1
|
Afarinesh MR, Ahmadi BBM, Sabzalizadeh M, Golshan F, Sheibani V. Tactile stimulation and its impact on barrel cortex neuron receptive fields in whisker-deprived male rats. Physiol Behav 2025; 295:114911. [PMID: 40209871 DOI: 10.1016/j.physbeh.2025.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Understanding the enhancement of neuronal performance through the interaction of various sensory stimuli and evaluating how these interactions influence neuronal responses and sensorimotor behaviors is critical. This study investigates the simultaneous effects of tactile stimulation (TS) and sensory deprivation of whiskers on the receptive field properties of barrel cortex neurons in Wistar rats. Male rats were subjected to whisker deprivation (WD) or TS for 21 days from birth. Neuronal responses to controlled deflections of principal and adjacent whiskers were assessed using single-unit recordings from the barrel cortex. Results indicated that while WD reduced the excitatory receptive fields of neurons, the magnitude of ON and OFF responses returned to control group levels following TS, suggesting improved neuronal function. These findings demonstrate that tactile stimulation can compensate for deficits caused by sensory deprivation.
Collapse
Affiliation(s)
- Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Bi Bi Marzieh Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Faly Golshan
- Brain Health Lab, Department of Psychology and Health Studies, University of Saskatchewan, Saskatoon, Canada
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Sabzalizadeh M, Mollashahi M, Afarinesh MR, Mafi F, Joushy S, Sheibani V. Sex difference in cognitive behavioral alterations and barrel cortex neuronal responses in rats exposed prenatally to valproic acid under continuous environmental enrichment. Int J Dev Neurosci 2022; 82:513-527. [PMID: 35738908 DOI: 10.1002/jdn.10206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022] Open
Abstract
Autism spectrum disorder is a developmental disorder that can affect social interactions and sensory-motor behaviors. The present study investigates the effect of environmental enrichment (EE) on behavioral alterations and neuron responses associated with the barrel cortex of young adult female and male rats exposed prenatally to valproic acid (VPA). Pregnant female rats were pretreated with either saline or VPA (500 mg/kg, IP) on day 12.5 of gestation. Male and female pups were exposed to either EE or standard-setting (non-enrichment) conditions for 1 month (between postnatal day [PND] 30 and 63-65) and were divided into non-EE (control), EE, VPA, and VPA + EE groups. Three-chamber sociability and social novelty, acoustic startle reflex, and texture discrimination tests were conducted on PND 62. Responses of barrel cortex neurons of male pups were evaluated using the extracellular single-unit recording technique on PND 63-65. Results showed that the performance of rats of both sexes in social interactions, texture discrimination tasks, and acoustic startle reflex significantly decreased in the VPA groups compared with the control rats (P < 0.05). In this regard, EE attenuated the altered deficit performance observed in the VPA animals compared with the VPA-EE animals (P < 0.05). The performance of females was better than males in the discrimination tasks and acoustic startle reflex. In contrast, males were better than females in the three-chamber social interaction test. Additionally, the excitatory receptive field response magnitude of the barrel cortex neurons in the VPA + EE group increased compared with the VPA group (P < 0.05). The results suggest that continuous EE can attenuate cognitive function disturbances in autistic-like rats and, at least at the behavioral level, the effects depend on sex.
Collapse
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahtab Mollashahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mafi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushy
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Sabzalizadeh M, Afarinesh MR, Esmaeili-Mahani S, Farsinejad A, Derakhshani A, Arabzadeh E, Sheibani V. Transplantation of rat dental pulp stem cells facilities post-lesion recovery in the somatosensory whisker cortex of male Wistar rats. Brain Res Bull 2021; 173:150-161. [PMID: 33964348 DOI: 10.1016/j.brainresbull.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
Damage to somatosensory "barrel" cortex reduces the rats' behavioral sensitivity in discrimination of tactile stimuli. Here, we examined how transplantation of stem cells into the lesioned barrel cortex can help in recovery of sensory capacities. We induced mechanical lesions in the right barrel cortex area of male rats. Three days after lesioning, rats received one of three transplantation types: un-differentiated dental pulp stem cells (U-DPSCs) or differentiated dental pulp stem cells (D-DPSCs), or cell medium (vehicle). A fourth group of rats were control without any Surgery. For 4 consecutive weeks, starting one week after transplantation, we evaluated the rats' preference to explore novel textures as a measure of sensory discrimination ability, also measured the expression of glial fibrillary acidic protein (GFAP), Olig 2, nestin, neuronal nuclei (NeuN), brain-derived neurotrophic factor (BDNF) and neuroligin1 by immunohistochemistry and western blotting. Unilateral mechanical lesion decreased the rats' preferential exploration of novel textures compared to the control group across the 4-week behavioral tests. Following stem cell therapy, the rats' performance significantly improved at week 2-4 compared to the vehicle group. Compared to the control group, there was a significant decrease in the expression of nestin, NeuN, Olig 2, BDNF, neuroligin1 and a significant increase in the expression of GFAP in the vehicle group. The expression of the neural markers was significantly higher in DPSCs compared with the vehicle group whereas GFAP level was lower in DPSCs compared to vehicle. We found that DPSCs therapy affected a range of neuronal markers in the barrel cortex post lesion, and improved the rats' recovery for sensory discrimination.
Collapse
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Hydatid Disease Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Arabzadeh
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Sabzalizadeh M, Afarinesh MR, Esmaeili-Mahani S, Sheibani V. Focal unilateral mechanical lesion in barrel cortex impairs rat’s abilities to discriminate textures. Somatosens Mot Res 2020; 38:1-10. [DOI: 10.1080/08990220.2020.1828055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Effect of mild and chronic neonatal hypothyroidism on sensory information processing in a rodent model: A behavioral and electrophysiological study. Brain Res Bull 2020; 155:29-36. [DOI: 10.1016/j.brainresbull.2019.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
|
6
|
Shafiei F, Afarinesh MR, Golshan F, Haghpanah T, Sabzalizadeh M, Zangiabadi I, Sheibani V. Comparison of pre-pulse inhibition, tactile discrimination learning and barrel cortical neural response in adult male rats following chronic exposure to morphine, methadone and buprenorphine. Physiol Behav 2019; 212:112694. [PMID: 31622612 DOI: 10.1016/j.physbeh.2019.112694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/14/2019] [Accepted: 09/27/2019] [Indexed: 12/01/2022]
Abstract
Chronic exposure to opioids is the most common treatment plan to reduce the pain. In this study, the stereotyped behaviors and cognitive functions related to different types of tactile and auditory inputs were investigated in the rats following chronic exposure to the morphine, methadone, and buprenorphine. Here, three addicted groups received morphine, methadone, and buprenorphine while the control rats received saline for 21 days. Our results demonstrated that the opioid-treated groups showed stereotyped behaviors including grooming and rearing. In the behavioral level, prepulse inhibition and preference indices were not changed significantly in the opioids-treated groups compared to those of the saline group as two criteria for acoustic startle reflex and tactile discrimination, respectively. In the neuronal level, chronic morphine and methadone treatment changed the response properties of the barrel cortical neurons to the whisker deflections in the experimental groups compared to the saline group. Thus, it was concluded that the excitatory receptive fields of neurons in the barrel cortex can be changed as a result of chronic exposure to morphine and methadone.
Collapse
Affiliation(s)
- Faezeh Shafiei
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Kerman Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Kerman Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Fatemeh Golshan
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Department of Anatomy, School of Afzalipour Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansoureh Sabzalizadeh
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Zangiabadi
- Department of Anatomy, School of Afzalipour Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Kerman Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Nazeri M, Ebrahimi A, Aghaei I, Ghotbi Ravandi S, Shabani M. Psychological stress has a higher rate of developing addictive behaviors compared to physical stress in rat offspring. EXCLI JOURNAL 2017; 16:903-913. [PMID: 28900372 PMCID: PMC5579401 DOI: 10.17179/excli2016-685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/09/2017] [Indexed: 01/01/2023]
Abstract
Prenatal stress could have great influence on development of offspring and might alter cognitive function and other physiological processes of children. The current study was conducted to study the effect of physical or psychological prenatal stress on addictive and anxiety-like behavior of male and female offspring during their adolescence period (postnatal day (PND) 40). Adult female rats were exposed to physical (swimming) or psychological (observing another female rat swimming) stress from day six of gestation for 10 days. Male and female offspring were assayed for anxiety-like behavior, motor and balance function and morphine conditioned place preference using the open field, elevated plus maze (EPM), rotarod and wire grip assay and conditioned place preference. Offspring in both physical and psychological prenatal stress groups demonstrated significant increase in anxiety-like behavior in EPM paradigm, but no alterations were observed in motor and balance function of animals. Offspring in the psychological prenatal stress group had an increased preference for morphine in comparison to control and physical prenatal stress groups. Results of the current study demonstrated that animals exposed to psychological stress during fetal development are at a higher risk of developing addictive behaviors. Further research might elucidate the exact mechanisms involved to provide better preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Masoud Nazeri
- Department of Oral Medicine and Chronic Headache and Facial Pain Clinic, School of Dentistry, Kerman, IranUniversity of Medical Sciences, Kerman, Iran
| | - Arezoo Ebrahimi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Aghaei
- Social Determinants of Health Research Center, Gilan University of Medical Sciences, Rasht, Iran
| | - Samaneh Ghotbi Ravandi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Roohbakhsh A, Shamsizadeh A, Arababadi MK, Ayoobi F, Fatemi I, Allahtavakoli M, Mohammad-Zadeh M. Tactile learning in rodents: Neurobiology and neuropharmacology. Life Sci 2016; 147:1-8. [DOI: 10.1016/j.lfs.2016.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 12/28/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
|
9
|
Song T, Li G, Liang Z, Tang Y, Yang Y, Li G, Xia J, Zhou Y. Chronic morphine exposure affects contrast response functions of V1 neurons in cats. Neuroscience 2012; 226:451-8. [PMID: 23022215 DOI: 10.1016/j.neuroscience.2012.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/30/2012] [Accepted: 09/19/2012] [Indexed: 12/22/2022]
Abstract
Opiates disrupt neural functions in many brain areas, including visual cortex. Previous studies have indicated substantial changes of many neuronal response properties induced by chronic morphine exposure in the visual information processing system. However, it remains unclear whether neuronal contrast coding is also affected. To investigate this issue, we measured the contrast response functions (CRFs) of V1 neurons in chronic morphine-treated and saline-treated cats by using extra-cellular single-unit recording techniques. Our results indicated significantly lower contrast sensitivity in morphine-treated cats than in saline-treated cats and V1 neurons in morphine-treated cats exhibited enhanced maximum visual responses, higher baseline responses and lower signal-to-noise ratios compared with saline-treated cats. These findings provide some neurobiological evidence for the morphine-mediated degenerations of the visual cortex, which could underlie the opiate-induced deficits in visual function.
Collapse
Affiliation(s)
- T Song
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Effects of morphine and methadone treatments on glutamatergic transmission in rat frontal cortex. Pharmacol Rep 2009; 61:1192-7. [DOI: 10.1016/s1734-1140(09)70183-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/23/2009] [Indexed: 01/01/2023]
|