occurred during wound healing, this may be an indication that EMT occurs in horses. To the best of the authors' knowledge, this has never been described in horses before and warrants further investigation to assess the clinical implications. The tip of the migrating epithelium in body wounds appeared more differentiated than limb wounds, which could be part of the explanation for the superior healing of body wounds.
Collapse
Affiliation(s)
- Elin Jørgensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK-2630, Taastrup, Denmark
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK-2630, Taastrup, Denmark
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| |
Collapse
|
5
|
Miragliotta V, Pirone A, Donadio E, Abramo F, Ricciardi MP, Theoret CL. Osteopontin expression in healing wounds of horses and in human keloids. Equine Vet J 2014; 48:72-7. [PMID: 25290989 DOI: 10.1111/evj.12372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/30/2014] [Indexed: 01/20/2023]
Abstract
REASONS FOR PERFORMING STUDY Convincing evidence shows that persistent or excessive expression of osteopontin (OPN) is linked to fibroproliferation of various organs in laboratory animals and in man, such that its downregulation is a logical therapeutic objective. OBJECTIVES To investigate OPN expression in an equine model of wound healing and in clinical specimens of equine exuberant granulation tissue and human keloids in an effort to better understand the contribution of this protein to inflammation-associated skin fibrosis. STUDY DESIGN Description of gene and protein expression in an experimental equine model of wound healing and clinical specimens in horse and man. METHODS Osteopontin gene expression was evaluated by quantitative PCR, while protein expression was investigated by means of immunohistochemical staining. RESULTS Quantitative PCR showed that the OPN gene is expressed in normal intact skin of horses and continues to be expressed during the wound-healing process. An increase in gene expression was observed throughout the phases of wound healing, with a final decrease at wound closure. The protein was not detected in normal skin. Keratinocytes in wound-edge samples did not express the protein, whereas dermal immunoreactivity was confined to inflammatory cells. Healed wounds were devoid of staining. Equine exuberant granulation tissue showed immunoreactivity of the surrounding epidermis, infiltrating neutrophils, mononuclear cells, endothelial cells and fibroblasts. Human keloids showed OPN immunoreactivity throughout the epidermis as well as in mononuclear cells and scattered fibroblasts. CONCLUSIONS Immunohistochemical data show a different pattern of expression between normally healing and fibrotic wounds (exuberant granulation tissue and keloids), thus suggesting a role in fibroproliferation in horses and man.
Collapse
Affiliation(s)
- V Miragliotta
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - A Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - E Donadio
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - F Abramo
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - M P Ricciardi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - C L Theoret
- Department of Veterinary Biomedicine, University of Montreal, Quebec, Canada
| |
Collapse
|
6
|
Morphometric Evaluation of Interrenal Gland and Kidney Macrophages Aggregates in Normal Healthy Rainbow Trout (Oncorhynchus mykiss) and after Bacterial Challenge with Yersinia ruckeri. Vet Med Int 2014; 2014:210625. [PMID: 24719776 PMCID: PMC3956496 DOI: 10.1155/2014/210625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/05/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022] Open
Abstract
Macrophage aggregates (MA) occur in various organs of fish as discrete aggregations of pigmented macrophages. The study presented herein investigates the quantitative modifications from normal anatomical condition, of interrenal gland (IG) and kidney MA in six treatment groups of adult rainbow trout submitted to either specific or aspecific immune stimulation and subsequently challenged with Yersinia ruckeri. Routinely stained tissue sections from both IG and kidney were analysed. The percentage of tissues occupied by MA and the MA density (number/mm2) were calculated on at least 10 randomly selected nonoverlapping fields taken from each tissue section. MA morphometric findings from challenged fish were compared to those from a control group. Results showed that fish from control group displayed a statistically significant (P < 0.05) higher percentage of tissue occupied by MA and MA density. Among different treatment groups, anti-Yersinia ruckeri immunized fish, which did not show clinical signs of disease after bacterial challenge, displayed higher values of morphometric parameters compared with symptomatic fish from other groups. Our study demonstrates that the quantification of the area occupied by MA might be an efficient parameter to evaluate the general condition of a salmonid population since it positively correlates with the health status and negatively with stress factor such as the acute bacterial infection.
Collapse
|
7
|
Theoret CL, Wilmink JM. Aberrant wound healing in the horse: naturally occurring conditions reminiscent of those observed in man. Wound Repair Regen 2013; 21:365-71. [PMID: 23441750 DOI: 10.1111/wrr.12018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/14/2012] [Indexed: 01/30/2023]
Abstract
Impaired wound healing represents an enormous clinical and financial problem for companion animals and humans alike. Unfortunately, most models used to study healing rely on rodents, which have significant differences in the healing and scarring process and rarely develop complications. In order to better simulate impaired healing, the model should strive to reproduce the natural processes of healing and delayed healing. Wounds on the limbs of horses display similarities to wounds in humans in their epithelialization/contraction ratio, genetic influence as well as dysregulated cytokine profile and the spontaneous development of fibroproliferative disorders. Veterinarians have access to advanced wound therapies that are often identical to those provided to human patients. Wound research in large animals has resulted in new wound models as well as a better understanding of the physiology, immunology, and local environmental impact on both normal and aberrant wound healing. One such model reproduces the naturally occurring fibroproliferative disorder of horses known as exuberant granulation tissue. Comparisons between the normally healing and impaired wounds provide insight into the repair process and can facilitate product development. A better understanding of the wound healing physiopathology based on clinically accurate animal models should lead to the development of novel therapies thereby improving outcomes in both human and veterinary patients.
Collapse
|
8
|
Liu S, Guo C, Wu D, Ren Y, Sun MZ, Xu P. Protein indicators for HaCaT cell damage induced by UVB irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 114:94-101. [DOI: 10.1016/j.jphotobiol.2012.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/16/2022]
|
9
|
THEORET CHRISTINE. Tissue Engineering in Wound Repair: The three âRâsâRepair, Replace, Regenerate. Vet Surg 2009; 38:905-13. [DOI: 10.1111/j.1532-950x.2009.00585.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|