1
|
Ben Abdeladhim R, Reis JA, Vieira AM, de Almeida CD. Polyhydroxyalkanoates: Medical Applications and Potential for Use in Dentistry. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5415. [PMID: 39597239 PMCID: PMC11595952 DOI: 10.3390/ma17225415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are promising biopolymers as an alternative to traditional synthetic polymers due to their biodegradability and biocompatibility. The PHA market is blooming in response to the growing demand for biodegradable and environmentally friendly plastics. These biopolyesters are produced and degraded by a variety of microorganisms, making them environmentally friendly, while offering benefits such as biocompatibility (when adequately processed) and biodegradability. Their versatility extends to various areas, from biomedicine to agriculture and composite materials, where they pave the way for significative innovations. In the field of regenerative medicine, some PHAs have key applications, namely in vascular grafts, oral tissue regeneration, and development of self-healing polymers. In addition, PHAs have the potential to be used in the creation of dental implant materials and dental medical devices. PHAs can also be used to encapsulate hydrophobic drugs, providing an approach for more targeted and effective treatments. To summarize, PHAs open new perspectives in the field of medicine by improving drug delivery and offering ecologically biocompatible solutions for medical devices. The aim of this review is to present the medical and dental applications of PHA, their advantages, disadvantages, and indications.
Collapse
Affiliation(s)
- Rim Ben Abdeladhim
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
| | - José Alexandre Reis
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Ana Maria Vieira
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Catarina Dias de Almeida
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| |
Collapse
|
2
|
Gallego-Rentero M, Gutiérrez-Pérez M, Fernández-Guarino M, Mascaraque M, Portillo-Esnaola M, Gilaberte Y, Carrasco E, Juarranz Á. TGFβ1 Secreted by Cancer-Associated Fibroblasts as an Inductor of Resistance to Photodynamic Therapy in Squamous Cell Carcinoma Cells. Cancers (Basel) 2021; 13:cancers13225613. [PMID: 34830768 PMCID: PMC8616019 DOI: 10.3390/cancers13225613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is used for the treatment of in situ cutaneous squamous cell carcinoma (cSCC), the second most common form of skin cancer, as well as for its precancerous form, actinic keratosis. However, relapses after the treatment can occur. Transforming growth factor β1 (TGFβ1) produced by cancer-associated fibroblasts (CAFs) in the tumor microenvironment has been pointed as a key player in the development of cSCC resistance to other therapies, such as chemotherapy. Here, we demonstrate that TGFβ1 produced by CAFs isolated from patients with cSCC can drive resistance to PDT in SCC cells. This finding opens up novel possibilities for strategy optimization in the field of cSCC resistance to PDT and highlights CAF-derived TGFβ1 as a potential target to improve the efficacy of PDT. Abstract As an important component of tumor microenvironment, cancer-associated fibroblasts (CAFs) have lately gained prominence owing to their crucial role in the resistance to therapies. Photodynamic therapy (PDT) stands out as a successful therapeutic strategy to treat cutaneous squamous cell carcinoma. In this study, we demonstrate that the transforming growth factor β1 (TGFβ1) cytokine secreted by CAFs isolated from patients with SCC can drive resistance to PDT in epithelial SCC cells. To this end, CAFs obtained from patients with in situ cSCC were firstly characterized based on the expression levels of paramount markers as well as the levels of TGFβ1 secreted to the extracellular environment. On a step forward, two established human cSCC cell lines (A431 and SCC13) were pre-treated with conditioned medium obtained from the selected CAF cultures. The CAF-derived conditioned medium effectively induced resistance to PDT in A431 cells through a reduction in the cell proliferation rate. This resistance effect was recapitulated by treating with recombinant TGFβ1 and abolished by using the SB525334 TGFβ1 receptor inhibitor, providing robust evidence of the role of TGFβ1 secreted by CAFs in the development of resistance to PDT in this cell line. Conversely, higher levels of recombinant TGFβ1 were needed to reduce cell proliferation in SCC13 cells, and no induction of resistance to PDT was observed in this cell line in response to CAF-derived conditioned medium. Interestingly, we probed that the comparatively higher intrinsic resistance to PDT of SCC13 cells was mediated by the elevated levels of TGFβ1 secreted by this cell line. Our results point at this feature as a promising biomarker to predict both the suitability of PDT and the chances to optimize the treatment by targeting CAF-derived TGFβ1 in the road to a more personalized treatment of particular cSCC tumors.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - María Gutiérrez-Pérez
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Montserrat Fernández-Guarino
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Dermatology Service, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Marta Mascaraque
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Mikel Portillo-Esnaola
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Yolanda Gilaberte
- Servicio de Dermatología, Hospital Miguel Servet, 50009 Zaragoza, Spain;
| | - Elisa Carrasco
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Correspondence: (E.C.); (Á.J.)
| | - Ángeles Juarranz
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Correspondence: (E.C.); (Á.J.)
| |
Collapse
|
3
|
Sadykova OV, Krivandin AV, Aksenova NA, Timofeeva VA, Shatalova OV, Kotova SL, Solovieva AB. Specific Features of the Structural Organization of Porphyrin-Containing Binary and Ternary Polymer Systems: X-Ray Diffraction and Atomic Force Microscopy Study. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem Rev 2020; 120:9304-9362. [PMID: 32786427 DOI: 10.1021/acs.chemrev.9b00553] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Researchers have recently focused on the advancement of new materials from biorenewable and sustainable sources because of great concerns about the environment, waste accumulation and destruction, and the inevitable depletion of fossil resources. Biorenewable materials have been extensively used as a matrix or reinforcement in many applications. In the development of innovative methods and materials, composites offer important advantages because of their excellent properties such as ease of fabrication, higher mechanical properties, high thermal stability, and many more. Especially, nanocomposites (obtained by using biorenewable sources) have significant advantages when compared to conventional composites. Nanocomposites have been utilized in many applications including food, biomedical, electroanalysis, energy storage, wastewater treatment, automotive, etc. This comprehensive review provides chemistry, structures, advanced applications, and recent developments about nanocomposites obtained from biorenewable sources.
Collapse
Affiliation(s)
- Burhan Ates
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Suleyman Koytepe
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Ahmet Ulu
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Canbolat Gurses
- Inonu University, Department of Molecular Biology and Genetics, 44280 Malatya, Turkey
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, U.K.,Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
5
|
Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments. Antioxidants (Basel) 2020; 9:antiox9050448. [PMID: 32455998 PMCID: PMC7278813 DOI: 10.3390/antiox9050448] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet radiation is one of the most pervasive environmental interactions with humans. Chronic ultraviolet irradiation increases the danger of skin carcinogenesis. Probably, oxidative stress is the most important mechanism by which ultraviolet radiation implements its damaging effects on normal cells. However, notwithstanding the data referring to the negative effects exerted by light radiation and oxidative stress on carcinogenesis, both factors are used in the treatment of skin cancer. Photodynamic therapy (PDT) consists of the administration of a photosensitiser, which undergoes excitation after suitable irradiation emitted from a light source and generates reactive oxygen species. Oxidative stress causes a condition in which cellular components, including DNA, proteins, and lipids, are oxidised and injured. Antitumor effects result from the combination of direct tumour cell photodamage, the destruction of tumour vasculature and the activation of an immune response. In this review, we report the data present in literature dealing with the main signalling molecular pathways modified by oxidative stress after photodynamic therapy to target skin cancer cells. Moreover, we describe the progress made in the design of anti-skin cancer photosensitisers, and the new possibilities of increasing the efficacy of PDT via the use of molecules capable of developing a synergistic antineoplastic action.
Collapse
|
6
|
Grigore ME, Ion RM, Iancu L, Grigorescu RM. Tailored porphyrin–gold nanoparticles for biomedical applications. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s108842461930012x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this review we present an updated survey of the main synthesis methods of gold nanoparticles (AuNPs) in order to obtain various tailored nanosystems for biomedical imaging. The synthesis approach significantly impacts on the AuNPs properties such as surface chemistry, biocompatibility and cytotoxicity. In recent years, nanomedicine emphasized the development of functionalized AuNPs for biomedical imaging. AuNPs are a good option for used as delivery photosensitizer agents for PDT of cancer. For example, the complex formed from AuNPs functionalized with PEGylate porphyrins presents several advantages in the medical field such as a better use in photodynamic therapy because of high triplet states and singlet oxygen quantum yield efficiency of porphyrin molecules.
Collapse
Affiliation(s)
- Madalina E. Grigore
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
| | - Rodica-M. Ion
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
- Doctoral School of Materials Engineering, Valahia University of Targoviste, Aleea Sinaia, No. 13, 130005, Romania
| | - Lorena Iancu
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
- Doctoral School of Materials Engineering, Valahia University of Targoviste, Aleea Sinaia, No. 13, 130005, Romania
| | - Ramona M. Grigorescu
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
| |
Collapse
|
7
|
Grigore ME, Grigorescu RM, Iancu L, Ion RM, Zaharia C, Andrei ER. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:695-712. [DOI: 10.1080/09205063.2019.1605866] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mădălina Elena Grigore
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
| | - Ramona Marina Grigorescu
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
| | - Lorena Iancu
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
| | - Rodica-Mariana Ion
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
- Valahia University, Materials Engineering Department, 13th Aleey Sinaia, Targoviste, Romania
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Elena Ramona Andrei
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
| |
Collapse
|
8
|
Ex Vivo and In Vivo Characterization of Interpolymeric Blend/Nanoenabled Gastroretentive Levodopa Delivery Systems. PARKINSONS DISEASE 2017; 2017:7818123. [PMID: 28529814 PMCID: PMC5424195 DOI: 10.1155/2017/7818123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/20/2017] [Indexed: 01/13/2023]
Abstract
One approach for delivery of narrow absorption window drugs is to formulate gastroretentive drug delivery systems. This study was undertaken to provide insight into in vivo performances of two gastroretentive systems (PXLNET and IPB matrices) in comparison to Madopar® HBS capsules. The pig model was used to assess gastric residence time and pharmacokinetic parameters using blood, cerebrospinal fluid (CSF), and urine samples. Histopathology and cytotoxicity testing were also undertaken. The pharmacokinetic parameters indicated that levodopa was liberated from the drug delivery systems, absorbed, widely distributed, metabolized, and excreted. Cmax were 372.37, 257.02, and 461.28 ng/mL and MRT were 15.36, 14.98, and 13.30 for Madopar HBS capsules, PXLNET, and IPB, respectively. In addition, X-ray imaging indicated that the gastroretentive systems have the potential to reside in the stomach for 7 hours. There was strong in vitro-in vivo correlation for all formulations with r2 values of 0.906, 0.935, and 0.945 for Madopar HBS capsules, PXLNET, and IPB, respectively. Consequently, PXLNET and IPB matrices have pertinent potential as gastroretentive systems for narrow absorption window drugs (e.g., L-dopa) and, in this application specifically, enhanced the central nervous system and/or systemic bioavailability of such drugs.
Collapse
|
9
|
Slomp AM, Barreira SM, Carrenho LZ, Vandresen CC, Zattoni IF, Ló SM, Dallagnol JC, Ducatti DR, Orsato A, Duarte MER, Noseda MD, Otuki MF, Gonçalves AG. Photodynamic effect of meso -(aryl)porphyrins and meso -(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes. Bioorg Med Chem Lett 2017; 27:156-161. [DOI: 10.1016/j.bmcl.2016.11.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023]
|
10
|
Lemos CN, de Souza JG, Simão PS, Lopez RFV. Iontophoresis Improved Growth Reduction of Invasive Squamous Cell Carcinoma in Topical Photodynamic Therapy. PLoS One 2016; 11:e0145922. [PMID: 26752697 PMCID: PMC4709111 DOI: 10.1371/journal.pone.0145922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/10/2015] [Indexed: 01/16/2023] Open
Abstract
This study examined the potential of iontophoresis in topical photodynamic therapy (PDT) of human invasive squamous cells carcinomas (SCC). SCC was induced in nude BALB/c mice by subcutaneous injection of A431 cells. Tumor penetration and distribution of the photosensitizer tetrasulfonated zinc phthalocyanine (ZnPcS4) was investigated after 10 and 30 min of in vivo iontophoresis of a gel containing ZnPcS4. PDT was performed immediately after iontophoresis using laser at 660 nm with a dose of irradiation of 100 J/cm(2) and irradiance of 48 mW/cm(2) while tumor growth was measured for 30 days. Iontophoresis increased ZnPcS4 penetration into tumors by 6-fold after 30 min when compared with passive delivery. Confocal microscopy analysis showed that ZnPcS4 was homogeneous distributed within deep regions of the tumor after iontophoresis. Irradiation of the tumors immediately after iontophoresis showed reduction in tumor size by more than 2-fold when compared to non-treated tumors. Iontophoretic-PDT treated tumors presented large areas of necrosis. The study concluded that iontophoretic delivery of photosensitizers could be a valuable strategy for topical PDT of invasive SCC.
Collapse
Affiliation(s)
- Camila Nunes Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Joel Gonçalves de Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrícia Sper Simão
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Tsvetkov VB, Solov'eva AB, Melik-Nubarov NS. Computer modeling of the complexes of Chlorin e6 with amphiphilic polymers. Phys Chem Chem Phys 2015; 16:10903-13. [PMID: 24765639 DOI: 10.1039/c3cp55510k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently it has been shown that Chlorin e6 (Ce6) when complexed with Pluronics (hydrophilic ethylene and propylene oxide block copolymers) and poly(N-vinylpyrrolidone) (PVP) exhibits considerably higher phototoxicity towards tumor cells than free Ce6. The present work aimed to model Ce6 interactions with hydrophilic Pluronic F127 and PVP and find out the nature of intermolecular forces stabilizing these complexes. Modeling included 3 steps: (i) application of molecular dynamics to study polymer folding using AMBER 8 program, (ii) evaluation of partial charges in the Ce6 molecule using different quantum mechanical, semi-empirical and topological approaches and (iii) docking analysis of Ce6 interactions with polymer coils using AUTODOCK 4.2. It was found that the folding in regular polymers does not occur stochastically, but involves the formation of "primary" helical structures, which further combined to form hairpin-like "secondary" structures. The latter in turn associated to form coils with minimal solvent accessible hydrophobic area. The Ce6 ring lies flat on the surface of the polymer coil at the interface between hydrophobic and hydrophilic regions. Calculations showed higher affinity of Ce6 for PVP in comparison to Pluronic and revealed marginal contribution of Coulomb forces to the stabilization of both complexes, which are mainly stabilized by van der Waals and hydrogen interactions.
Collapse
Affiliation(s)
- Vladimir B Tsvetkov
- Institute for Physical-Chemical Medicine, Malaya Pirogovskaya Str., 1a, Moscow 119435, Russia.
| | | | | |
Collapse
|
12
|
Ion RM, Daicoviciu D, Filip AG, Clichici S, Muresan A. Oxidative stress effects of fullerene-porphyrin derivatives in photodynamic therapy. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424612500939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Due to their special and growing medical recent interest, the fullerenes started to be a very studied class of chemical compounds. In order to improve their water solubility and to reduce their cytotoxic characteristics, the fullerenes have been coupled in a system fullerene/PVP/porphyrin (C60/PVP/TPP) and its application in photodynamic therapy will be evaluated in this paper. The oxidative stress effects on photodynamic therapy with systems fullerene/poly-N-vinylpirrolidone/5,10,15,20-tetrakis(4-phenyl)porphyrin (C60/PVP/TPP) were tested on Wistar rats sub-cutaneously inoculated with Walker 256 carcinoma. The animals were irradiated with red light (λ = 685 nm; D = 50 J/cm2; 15 minutes) 24 h after intra-peritoneal administration of 10 mg/kg body weight of the system C60/PVP/TPP. After photodynamic therapy, the free radicals in tumors have been indirectly evaluated by lipid peroxides level (measured as thiobarbituric reactive substances) and protein carbonyls (indices of oxidative effects produced on susceptible biomolecules), both of them increasing in tumor tissues of animals 24 h after treatment. The levels of thiol groups and total antioxidant capacity have been determined in tumors, too, their decreasing values being the effect of the strong tumoral oxidative process.
Collapse
Affiliation(s)
- Rodica Mariana Ion
- National Institute of R&D for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei, Bucharest 060021, Romania
- Valahia University of Târgovişte, Department of Materials Engineering, 18-20 Unirii Blvd., Targoviste 013200, Romania
| | - Doina Daicoviciu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Physiology, 1-3 Clinicilor Street, Cluj-Napoca, Romania
| | - Adriana Gabriela Filip
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Physiology, 1-3 Clinicilor Street, Cluj-Napoca, Romania
| | - Simona Clichici
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Physiology, 1-3 Clinicilor Street, Cluj-Napoca, Romania
| | - Adriana Muresan
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Physiology, 1-3 Clinicilor Street, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Radzi R, Osaki T, Tsuka T, Imagawa T, Minami S, Nakayama Y, Okamoto Y. Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells. J Vet Med Sci 2011; 74:545-51. [PMID: 22146339 DOI: 10.1292/jvms.11-0464] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effects of photodynamic hyperthemal therapy (PHT), which is a combination of photodynamic therapy (PDT) and hyperthermia (HT), on the apoptosis and cell cycle progression of murine melanoma B16F10 cells. The percentage of apoptotic cell was determined by flow cytometry using fluorescein isothiocyanate (FITC)-conjugated Annexin V and propidium iodide (PI) double staining. The cell cycle analysis was performed by PI staining with flow cytometry. The expression of cyclins and heat shock protein 70 (Hsp70) were examined by a Western blotting analysis. PHT induces death in B16F10 cells, and PHT-mediated apoptosis occurred acutely and persistently in vitro. Our study demonstrated that PHT using indocyanine green (ICG) and near infrared (NIR) light source induces apoptosis and G0/G1 cell cycle arrest in the B16F10 cells.
Collapse
Affiliation(s)
- Rozanaliza Radzi
- The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | |
Collapse
|