1
|
Hassan R, Sreenivasan S, Müller CP, Hassan Z. Methadone, Buprenorphine, and Clonidine Attenuate Mitragynine Withdrawal in Rats. Front Pharmacol 2021; 12:708019. [PMID: 34322028 PMCID: PMC8311127 DOI: 10.3389/fphar.2021.708019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Kratom or Mitragyna speciosa Korth has been widely used to relieve the severity of opioid withdrawal in natural settings. However, several studies have reported that kratom may by itself cause dependence following chronic consumption. Yet, there is currently no formal treatment for kratom dependence. Mitragynine, is the major psychoactive alkaloid in kratom. Chronic mitragynine treatment can cause addiction-like symptoms in rodent models including withdrawal behaviour. In this study we assessed whether the prescription drugs, methadone, buprenorphine and clonidine, could mitigate mitragynine withdrawal effects. In order to assess treatment safety, we also evaluated hematological, biochemical and histopathological treatment effects. Methods: We induced mitragynine withdrawal behaviour in a chronic treatment paradigm in rats. Methadone (1.0 mg/kg), buprenorphine (0.8 mg/kg) and clonidine (0.1 mg/kg) were i.p. administered over four days during mitragynine withdrawal. These treatments were stopped and withdrawal sign assessment continued. Thereafter, toxicological profiles of the treatments were evaluated in the blood and in organs. Results: Chronic mitragynine treatment caused significant withdrawal behaviour lasting at least 5 days. Methadone, buprenorphine, as well as clonidine treatments significantly attenuated these withdrawal signs. No major effects on blood or organ toxicity were observed. Conclusion: These data suggest that the already available prescription medications methadone, buprenorphine, and clonidine are capable to alleviate mitragynine withdrawal signs rats. This may suggest them as treatment options also for problematic mitragynine/kratom use in humans.
Collapse
Affiliation(s)
- Rahimah Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Sasidharan Sreenivasan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia.,Addiction Behaviour and Neuroplasticity Laboratory, National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
2
|
Hassan R, Pike See C, Sreenivasan S, Mansor SM, Müller CP, Hassan Z. Mitragynine Attenuates Morphine Withdrawal Effects in Rats-A Comparison With Methadone and Buprenorphine. Front Psychiatry 2020; 11:411. [PMID: 32457670 PMCID: PMC7221179 DOI: 10.3389/fpsyt.2020.00411] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Opiate addiction is a major health problem in many countries. A crucial component of the medical treatment is the management of highly aversive opiate withdrawal signs, which may otherwise lead to resumption of drug taking. In a medication-assisted treatment (MAT), methadone and buprenorphine have been implemented as substitution drugs. Despite MAT effectiveness, there are still limitations and side effects of using methadone and buprenorphine. Thus, other alternative therapies with less side effects, overdosing, and co-morbidities are desired. One of the potential pharmacotherapies may involve kratom's major indole alkaloid, mitragynine, since kratom (Mitragyna speciosa Korth.) preparations have been reported to alleviate opiate withdrawal signs in self-treatment in Malaysian opiate addicts. METHODS Based on the morphine withdrawal model, rats were morphine treated with increasing doses from 10 to 50 mg/kg twice daily over a period of 6 days. The treatment was discontinued on day 7 in order to induce a spontaneous morphine abstinence. The withdrawal signs were measured daily after 24 h of the last morphine administration over a period of 28 abstinence days. In rats that developed withdrawal signs, a drug replacement treatment was given using mitragynine, methadone, or buprenorphine and the global withdrawal score was evaluated. RESULTS The morphine withdrawal model induced profound withdrawal signs for 16 days. Mitragynine (5-30 mg/kg; i.p.) was able to attenuate acute withdrawal signs in morphine dependent rats. On the other hand, smaller doses of methadone (0.5-2 mg/kg; i.p.) and buprenorphine (0.4-1.6 mg/kg; i.p.) were necessary to mitigate these effects. CONCLUSIONS These data suggest that mitragynine may be a potential drug candidate for opiate withdrawal treatment.
Collapse
Affiliation(s)
- Rahimah Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Cheah Pike See
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Malaysia
| | - Sasidharan Sreenivasan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia
| | - Sharif M Mansor
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Christian P Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia.,Addiction Behaviour and Neuroplasticity Laboratory, National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
3
|
Chartier M, Tannous S, Benturquia N, Labat L, Reis R, Risède P, Chevillard L, Mégarbane B. Baclofen-Induced Neuro-Respiratory Toxicity in the Rat: Contribution of Tolerance and Characterization of Withdrawal Syndrome. Toxicol Sci 2019; 164:153-165. [PMID: 29945230 DOI: 10.1093/toxsci/kfy073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Baclofen, a γ-amino-butyric acid type-B receptor agonist with exponentially increased use at high-dose to facilitate abstinence in chronic alcoholics, is responsible for increasing poisonings. Tolerance and withdrawal syndromes have been reported during prolonged treatment but their contribution to the variability of baclofen-induced neurotoxicity in overdose is unknown. We studied baclofen-induced effects on rat sedation, temperature, and ventilation and modeled baclofen pharmacokinetics and effect/concentration relationships aiming to investigate the consequences of repeated baclofen pretreatment and to characterize withdrawal syndrome. Baclofen-induced dose-dependent sedation (p <0.01), hypothermia (p <.001) and respiratory depression (p <.01) were altered in repeatedly baclofen-pretreated rats (p <.05). Repeatedly baclofen-pretreated rats did not exhibit respiratory depression following baclofen overdose due to limitations on baclofen-induced increase in inspiratory (p <.01) and expiratory times (p <.01). Only slight hypoxemia without respiratory acidosis was observed. Baclofen discontinuation resulted in hyperlocomotion and non-anxiogenic withdrawal symptoms. Regarding pharmacokinetics, repeated baclofen pretreatment increased the peak concentration (p <.05) and absorption constant rate (p <.05) and reduced the distribution volume (p <.0001) and elimination half-life (p <.05). Analysis of the effect/concentration relationships indicated that plasma baclofen concentration decreases more rapidly than all studied neuro-respiratory effects, in tolerant and non-tolerant rats. Taken together, our findings supported the role of brain distribution in baclofen-induced neurotoxicity expression and its probable involvement in tolerance-related attenuation in addition to physiological adaptations of ventilation. In conclusion, repeated pretreatment attenuates baclofen-attributed neurotoxicity in overdose and results in post-discontinuation withdrawal syndrome. Our findings suggest both pharmacodynamic and pharmacokinetic mechanisms whose relative contributions to the variability of baclofen-induced neurotoxicity in overdose remain to be established.
Collapse
Affiliation(s)
- Magali Chartier
- Inserm, UMRS-1144, Paris-Descartes University, 75006 Paris, France
| | - Salma Tannous
- Inserm, UMRS-1144, Paris-Descartes University, 75006 Paris, France
| | - Nadia Benturquia
- Inserm, UMRS-1144, Paris-Descartes University, 75006 Paris, France
| | - Laurence Labat
- Inserm, UMRS-1144, Paris-Descartes University, 75006 Paris, France.,Pharmacokinetics and Pharmacochemistry Unit, Cochin Hospital, 75010 Paris, France.,Laboratory of Toxicology, Lariboisière Hospital, 75010 Paris, France
| | - Rafael Reis
- Pharmacokinetics and Pharmacochemistry Unit, Cochin Hospital, 75010 Paris, France
| | - Patricia Risède
- Inserm, UMRS-1144, Paris-Descartes University, 75006 Paris, France
| | - Lucie Chevillard
- Inserm, UMRS-1144, Paris-Descartes University, 75006 Paris, France
| | - Bruno Mégarbane
- Inserm, UMRS-1144, Paris-Descartes University, 75006 Paris, France.,Department of Medical and Toxicological Critical Care, Lariboisière Hospital, 75010 Paris, France
| |
Collapse
|
4
|
Abstract
INTRODUCTION Catatonia is a syndrome that can present in different forms and can occur in multiple psychiatric and somatic conditions. This case report describes lethal catatonia caused by delayed toxic leukoencephalopathy after excessive use of cocaine and methadone. The characteristic radiographic imaging and biphasic course are discussed. CASE REPORT A 54-year-old woman was presented unconsciously at the emergency department after intoxication with methadone and cocaine. After initial recovery, her condition deteriorated unexpectedly, resulting in lethal catatonia. Magnetic resonance imaging (MRI) showed hyperintense white matter abnormalities and diffusion restriction, evident for leukoencephalopathy. DISCUSSION Catatonia can develop in multiple psychiatric and somatic diseases, including toxic leukoencephalopathy. A biphasic course and specific MRI findings are characteristics for delayed toxic leukoencephalopathy, due to intoxication with drugs.
Collapse
|
5
|
Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018; 10:pharmaceutics10040192. [PMID: 30340346 PMCID: PMC6321372 DOI: 10.3390/pharmaceutics10040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Opioids are highly effective analgesics that have a serious potential for adverse drug reactions and for development of addiction and tolerance. Since the use of opioids has escalated in recent years, it is increasingly important to understand biological mechanisms that can increase the probability of opioid-associated adverse events occurring in patient populations. This is emphasized by the current opioid epidemic in the United States where opioid analgesics are frequently abused and misused. It has been established that the effectiveness of opioids is maximized when these drugs readily access opioid receptors in the central nervous system (CNS). Indeed, opioid delivery to the brain is significantly influenced by the blood-brain barrier (BBB). In particular, ATP-binding cassette (ABC) transporters that are endogenously expressed at the BBB are critical determinants of CNS opioid penetration. In this review, we will discuss current knowledge on the transport of opioid analgesic drugs by ABC transporters at the BBB. We will also examine how expression and trafficking of ABC transporters can be modified by pain and/or opioid pharmacotherapy, a novel mechanism that can promote opioid-associated adverse drug events and development of addiction and tolerance.
Collapse
|
6
|
Lagard C, Chevillard L, Guillemyn K, Risède P, Laplanche JL, Spetea M, Ballet S, Mégarbane B. Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain. Pain 2017; 158:505-515. [PMID: 28135212 PMCID: PMC5302413 DOI: 10.1097/j.pain.0000000000000790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023]
Abstract
Drugs able to treat both nociceptive and neuropathic pain effectively without major side effects are lacking. We developed a bifunctional peptide-based hybrid (KGNOP1) that structurally combines a mu-opioid receptor agonist (KGOP1) with antinociceptive activity and a weak nociceptin receptor antagonist (KGNOP3) with anti-neuropathic pain activity. We investigated KGNOP1-related behavioral effects after intravenous administration in rats by assessing thermal nociception, cold hyperalgesia in a model of neuropathic pain induced by chronic constriction injury of the sciatic nerve, and plethysmography parameters including inspiratory time (TI) and minute ventilation (VM) in comparison to the well-known opioid analgesics, tramadol and morphine. Time-course and dose-dependent effects were investigated for all behavioral parameters to determine the effective doses 50% (ED50). Pain-related effects on cold hyperalgesia were markedly increased by KGNOP1 as compared to KGNOP3 and tramadol (ED50: 0.0004, 0.32, and 12.1 μmol/kg, respectively), whereas effects on thermal nociception were significantly higher with KGNOP1 as compared to morphine (ED50: 0.41 and 14.7 μmol/kg, respectively). KGNOP1 and KGOP1 produced a larger increase in TI and deleterious decrease in VM in comparison to morphine and tramadol (ED50(TI): 0.63, 0.52, 12.2, and 50.9 μmol/kg; ED50(VM): 0.57, 0.66, 10.6, and 50.0 μmol/kg, respectively). Interestingly, the calculated ratios of anti-neuropathic pain/antinociceptive to respiratory effects revealed that KGNOP1 was safer than tramadol (ED50 ratio: 5.44 × 10 vs 0.24) and morphine (ED50 ratio: 0.72 vs 1.39). We conclude that KGNOP1 is able to treat both experimental neuropathic and nociceptive pain, more efficiently and safely than tramadol and morphine, respectively, and thus should be a candidate for future clinical developments.
Collapse
Affiliation(s)
- Camille Lagard
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
| | - Lucie Chevillard
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
| | - Karel Guillemyn
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patricia Risède
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
| | - Jean-Louis Laplanche
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
- Assistance Publique—Hôpitaux de Paris, Lariboisière Hospital, Laboratory of Biochemistry and Molecular Biology, Paris, France
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Mégarbane
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
- Assistance Publique—Hôpitaux de Paris, Lariboisière Hospital, Department of Medical and Toxicological Critical Care, Paris, France
| |
Collapse
|
7
|
Lagard C, Chevillard L, Malissin I, Risède P, Callebert J, Labat L, Launay JM, Laplanche JL, Mégarbane B. Mechanisms of tramadol-related neurotoxicity in the rat: Does diazepam/tramadol combination play a worsening role in overdose? Toxicol Appl Pharmacol 2016; 310:108-119. [PMID: 27641627 DOI: 10.1016/j.taap.2016.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 11/29/2022]
Abstract
Poisoning with opioid analgesics including tramadol represents a challenge. Tramadol may induce respiratory depression, seizures and serotonin syndrome, possibly worsened when in combination to benzodiazepines. Our objectives were to investigate tramadol-related neurotoxicity, consequences of diazepam/tramadol combination, and mechanisms of drug-drug interactions in rats. Median lethal-doses were determined using Dixon-Bruce's up-and-down method. Sedation, seizures, electroencephalography and plethysmography parameters were studied. Concentrations of tramadol and its metabolites were measured using liquid-chromatography-high-resolution-mass-spectrometry. Plasma, platelet and brain monoamines were measured using liquid-chromatography coupled to fluorimetry. Median lethal-doses of tramadol and diazepam/tramadol combination did not significantly differ, although time-to-death was longer with combination (P=0.04). Tramadol induced dose-dependent sedation (P<0.05), early-onset seizures (P<0.001) and increase in inspiratory (P<0.01) and expiratory times (P<0.05). The diazepam/tramadol combination abolished seizures but significantly enhanced sedation (P<0.01) and respiratory depression (P<0.05) by reducing tidal volume (P<0.05) in addition to tramadol-related increase in respiratory times, suggesting a pharmacodynamic mechanism of interaction. Plasma M1 and M5 metabolites were mildly increased, contributing additionally to tramadol-related respiratory depression. Tramadol-induced early-onset increase in brain concentrations of serotonin and norepinephrine was not significantly altered by the diazepam/tramadol combination. Interestingly neither pretreatment with cyproheptadine (a serotonin-receptor antagonist) nor a benserazide/5-hydroxytryptophane combination (enhancing brain serotonin) reduced tramadol-induced seizures. Our study shows that diazepam/tramadol combination does not worsen tramadol-induced fatality risk but alters its toxicity pattern with enhanced respiratory depression but abolished seizures. Drug-drug interaction is mainly pharmacodynamic but increased plasma M1 and M5 metabolites may also contribute to enhancing respiratory depression. Tramadol-induced seizures are independent of brain serotonin.
Collapse
Affiliation(s)
- Camille Lagard
- Inserm, U1144, Paris, France; UMR-S 1144, Paris-Descartes University, Paris, France; UMR-S 1144, Paris-Diderot University, Paris, France.
| | - Lucie Chevillard
- Inserm, U1144, Paris, France; UMR-S 1144, Paris-Descartes University, Paris, France; UMR-S 1144, Paris-Diderot University, Paris, France.
| | - Isabelle Malissin
- Assistance Publique - Hôpitaux de Paris, Lariboisière Hospital, Department of Medical and Toxicological Critical Care, Paris, France.
| | - Patricia Risède
- Inserm, U1144, Paris, France; UMR-S 1144, Paris-Descartes University, Paris, France; UMR-S 1144, Paris-Diderot University, Paris, France.
| | - Jacques Callebert
- Inserm, U1144, Paris, France; UMR-S 1144, Paris-Descartes University, Paris, France; UMR-S 1144, Paris-Diderot University, Paris, France; Assistance Publique - Hôpitaux de Paris, Lariboisière Hospital, Laboratory of Biochemistry and Molecular Biology, Paris, France.
| | - Laurence Labat
- Inserm, U1144, Paris, France; UMR-S 1144, Paris-Descartes University, Paris, France; UMR-S 1144, Paris-Diderot University, Paris, France; Assistance Publique - Hôpitaux de Paris, Cochin Hospital, Laboratory of Toxicology, Paris, France.
| | - Jean-Marie Launay
- Assistance Publique - Hôpitaux de Paris, Lariboisière Hospital, Laboratory of Biochemistry and Molecular Biology, Paris, France; Inserm, U942, Paris, France.
| | - Jean-Louis Laplanche
- Inserm, U1144, Paris, France; UMR-S 1144, Paris-Descartes University, Paris, France; UMR-S 1144, Paris-Diderot University, Paris, France; Assistance Publique - Hôpitaux de Paris, Lariboisière Hospital, Laboratory of Biochemistry and Molecular Biology, Paris, France.
| | - Bruno Mégarbane
- Inserm, U1144, Paris, France; UMR-S 1144, Paris-Descartes University, Paris, France; UMR-S 1144, Paris-Diderot University, Paris, France; Assistance Publique - Hôpitaux de Paris, Lariboisière Hospital, Department of Medical and Toxicological Critical Care, Paris, France.
| |
Collapse
|
8
|
Toxicodynetics: A new discipline in clinical toxicology. ANNALES PHARMACEUTIQUES FRANÇAISES 2016; 74:173-89. [PMID: 27107462 DOI: 10.1016/j.pharma.2016.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Regarding the different disciplines that encompass the pharmacology and the toxicology, none is specifically dedicated to the description and analysis of the time-course of relevant toxic effects both in experimental and clinical studies. The lack of a discipline devoted to this major field in toxicology results in misconception and even in errors by clinicians. MATERIAL AND METHODS Review of the basic different disciplines that encompass pharmacology toxicology and comparing with the description of the time-course of effects in conditions in which toxicological analysis was not performed or with limited analytical evidence. RESULTS Review of the literature clearly shows how misleading is the current extrapolation of toxicokinetic data to the description of the time-course of toxic effects. CONCLUSION A new discipline entitled toxicodynetics should be developed aiming at a more systematic description of the time-course of effects in acute human and experimental poisonings. Toxicodynetics might help emergency physicians in risk assessment when facing a poisoning and contribute to a better assessment of quality control of data collected by poison control centres. Toxicodynetics would also allow a quantitative approach to the clinical effects resulting from drug-drug interaction.
Collapse
|
9
|
Chevillard L, Declèves X, Baud FJ, Risède P, Mégarbane B. Respiratory effects of diazepam/methadone combination in rats: a study based on concentration/effect relationships. Drug Alcohol Depend 2013; 131:298-307. [PMID: 23332448 DOI: 10.1016/j.drugalcdep.2012.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Methadone may cause respiratory depression and fatalities. Concomitant use of benzodiazepines in methadone-treated patients for chronic pain or as maintenance therapy for opiate abuse is common. However, the exact contribution of benzodiazepines to methadone-induced respiratory toxicity remains debatable. METHODS We investigated the respiratory effects of the combination diazepam (20mg/kg)/methadone (5mg/kg) in the rat, focusing on methadone concentration/effect relationships. Respiratory effects were studied using arterial blood gases and whole-body plethysmography. Plasma concentrations of both R- and S-methadone enantiomers were measured using high-performance liquid chiral chromatography coupled to mass spectrometry. To clarify mechanisms of diazepam/methadone interaction, methadone metabolism was investigated in vitro using rat liver microsomes. RESULTS Diazepam/methadone co-administration significantly increased methadone-related effects on inspiratory time (p<0.001) but did not significantly alter the other respiratory parameters when compared with methadone alone, despite significant increase in the area under the curve of plasma R-methadone concentrations measured during 240 min (p<0.05). Diazepam/methadone co-incubation with microsomes in vitro resulted in a significant inhibition of methadone metabolism (p<0.01), with 50%-inhibitory diazepam concentrations of 25.02 ± 0.18 μmol/L and 25.18 ± 0.23 μmol/L for R- and S-methadone, respectively. CONCLUSION We concluded that co-administration of high-doses of diazepam and methadone in rats is not responsible for additional respiratory depression in comparison to methadone alone, despite significant metabolic interaction between the drugs. In humans, although our experimental data may suggest the relative safety of benzodiazepine/methadone co-prescription, physicians should remain cautious as other underlying conditions may enhance this drug-drug interaction.
Collapse
Affiliation(s)
- Lucie Chevillard
- INSERM U705, CNRS UMR8206, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Neuropsychopharmacologie des addictions, Paris, France.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The identification and functional understanding of the neurocircuitry that mediates alcohol and drug effects that are relevant for the development of addictive behavior is a fundamental challenge in addiction research. Here we introduce an assumption-free construction of a neurocircuitry that mediates acute and chronic drug effects on neurotransmitter dynamics that is solely based on rodent neuroanatomy. Two types of data were considered for constructing the neurocircuitry: (1) information on the cytoarchitecture and neurochemical connectivity of each brain region of interest obtained from different neuroanatomical techniques; (2) information on the functional relevance of each region of interest with respect to alcohol and drug effects. We used mathematical data mining and hierarchical clustering methods to achieve the highest standards in the preprocessing of these data. Using this approach, a dynamical network of high molecular and spatial resolution containing 19 brain regions and seven neurotransmitter systems was obtained. Further graph theoretical analysis suggests that the neurocircuitry is connected and cannot be separated into further components. Our analysis also reveals the existence of a principal core subcircuit comprised of nine brain regions: the prefrontal cortex, insular cortex, nucleus accumbens, hypothalamus, amygdala, thalamus, substantia nigra, ventral tegmental area and raphe nuclei. Finally, by means of algebraic criteria for synchronizability of the neurocircuitry, the suitability for in silico modeling of acute and chronic drug effects is indicated. Indeed, we introduced as an example a dynamical system for modeling the effects of acute ethanol administration in rats and obtained an increase in dopamine release in the nucleus accumbens-a hallmark of drug reinforcement-to an extent similar to that seen in numerous microdialysis studies. We conclude that the present neurocircuitry provides a structural and dynamical framework for large-scale mathematical models and will help to predict chronic drug effects on brain function.
Collapse
Affiliation(s)
- Hamid R. Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| |
Collapse
|
11
|
Abreu M, Aguado D, Benito J, Gómez de Segura IA. Reduction of the sevoflurane minimum alveolar concentration induced by methadone, tramadol, butorphanol and morphine in rats. Lab Anim 2012; 46:200-6. [DOI: 10.1258/la.2012.010066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to estimate the reduction in the minimum alveolar concentration (MAC) of sevoflurane induced by low and high doses of methadone (5 and 10 mg/kg), tramadol (25 and 50 mg/kg), butorphanol (5 and 10 mg/kg) or morphine (5 and 10 mg/kg) in the rat. A control group received normal saline. Sixty-three adult male Sprague-Dawley rats were anaesthetized with sevoflurane ( n = 7 per group). Sevoflurane MAC was then determined before and after intraperitoneal administration of the opioids or saline. The duration of the sevoflurane MAC reduction and basic cardiovascular and respiratory measurements were also recorded. The baseline MAC was 2.5 (0.3) vol%. Methadone, tramadol and morphine reduced the sevoflurane MAC (low dose: 31 ± 10, 38 ± 15 and 30 ± 13% respectively; high dose: 100 ± 0, 83 ± 17 and 77 ± 25%, respectively) in a dose-dependent manner. The low and high doses of butorphanol reduced the sevoflurane MAC to a similar extent (33 ± 7 and 31 ± 4%, low and high doses, respectively). Two rats developed apnoea following administration of high-dose butorphanol and methadone. These anaesthetic-sparing effects are clinically relevant and may reduce the adverse effects associated with higher doses of inhalational anaesthetics.
Collapse
Affiliation(s)
- Mariana Abreu
- Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid (UCM), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
- Department of Experimental Surgery, La Paz University Hospital, 28046 Madrid, Spain
| | - Delia Aguado
- Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid (UCM), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
- Department of Experimental Surgery, La Paz University Hospital, 28046 Madrid, Spain
| | - Javier Benito
- Comparative Pain Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University (NCSU), Raleigh NC 27606, USA
| | - Ignacio A Gómez de Segura
- Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid (UCM), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
12
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
13
|
Abstract
As opportunities to use and abuse drugs have tremendously increased during the past 50 years, so has addiction research. Here, we provide a systematic review on publication trends in the addiction research field. We examined publication trends in different subject categories of journals including general and multi-disciplinary science, neuroscience, pharmacology, psychiatry and, as a final and most important category, substance abuse. In this first report, we provide a brief comprehensive overview on what has been published in terms of addiction in the general and multi-disciplinary science category versus Addiction Biology within the past decade. We reviewed the literature within three time windows 1999/2000, 2004/2005 and 2009/2010 and selected the number of publications (1) according to the country/region where the original study was conducted; (2) according to the drug classes; (3) according to animal versus human studies; (4) and in terms of methodological trends such as genetic association studies and neuro-imaging. We found a 350% increase in addiction-related publications in the general and multi-disciplinary science category within the past decade. This increase, however, was mainly due to increased publication output from the United States. Concerning drug classes, alcohol-, nicotine- and psychostimulant-related publications clearly increased between 1999 and 2010, whereas published papers related to opioids decreased over time. There were also strongly increasing trends for genetic and imaging studies in the addiction field over time. These publication trends are also reflected to a certain degree by published studies in Addiction Biology.
Collapse
Affiliation(s)
- Sandra Helinski
- Institute of Psychopharmacology, Central Institute of Mental Health, Germany
| | | |
Collapse
|
14
|
Wachholtz A, Gonzalez G, Boyer E, Naqvi ZN, Rosenbaum C, Ziedonis D. Intersection of chronic pain treatment and opioid analgesic misuse: causes, treatments, and policy strategies. Subst Abuse Rehabil 2011; 2:145-62. [PMID: 24474854 PMCID: PMC3846312 DOI: 10.2147/sar.s12944] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Treating chronic pain in the context of opioid misuse can be very challenging. This paper explores the epidemiology and potential treatments for chronic pain and opioid misuse and identifies educational and regulation changes that may reduce diversion of opioid analgesics. We cover the epidemiology of chronic pain and aberrant opioid behaviors, psychosocial influences on pain, pharmacological treatments, psychological treatments, and social treatments, as well as educational and regulatory efforts being made to reduce the diversion of prescription opioids. There are a number of ongoing challenges in treating chronic pain and opioid misuse, and more research is needed to provide strong, integrated, and empirically validated treatments to reduce opioid misuse in the context of chronic pain.
Collapse
Affiliation(s)
- Amy Wachholtz
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gerardo Gonzalez
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Edward Boyer
- Department of emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zafar N Naqvi
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher Rosenbaum
- Department of emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas Ziedonis
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
15
|
Soyka M, Kranzler HR, van den Brink W, Krystal J, Möller HJ, Kasper S. The World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of substance use and related disorders. Part 2: Opioid dependence. World J Biol Psychiatry 2011; 12:160-87. [PMID: 21486104 DOI: 10.3109/15622975.2011.561872] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To develop evidence-based practice guidelines for the pharmacological treatment of opioid abuse and dependence. METHODS An international task force of the World Federation of Societies of Biological Psychiatry (WFSBP) developed these practice guidelines after a systematic review of the available evidence pertaining to the treatment of opioid dependence. On the basis of the evidence, the Task Force reached a consensus on practice recommendations, which are intended to be clinically and scientifically meaningful for physicians who treat adults with opioid dependence. The data used to develop these guidelines were extracted primarily from national treatment guidelines for opioid use disorders, as well as from meta-analyses, reviews, and publications of randomized clinical trials on the efficacy of pharmacological and other biological treatments for these disorders. Publications were identified by searching the MEDLINE database and the Cochrane Library. The literature was evaluated with respect to the strength of evidence for efficacy, which was categorized into one of six levels (A-F). RESULTS There is an excellent evidence base supporting the efficacy of methadone and buprenorphine or the combination of buprenorphine and naloxone for the treatment of opioid withdrawal, with clonidine and lofexidine as secondary or adjunctive medications. Opioid maintenance with methadone and buprenorphine is the best-studied and most effective treatment for opioid dependence, with heroin and naltrexone as second-line medications. CONCLUSIONS There is enough high quality data to formulate evidence-based guidelines for the treatment of opioid abuse and dependence. This task force report provides evidence for the efficacy of a number of medications to treat opioid abuse and dependence, particularly the opioid agonists methadone or buprenorphine. These medications have great relevance for clinical practice.
Collapse
Affiliation(s)
- Michael Soyka
- Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Bunten H, Liang WJ, Pounder D, Seneviratne C, Osselton MD. CYP2B6 and OPRM1 gene variations predict methadone-related deaths. Addict Biol 2011; 16:142-4. [PMID: 21158011 DOI: 10.1111/j.1369-1600.2010.00274.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The largest proportion of methadone-associated deaths occurs during the drug induction phase. We analysed methadone-related fatalities for gene variations linked with methadone action. A significant association between high methadone concentrations and the CYP2B6*6 allele characteristic of the slow metabolizer phenotype was identified. We suggest that the risk of methadone fatality may be predetermined in part by the CYP2B6*6 allele. A significant correlation was also observed between post-mortem benzodiazepine concentrations and the OPRM1 A118G allele GA in methadone-related fatalities. Screening for these susceptibility variations prior to methadone prescription could assist in reducing the potential for serious adverse effects.
Collapse
Affiliation(s)
- Hannah Bunten
- Centre for Forensic Sciences, Bournemouth University, UK.
| | | | | | | | | |
Collapse
|