1
|
Yang TE, Del Bene F, Lavezzi SM, Iavarone L, Zhang J, Kim J, Gjurich B, Kessler C. Mechanistic pharmacokinetic-pharmacodynamic modeling and simulations of naloxone auto-injector 10 mg reversal of opioid-induced respiratory depression. CPT Pharmacometrics Syst Pharmacol 2024; 13:1722-1733. [PMID: 39283753 PMCID: PMC11494827 DOI: 10.1002/psp4.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 10/23/2024] Open
Abstract
The purpose of the analysis was to evaluate if 10 mg naloxone, administered intramuscularly, could reverse or prevent opioid-induced respiratory depression (OIRD), including OIRD associated with the administration of lethal doses of high-potency opioids. A naloxone population pharmacokinetic (PK) model was generated using data from two naloxone auto-injector (NAI) clinical PK studies. Mechanistic OIRD PK-pharmacodynamic (PD) models were constructed using published data for buprenorphine, morphine, and fentanyl. Due to the lack of published carfentanil data in humans, interspecies allometric scaling methods were used to predict carfentanil PK parameters in humans. A PD model of a combined effect-compartment and receptor kinetics model with a linear relationship between ventilation and carbon dioxide was used to predict the respiratory depression induced by carfentanil. Model-based simulations were performed using the naloxone population PK model and the constructed mechanistic OIRD PK-PD models. Changes in ventilation were assessed after opioid exposure and treatment with 2 mg naloxone or one or two doses of 10 mg naloxone. A higher percentage of subjects recovered back to the rescue ventilation thresholds and/or had a faster recovery to 40% or 70% of baseline ventilation with 10 mg compared with 2 mg naloxone. A second dose of 10 mg naloxone, administered 60 min post-opioid exposure, expedited recovery to 85% of baseline ventilation and delayed time to renarcotization compared with a single dose. In addition, when 10 mg naloxone was administered at 5, 15, 30, or 60 min before fentanyl or carfentanil exposure, rapid and profound OIRD was prevented.
Collapse
Affiliation(s)
- Tae Eun Yang
- Parexel InternationalClinical Pharmacology, Modeling & SimulationDurhamNorth CarolinaUSA
| | - Francesca Del Bene
- Parexel InternationalClinical Pharmacology, Modeling & SimulationMilanItaly
| | | | - Laura Iavarone
- Parexel InternationalClinical Pharmacology, Modeling & SimulationLondonUK
| | - Jianping Zhang
- Parexel InternationalClinical Pharmacology, Modeling & SimulationDurhamNorth CarolinaUSA
| | - Joseph Kim
- Parexel InternationalClinical Pharmacology, Modeling & SimulationDurhamNorth CarolinaUSA
| | | | | |
Collapse
|
2
|
Kelleher AC, Pearson TD, Ramsey J, Zhao W, O'Conor KA, Bakhoda A, Stodden T, Guo M, Eisenberg SM, Shah SV, Freaney ML, Kim W, Kang Y, Tomasi D, Johnson C, Fang CA, Volkow ND, Kim SW. Investigation of [ 11C]carfentanil for mu opioid receptor quantification in the rat brain. Sci Rep 2024; 14:16250. [PMID: 39009645 PMCID: PMC11250808 DOI: 10.1038/s41598-024-66144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
[11C]Carfentanil ([11C]CFN) is the only selective carbon-11 labeled radiotracer currently available for positron emission tomography (PET) imaging of mu opioid receptors (MORs). Though used extensively in clinical research, [11C]CFN has not been thoroughly characterized as a tool for preclinical PET imaging. As we were occasionally observing severe vital sign instability in rat [11C]CFN studies, we set out to investigate physiological effects of CFN mass and to explore its influence on MOR quantification. In anesthetized rats (n = 15), significant dose-dependent PCO2 increases and heart rate decreases were observed at a conventional tracer dose range (IV, > 100 ng/kg). Next, we conducted baseline and retest [11C]CFN PET scans over a wide range of molar activities. Baseline [11C]CFN PET studies (n = 27) found that nondisplaceable binding potential (BPND) in the thalamus was positively correlated to CFN injected mass, demonstrating increase of MOR availability at higher injected CFN mass. Consistently, when CFN injected mass was constrained < 40 ng/kg (~ 10% MOR occupancy in rats), baseline MOR availability was significantly decreased. For test-retest variability (TRTV), better reproducibility was achieved by controlling CFN injected mass to limit the difference between scans. Taken together, we report significant cardiorespiratory depression and a paradoxical influence on baseline MOR availability at conventional tracer doses in rats. Our findings might reflect changes in cerebral blood flow, changes in receptor affinity, or receptor internalization, and merits further mechanistic investigation. In conclusion, rat [11C]CFN PET requires stringent quality assurance of radiotracer synthesis and mass injected to avoid pharmacological effects and limit potential influences on MOR quantification and reproducibility.
Collapse
Affiliation(s)
- Andrew C Kelleher
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Torben D Pearson
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Ramsey
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenjing Zhao
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelly A O'Conor
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abolghasem Bakhoda
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyler Stodden
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Min Guo
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seth M Eisenberg
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarthak V Shah
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael L Freaney
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Woochan Kim
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeona Kang
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Mathematics, Howard University, Washington, DC, 20059, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher Johnson
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chung-An Fang
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Jones JD, Arout CA, Luba R, Murugesan D, Madera G, Gorsuch L, Schusterman R, Martinez S. The influence of drug class on reward in substance use disorders. Pharmacol Biochem Behav 2024; 240:173771. [PMID: 38670466 PMCID: PMC11162950 DOI: 10.1016/j.pbb.2024.173771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as "abuse potential," "drug," and "addictive properties" are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the "reward center." However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Caroline A Arout
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Rachel Luba
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dillon Murugesan
- CUNY School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
| | - Gabriela Madera
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Liam Gorsuch
- Department of Psychiatry, The University of British Columbia, 430-5950 University Blvd., Vancouver V6T 1Z3, BC, Canada
| | - Rebecca Schusterman
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
4
|
Wang J, Hu J, Liao P, Xue S, He S, Chen R, Zhao X, Liu W. The Synthesis of Biphasic Metabolites of Carfentanil. Molecules 2023; 28:7625. [PMID: 38005347 PMCID: PMC10674982 DOI: 10.3390/molecules28227625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Carfentanil is an ultra-potent synthetic opioid. The Russian police force used both carfentanil and remifentanil to resolve a hostage incident in Moscow. This reported use sparked an interest in the pharmacology and toxicology of carfentanil in the human body, and data on its metabolites were later published. However, there have been few studies on the synthesis of carfentanil metabolites, and biological extraction has also put forward large uncertainty in subsequent studies. The aim of the present study is to investigate the synthesis of biphasic metabolites that are unique to carfentanil. The purpose was to produce corresponding metabolites conveniently, quickly, and at low cost that can be used for comparison with published structures and to confirm the administration of carfentanil.
Collapse
Affiliation(s)
- Junchang Wang
- Shanghai Yuansi Standard Science and Technology Co., Ltd., Shanghai 200072, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200072, China
| | - Jianwen Hu
- Shanghai Yuansi Standard Science and Technology Co., Ltd., Shanghai 200072, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200072, China
| | - Pingyong Liao
- Shanghai Yuansi Standard Science and Technology Co., Ltd., Shanghai 200072, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200072, China
| | - Shang Xue
- Shanghai Yuansi Standard Science and Technology Co., Ltd., Shanghai 200072, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200072, China
| | - Shan He
- Shanghai Yuansi Standard Science and Technology Co., Ltd., Shanghai 200072, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200072, China
| | - Ruijia Chen
- Shanghai Yuansi Standard Science and Technology Co., Ltd., Shanghai 200072, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200072, China
| | - Xuejun Zhao
- Shanghai Yuansi Standard Science and Technology Co., Ltd., Shanghai 200072, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200072, China
| | - Wenbin Liu
- Shanghai Yuansi Standard Science and Technology Co., Ltd., Shanghai 200072, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200072, China
| |
Collapse
|
5
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
6
|
Mann J, Samieegohar M, Chaturbedi A, Zirkle J, Han X, Ahmadi SF, Eshleman A, Janowsky A, Wolfrum K, Swanson T, Bloom S, Dahan A, Olofsen E, Florian J, Strauss DG, Li Z. Development of a Translational Model to Assess the Impact of Opioid Overdose and Naloxone Dosing on Respiratory Depression and Cardiac Arrest. Clin Pharmacol Ther 2022; 112:1020-1032. [PMID: 35766413 DOI: 10.1002/cpt.2696] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/12/2022] [Indexed: 11/07/2022]
Abstract
In response to a surge of deaths from synthetic opioid overdoses, there have been increased efforts to distribute naloxone products in community settings. Prior research has assessed the effectiveness of naloxone in the hospital setting; however, it is challenging to assess naloxone dosing regimens in the community/first-responder setting, including reversal of respiratory depression effects of fentanyl and its derivatives (fentanyls). Here, we describe the development and validation of a mechanistic model that combines opioid mu receptor binding kinetics, opioid agonist and antagonist pharmacokinetics, and human respiratory and circulatory physiology, to evaluate naloxone dosing to reverse respiratory depression. Validation supports our model, which can quantitatively predict displacement of opioids by naloxone from opioid mu receptors in vitro, hypoxia-induced cardiac arrest in vivo, and opioid-induced respiratory depression in humans from different fentanyls. After validation, overdose simulations were performed with fentanyl and carfentanil followed by administration of different intramuscular naloxone products. Carfentanil induced more cardiac arrest events and was more difficult to reverse than fentanyl. Opioid receptor binding data indicated that carfentanil has substantially slower dissociation kinetics from the opioid receptor compared to 9 other fentanyls tested, which likely contributes to the difficulty in reversing carfentanil. Administration of the same dose of naloxone intramuscularly from 2 different naloxone products with different formulations resulted in differences in the number of virtual patients experiencing cardiac arrest. This work provides a robust framework to evaluate dosing regimens of opioid receptor antagonists to reverse opioid-induced respiratory depression, including those caused by newly emerging synthetic opioids.
Collapse
Affiliation(s)
- John Mann
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mohammadreza Samieegohar
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anik Chaturbedi
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Joel Zirkle
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xiaomei Han
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - S Farzad Ahmadi
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amy Eshleman
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Aaron Janowsky
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Katherine Wolfrum
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Tracy Swanson
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Shelley Bloom
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Albert Dahan
- Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Olofsen
- Leiden University Medical Center, Leiden, The Netherlands
| | - Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
7
|
Yang W, Singla R, Maheshwari O, Fontaine CJ, Gil-Mohapel J. Alcohol Use Disorder: Neurobiology and Therapeutics. Biomedicines 2022; 10:1192. [PMID: 35625928 PMCID: PMC9139063 DOI: 10.3390/biomedicines10051192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol use disorder (AUD) encompasses the dysregulation of multiple brain circuits involved in executive function leading to excessive consumption of alcohol, despite negative health and social consequences and feelings of withdrawal when access to alcohol is prevented. Ethanol exerts its toxicity through changes to multiple neurotransmitter systems, including serotonin, dopamine, gamma-aminobutyric acid, glutamate, acetylcholine, and opioid systems. These neurotransmitter imbalances result in dysregulation of brain circuits responsible for reward, motivation, decision making, affect, and the stress response. Despite serious health and psychosocial consequences, this disorder still remains one of the leading causes of death globally. Treatment options include both psychological and pharmacological interventions, which are aimed at reducing alcohol consumption and/or promoting abstinence while also addressing dysfunctional behaviours and impaired functioning. However, stigma and social barriers to accessing care continue to impact many individuals. AUD treatment should focus not only on restoring the physiological and neurological impairment directly caused by alcohol toxicity but also on addressing psychosocial factors associated with AUD that often prevent access to treatment. This review summarizes the impact of alcohol toxicity on brain neurocircuitry in the context of AUD and discusses pharmacological and non-pharmacological therapies currently available to treat this addiction disorder.
Collapse
Affiliation(s)
- Waisley Yang
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
| | - Rohit Singla
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
| | - Oshin Maheshwari
- Psychiatry Residency Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8W 3P5, Canada;
| | | | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| |
Collapse
|
8
|
Dalton C, Watkins R, Pritchard S, Graham S. Percutaneous absorption of Carfentanil in vitro. Toxicol In Vitro 2021; 72:105100. [PMID: 33493622 DOI: 10.1016/j.tiv.2021.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Carfentanil is a synthetic opioid restricted to veterinary use due to its potency. Public health concerns have been raised as to the potential of carfentanil to exhibit toxicity after absorption via the percutaneous route following unintentional contamination. The current study measured the penetration of free base carfentanil through human, pig and rat skin using in vitro static diffusion cells. The human penetration rates were compared against literature toxicology values and indicated that, dependent on the contamination density, contamination area and residence time, skin decontamination and medical countermeasures may be required to ameliorate toxicity. The pig and rat skin penetration data will form the basis of future work to develop relevant in silico and in vivo models to further elucidate likely toxic effects and the medical strategies to mitigate against them.
Collapse
Affiliation(s)
| | | | | | - Stuart Graham
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
9
|
Zawilska JB, Kuczyńska K, Kosmal W, Markiewicz K, Adamowicz P. Carfentanil - from an animal anesthetic to a deadly illicit drug. Forensic Sci Int 2021; 320:110715. [PMID: 33581655 DOI: 10.1016/j.forsciint.2021.110715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
The use of novel synthetic opioids as recreational drugs has become a public health concern as they are implicated in numerous fatal intoxications across the world. Synthetic opioids have played a major role in the United States opioid crisis and may contribute to a similar opioid epidemic in Europe. The most prominent group of designer opioids consists of fentanyl and its analogues. At present, carfentanil is the most dangerous fentanyl derivative. It was recently detected as an adulterant to other illicit drugs and counterfeit pharmaceuticals, contributing to life-threatening hospital admissions and fatalities. Toxic exposure to carfentanil typically occurs through injection, insufflation or inhalation. Carfentanil produces similar pharmacotoxicological effects to other opioids. However, due to its extraordinary potency, reversing carfentanil-induced severe and recurring respiratory depression requires administration of multiple or higher than standard doses of naloxone. Toxicological reports indicate that carfentanil use is strongly connected to polydrug use. Detection of carfentanil requires specific and sensitive analytical methods that are not commonly available in hospitals. Since abuse of carfentanil is an emerging problem, particularly in the United States, there is an urgent need to develop new techniques for rapid determination of intoxication evoked by this drug as well as new treatment regimens for effective overdose maintenance. This review presents current knowledge on pharmacological activity of carfentanil, prevalence and patterns of use, and analytical methods of its detection. Special emphasis is given to carfentanil-related non-fatal and lethal overdose cases.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Lodz, Lodz, Poland.
| | | | - Wiktoria Kosmal
- Department of Pharmacodynamics, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
10
|
Ringuette AE, Spock M, Lindsley CW, Bender AM. DARK Classics in Chemical Neuroscience: Carfentanil. ACS Chem Neurosci 2020; 11:3955-3967. [PMID: 32786301 DOI: 10.1021/acschemneuro.0c00441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because of its remarkable potency and relative ease of synthesis, carfentanil (1) has recently emerged as a problematic contaminant in other drugs of abuse. Carfentanil and its close analogs, currently approved only for large animal veterinary medicine, have found use both as illicit additives to the clandestine manufacture of scheduled drugs and as chemical weapons. In this Review, the background, synthesis, manufacture, metabolism, pharmacology, approved indications, dosage, and adverse effects of carfentanil will be discussed along with its emergence as a key player in the ongoing opioid crisis.
Collapse
Affiliation(s)
- Anna E. Ringuette
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, , Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Matthew Spock
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, , Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, , Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, , Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
11
|
Langston JL, Moffett MC, Makar JR, Burgan BM, Myers TM. Carfentanil toxicity in the African green monkey: Therapeutic efficacy of naloxone. Toxicol Lett 2020; 325:34-42. [PMID: 32070766 DOI: 10.1016/j.toxlet.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 11/27/2022]
Abstract
Carfentanil is an ultra-potent opioid with an analgesic potency 10,000 times that of morphine but has received little scientific investigation. Three experiments were conducted to evaluate the toxicity of carfentanil and the efficacy of naloxone in adult male African green monkeys. The first experiment determined the ED50 (found to be 0.71 μg/kg) of subcutaneous carfentanil for inducing bradypnea and/or loss of posture. Experiment 2 attempted to establish the ED50 of naloxone for rapidly reversing the bradypnea/loss of posture induced by carfentanil (1.15 μg/kg). Experiment 3 evaluated the effects of carfentanil (0.575 μg/kg) alone, the safety of naloxone (71-2841 μg/kg), and the efficacy of naloxone (71-710 μg/kg) administration at two time points following carfentanil (1.15 μg/kg) on operant choice reaction time. Collectively, these experiments characterized the temporal progression of carfentanil-induced toxic signs, determined the range of naloxone doses that restored respiratory and gross behavioral function, and determined the time course and range of naloxone doses that partially or completely reversed the effects of carfentanil on operant choice reaction time performance in African green monkeys. These results have practical relevance for the selection of opioid antagonists, initial doses, and expected functional outcomes following treatment of synthetic opioid overdose in a variety of operational/emergency response contexts.
Collapse
Affiliation(s)
- Jeffrey L Langston
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States
| | - Mark C Moffett
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States
| | - Jennifer R Makar
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States
| | - Bradley M Burgan
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States
| | - Todd M Myers
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States.
| |
Collapse
|
12
|
Lent EM, Maistros KJ, Oyler JM. In vitro dermal absorption of carfentanil. Toxicol In Vitro 2020; 62:104696. [DOI: 10.1016/j.tiv.2019.104696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022]
|
13
|
Tuet WY, Pierce SA, Racine MC, Tressler J, McCranor BJ, Sciuto AM, Wong B. Changes in murine respiratory dynamics induced by aerosolized carfentanil inhalation: Efficacy of naloxone and naltrexone. Toxicol Lett 2019; 316:127-135. [DOI: 10.1016/j.toxlet.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 09/14/2019] [Indexed: 11/28/2022]
|
14
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Smith LC, Bremer PT, Hwang CS, Zhou B, Ellis B, Hixon MS, Janda KD. Monoclonal Antibodies for Combating Synthetic Opioid Intoxication. J Am Chem Soc 2019; 141:10489-10503. [PMID: 31187995 DOI: 10.1021/jacs.9b04872] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Opioid abuse in the United States has been declared a national crisis and is exacerbated by an inexpensive, readily available, and illicit supply of synthetic opioids. Specifically, fentanyl and related analogues such as carfentanil pose a significant danger to opioid users due to their high potency and rapid acting depression of respiration. In recent years these synthetic opioids have become the number one cause of drug-related deaths. In our research efforts to combat the public health threat posed by synthetic opioids, we have developed monoclonal antibodies (mAbs) against the fentanyl class of drugs. The mAbs were generated in hybridomas derived from mice vaccinated with a fentanyl conjugate vaccine. Guided by a surface plasmon resonance (SPR) binding assay, we selected six hybridomas that produced mAbs with 10-11 M binding affinity for fentanyl, yet broad cross-reactivity with related fentanyl analogues. In mouse antinociception models, our lead mAb (6A4) could blunt the effects of both fentanyl and carfentanil in a dose-responsive manner. Additionally, mice pretreated with 6A4 displayed enhanced survival when subjected to fentanyl above LD50 doses. Pharmacokinetic analysis revealed that the antibody sequesters large amounts of these drugs in the blood, thus reducing drug biodistribution to the brain and other tissue. Lastly, the 6A4 mAb could effectively reverse fentanyl/carfentanil-induced antinociception comparable to the opioid antagonist naloxone, the standard of care drug for treating opioid overdose. While naloxone is known for its short half-life, we found the half-life of 6A4 to be approximately 6 days in mice, thus monoclonal antibodies could theoretically be useful in preventing renarcotization events in which opioid intoxication recurs following quick metabolism of naloxone. Our results as a whole demonstrate that monoclonal antibodies could be a desirable treatment modality for synthetic opioid overdose and possibly opioid use disorder.
Collapse
Affiliation(s)
- Lauren C Smith
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Paul T Bremer
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Cessation Therapeutics LLC , 3031 Tisch Way Ste 505 , San Jose , California 95128 , United States
| | - Candy S Hwang
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Department of Chemistry , Southern Connecticut State University , New Haven , Connecticut 06515 , United States
| | - Bin Zhou
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Beverly Ellis
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Mark S Hixon
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Mark S. Hixon Consulting LLC , 11273 Spitfire Road , San Diego , California 92126 , United States
| | - Kim D Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
16
|
Kim HK, Connors NJ, Mazer-Amirshahi ME. The role of take-home naloxone in the epidemic of opioid overdose involving illicitly manufactured fentanyl and its analogs. Expert Opin Drug Saf 2019; 18:465-475. [DOI: 10.1080/14740338.2019.1613372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hong K. Kim
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas J. Connors
- Department of Emergency Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Maryann E. Mazer-Amirshahi
- Department of Emergency Medicine, MedStar Washington Hospital Center, Washington, DC, USA
- School of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
17
|
Evidence for nonlinear accumulation of the ultrapotent fentanyl analog, carfentanil, after systemic administration to male rats. Neuropharmacology 2019; 158:107596. [PMID: 30965021 DOI: 10.1016/j.neuropharm.2019.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022]
Abstract
The current opioid overdose crisis is being exacerbated by illicitly manufactured fentanyl and its analogs. Carfentanil is a fentanyl analog that is 10,000-times more potent than morphine, but limited information is available about its pharmacology. The present study had two aims: 1) to validate a method for quantifying carfentanil and its metabolite norcarfentanil in small-volume samples, and 2) to use the method for examining pharmacodynamic-pharmacokinetic relationships in rats. The analytical method involved liquid-liquid extraction of plasma samples followed by quantitation of carfentanil and norcarfentanil using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method was validated following SWGTOX guidelines, and both analytes displayed limits of detection and quantification at 7.5 and 15 pg/mL, respectively. Male Sprague-Dawley rats fitted with jugular catheters and temperature transponders received subcutaneous carfentanil (1, 3 and 10 μg/kg) or saline. Repeated blood specimens were obtained over 8 h, along with pharmacodynamic measures including core temperature and catalepsy scores. Carfentanil produced dose-related hypothermia and catalepsy that lasted up to 8 h. Carfentanil Cmax occurred at 15 min whereas metabolite Cmax was at 1-2 h. Concentrations of both analytes increased in a dose-related fashion, but area-under-the-curve values were much greater than predicted after 10 μg/kg. Plasma half-life for carfentanil increased at higher doses. Our findings reveal that carfentanil produces marked hypothermia and catalepsy, which is accompanied by nonlinear accumulation of the drug at high doses. We hypothesize that impaired clearance of carfentanil in humans could contribute to life-threatening effects of this ultrapotent opioid agonist. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
|
18
|
Carfentanil: a narrative review of its pharmacology and public health concerns. Can J Anaesth 2019; 66:414-421. [PMID: 30666589 DOI: 10.1007/s12630-019-01294-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 01/20/2023] Open
Abstract
Carfentanil is a synthetic fentanyl analogue approved for veterinary use. It is a mu-opioid receptor agonist with an estimated analgesic potency approximately 10,000 times that of morphine and 20-30 times that of fentanyl, based on animal studies. Since 2016, an increasing number of reports describe detection of carfentanil in the illicit drug supply. Little is known about the pharmacology of carfentanil in humans. Its high potency and presumed high lipophilicity, large volume of distribution, and potential active metabolites have raised concerns about the management of people exposed to carfentanil as well as the safety of first responders. Exposed individuals exhibit features of an opioid toxidrome and respond to opioid antagonists such as naloxone, although empiric dose requirements are unknown and very high doses may be required. Rare reports of suspected accidental poisoning of first responders have not been analytically confirmed and are unlikely to represent true poisoning. General occupational hygiene measures, including regular decontamination with soap and water, basic personal protective equipment (nitrile gloves, N95 mask, and eye goggles), and ready access to naloxone are generally sufficient in most circumstances.
Collapse
|
19
|
Fujii K, Koshidaka Y, Adachi M, Takao K. Effects of chronic fentanyl administration on behavioral characteristics of mice. Neuropsychopharmacol Rep 2018; 39:17-35. [PMID: 30506634 PMCID: PMC7292323 DOI: 10.1002/npr2.12040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 01/16/2023] Open
Abstract
Background Fentanyl, a synthetic opioid categorized as a narcotic analgesic, has a 100‐ to 200‐fold stronger effect than most opioids, such as morphine. Fatal accidents due to chronic use and abuse of fentanyl are a worldwide social problem. One reason for the abuse of fentanyl is its psychostimulant effects that could induce behavioral changes. The effects of chronic fentanyl administration on behavior, however, are unclear. Methods Adult male C57BL/6J mice were chronically administered fentanyl (0.03 or 0.3 mg/kg/d i.p.), and various behaviors were assessed using a behavioral test battery. Results Mice chronically administered a high dose of fentanyl (0.3 mg/kg/d) exhibited decreased anxiety‐like behavior as assessed by the open field and elevated plus maze tests. On the other hand, interruption of fentanyl administration led to increased anxiety‐like behavior as observed in the light and dark transition test. The hot plate test revealed that chronic administration of fentanyl reduced pain sensitivity. High‐dose chronic fentanyl administration reduced the locomotor stimulatory effects of cocaine. The results, however, failed to reach the threshold for study‐wide statistical significance. Conclusion Chronic fentanyl administration induces some behavioral changes in mice. Although further studies are needed to clarify the underlying mechanisms of the behavioral effects of chronic fentanyl administration, our findings suggest that fentanyl is safe under properly controlled conditions. To investigate the effects of long‐term fentanyl use on brain function, adult male C57BL/6J mice were chronically administered fentanyl (0.03 or 0.3 mg/kg/d ip) and analyzed in a behavioral test battery. Chronic fentanyl administration reduced anxiety‐like behavior, pain sensitivity, and the locomotor stimulatory effects of cocaine in mice. The results, however, failed to reach the threshold for study‐wide statistical significance.![]()
Collapse
Affiliation(s)
- Kazuki Fujii
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Mayumi Adachi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Abstract
Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy.
Collapse
Affiliation(s)
- Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| |
Collapse
|
21
|
Uddayasankar U, Lee C, Oleschuk C, Eschun G, Ariano RE. The Pharmacokinetics and Pharmacodynamics of Carfentanil After Recreational Exposure: A Case Report. Pharmacotherapy 2018; 38:e41-e45. [PMID: 29679387 DOI: 10.1002/phar.2117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Carfentanil and related fentanyl analogs have been linked to a number of overdose deaths from drug users in several cities across North America. Diagnosis of carfentanil exposure requires a very high index of clinical suspicion, especially because available laboratory narcotic screens do not detect this agent. We describe a 34-year-old man admitted with depressed level of consciousness and in respiratory failure after recreational exposure to a white powder later inferred to contain carfentanil. Urine and whole blood samples were obtained for conventional preliminary drug screen immunoassays for unknown exposures, in addition to utilizing a high-pressure liquid chromatography-tandem mass spectrometry assay for quantification of carfentanil and its metabolite. The patient was intubated and required mechanically assisted ventilation for 31 hours until he was able to breathe safely on his own. Pharmacokinetic modeling of three timed blood samples identified the elimination half-life as 5.7 hours for carfentanil and 11.8 hours for the norcarfentanil metabolite. Awakening and breathing spontaneously corresponded to an interpolated blood carfentanil concentration of 0.52 ng/ml. This is the first pharmacokinetic and pharmacodynamic case report on the recreational use of carfentanil. Critical care clinicians should anticipate long periods of ventilatory support in the care of patients exposed to carfentanil.
Collapse
Affiliation(s)
| | - Colin Lee
- Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | | | - Gregg Eschun
- Pulmonary Medicine and Critical Care, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert E Ariano
- Department of Pharmacy, St. Boniface Hospital, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Tiscione NB, Alford I. Carfentanil in Impaired Driving Cases and the Importance of Drug Seizure Data. J Anal Toxicol 2018; 42:476-484. [PMID: 29659874 DOI: 10.1093/jat/bky026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/17/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Nicholas B Tiscione
- Palm Beach County Sheriff’s Office, 3228 Gun Club Road, West Palm Beach, FL, USA
| | - Ilene Alford
- Palm Beach County Sheriff’s Office, 3228 Gun Club Road, West Palm Beach, FL, USA
| |
Collapse
|
23
|
Abstract
New psychoactive substances (NPS), namely cannabinoids, cathinones, and opioids, have surged in popularity among school-age children, resulting in serious morbidity and mortality globally. In the last decade, there has been a rapid evolution of NPS resulting in hundreds of new compounds. Little to no evidence for humans is available on most compounds. The clinical presentations of patients intoxicated with cannabinoids and cathinones are highly variable but most commonly present with a sympathomimetic toxidrome, for example, agitation, delirium, and tachycardia. Those with opioids present with a classic opioid toxidrome: coma, dilated pupils, and respiratory failure.
Collapse
Affiliation(s)
- Brandon J Warrick
- University of New Mexico, NMPDIC MSC07 4390, 1 University of New Mexico, Albuquerque, NM 87107-0001, USA.
| | - Anita Paula Tataru
- Faculty of Pharmaceutical Sciences, University of British Columbia, British Columbia, Canada
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Lab, University of California, San Francisco, 513 Parnassus Avenue, Medical Sciences Building S864, San Francisco, CA 94143, USA
| |
Collapse
|
24
|
George O. Individual differences in the neuropsychopathology of addiction. DIALOGUES IN CLINICAL NEUROSCIENCE 2017; 19:217-229. [PMID: 29302219 PMCID: PMC5741105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy.
Collapse
Affiliation(s)
- Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
25
|
Fentanyls continue to replace heroin in the drug arena: the cases of ocfentanil and carfentanil. Forensic Toxicol 2017; 36:12-32. [PMID: 29367860 PMCID: PMC5754389 DOI: 10.1007/s11419-017-0379-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/23/2017] [Indexed: 01/25/2023]
Abstract
Purpose Ocfentanil and carfentanil are two potent synthetic opioids that are analogues of fentanyl and are actively involved in the recent fentanyl crisis. The aim of this review is to provide all the available information on these two fentanyl analogues. Methods All reviewed information was gathered through a detailed search of PubMed and the World Wide Web using relevant keywords. Results Like most of the members of the family of fentanyls, they are either sold as heroin to unsuspecting users or used extensively to lace heroin street samples. Despite the fact that ocfentanil was studied clinically in the early 1990s, it did not manage to find its place in clinical practice. On the other hand, carfentanil is mainly used today as an anesthetic agent in large animals. Ocfentanil and carfentanil are used and abused extensively, mainly in Europe and in the United States. As a result, they are the cause of some verified intoxication cases and deaths worldwide. This review provides information concerning chemistry, synthesis, prevalence, pharmacology, and toxicology, as well as the current legal status of these two fentanyl analogues. Analytical methods developed for the determination of ocfentanil and carfentanil in biological specimens and seized materials, as well as related intoxication and lethal cases are also presented. Conclusions Ocfentanil and carfentanil are undeniably very dangerous opioid drugs and a very serious matter of concern for public safety. The authorities should take the appropriate actions to avoid the expansion of this threat by taking proper and prompt measures.
Collapse
|
26
|
Müller S, Nussbaumer S, Plitzko G, Ludwig R, Weinmann W, Krähenbühl S, Liakoni E. Recreational use of carfentanil – a case report with laboratory confirmation. Clin Toxicol (Phila) 2017; 56:151-152. [DOI: 10.1080/15563650.2017.1355464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sabine Müller
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Gabriel Plitzko
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roger Ludwig
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wolfgang Weinmann
- Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Stephan Krähenbühl
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital of Basel, Basel, Switzerland
| | - Evangelia Liakoni
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 2016; 3:760-773. [PMID: 27475769 PMCID: PMC6135092 DOI: 10.1016/s2215-0366(16)00104-8] [Citation(s) in RCA: 2053] [Impact Index Per Article: 228.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
Abstract
Drug addiction represents a dramatic dysregulation of motivational circuits that is caused by a combination of exaggerated incentive salience and habit formation, reward deficits and stress surfeits, and compromised executive function in three stages. The rewarding effects of drugs of abuse, development of incentive salience, and development of drug-seeking habits in the binge/intoxication stage involve changes in dopamine and opioid peptides in the basal ganglia. The increases in negative emotional states and dysphoric and stress-like responses in the withdrawal/negative affect stage involve decreases in the function of the dopamine component of the reward system and recruitment of brain stress neurotransmitters, such as corticotropin-releasing factor and dynorphin, in the neurocircuitry of the extended amygdala. The craving and deficits in executive function in the so-called preoccupation/anticipation stage involve the dysregulation of key afferent projections from the prefrontal cortex and insula, including glutamate, to the basal ganglia and extended amygdala. Molecular genetic studies have identified transduction and transcription factors that act in neurocircuitry associated with the development and maintenance of addiction that might mediate initial vulnerability, maintenance, and relapse associated with addiction.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
28
|
Wiers CE, Cabrera E, Skarda E, Volkow ND, Wang GJ. PET imaging for addiction medicine: From neural mechanisms to clinical considerations. PROGRESS IN BRAIN RESEARCH 2015; 224:175-201. [PMID: 26822359 DOI: 10.1016/bs.pbr.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Positron emission tomography (PET) has been shown to be an effective imaging technique to study neurometabolic and neurochemical processes involved in addiction. That is, PET has been used to research neurobiological differences in substance abusers versus healthy controls and the pharmacokinetics and pharmacodynamics of abused drugs. Over the past years, the research scope has shifted to investigating neurobiological effects of abstinence and treatment, and their predictive power for relapse and other clinical outcomes. This chapter provides an overview of PET methodology, recent human PET studies on drug addiction and their implications for clinical treatment.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth Cabrera
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Emily Skarda
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Parker LA. Conditioned flavor avoidance and conditioned gaping: rat models of conditioned nausea. Eur J Pharmacol 2013; 722:122-33. [PMID: 24157975 DOI: 10.1016/j.ejphar.2013.09.070] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 01/06/2023]
Abstract
Although rats are incapable of vomiting, they demonstrate profound avoidance of a flavor previously paired with an emetic drug. They also display conditioned gaping reactions during re-exposure to the flavor. This robust learning occurs in a single trial and with long delays (hours) between consumption of a novel flavor and the emetic treatment. However, conditioned flavor avoidance learning is not a selective measure of the emetic properties of drugs, because non-emetic treatments (even highly rewarding treatments) produce conditioned avoidance, and anti-emetic treatments are generally ineffective in suppressing conditioned avoidance produced by an emetic drug. On the other hand, conditioned gaping reactions are consistently produced by emetic drugs and are prevented by anti-emetic drugs, indicating that they may be a more selective measure of conditioned malaise in rats. Here we review the literature on the use of conditioned flavor avoidance and conditioned gaping reactions as rat measures of conditioned nausea, as well as the neuropharmacology and neuroanatomy of conditioned gaping reactions in rats.
Collapse
Affiliation(s)
- Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|