1
|
Lian PA, Zhu WQ, Zhao WX, Huang PP, Ran JL, Tang YX, Huang XS, Li R. Lipoprotein(a) in atherosclerotic cardiovascular disease and proprotein convertase subtilisin/kexin-type 9 inhibitors. Clin Chim Acta 2025; 565:119982. [PMID: 39366516 DOI: 10.1016/j.cca.2024.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
High plasma lipoprotein(a) (Lp(a)) levels increase the cardiovascular risk in populations with atherosclerotic cardiovascular disease (ASCVD). Apolipoprotein (a) [apo(a)], a unique protein component of Lp(a), plays an important role in the pathogenesis of atherosclerosis. Statins, the primary medication in managing ASCVD, lower low-density lipoprotein cholesterol (LDL-C) but concurrently elevate plasma Lp(a) levels, contributing to an increased residual cardiovascular risk. In turn, proprotein convertase subtilisin/kexin-type 9 (PCSK9) inhibitors, a novel class of LDL-C lowering drugs, effectively reduce plasma Lp(a) levels, which is believed to decrease residual cardiovascular risk. However, the mechanism by which PCSK9 inhibitors reduce Lp(a) levels remains unknown. In addition, there are some clinical limitations of PCSK9 inhibitors. Here, we systematically review the past, present, and prospects of studies pertaining to Lp(a), PCSK9 inhibitors, and ASCVD.
Collapse
Affiliation(s)
- Ping-An Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Qiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei-Xin Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Piao-Piao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan-Li Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Xin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Sheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cardiovascular Medicine, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Stomatology, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China.
| |
Collapse
|
2
|
Qin T, Ma TY, Huang K, Lu SJ, Zhong JH, Li JJ. Lipoprotein (a)-Related Inflammatory Imbalance: A Novel Horizon for the Development of Atherosclerosis. Curr Atheroscler Rep 2024; 26:383-394. [PMID: 38878139 PMCID: PMC11236888 DOI: 10.1007/s11883-024-01215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW The primary objective of this review is to explore the pathophysiological roles and clinical implications of lipoprotein(a) [Lp(a)] in the context of atherosclerotic cardiovascular disease (ASCVD). We seek to understand how Lp(a) contributes to inflammation and arteriosclerosis, aiming to provide new insights into the mechanisms of ASCVD progression. RECENT FINDINGS Recent research highlights Lp(a) as an independent risk factor for ASCVD. Studies show that Lp(a) not only promotes the inflammatory processes but also interacts with various cellular components, leading to endothelial dysfunction and smooth muscle cell proliferation. The dual role of Lp(a) in both instigating and, under certain conditions, mitigating inflammation is particularly noteworthy. This review finds that Lp(a) plays a complex role in the development of ASCVD through its involvement in inflammatory pathways. The interplay between Lp(a) levels and inflammatory responses highlights its potential as a target for therapeutic intervention. These insights could pave the way for novel approaches in managing and preventing ASCVD, urging further investigation into Lp(a) as a therapeutic target.
Collapse
Affiliation(s)
- Ting Qin
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Tian-Yi Ma
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Kang Huang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Shi-Juan Lu
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China.
| | - Jiang-Hua Zhong
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China.
| | - Jian-Jun Li
- Cadiometabolic Center, State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
3
|
Youyou Z, Ruirui J, Hui W, Zhaoyang L. Association between lipoprotein(a) and ischemic stroke: Fibrinogen as a mediator. J Neurol Sci 2023; 452:120738. [PMID: 37517272 DOI: 10.1016/j.jns.2023.120738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Previous studies have reported lipoprotein(a) was related to increased risk of ischemic stroke. However, the role of fibrinogen in their associations was not fully elucidated. AIM We aimed to investigate the mediating role of fibrinogen in the association between lipoprotein(a) and risk of ischemic stroke. METHODS A total of 516 patients with ischemic stroke were matched 1:1 to patients without ischemic stroke for age and gender. Serum lipoprotein(a) and plasma fibrinogen levels were collected on the basis of the results of biochemical tests. Multivariate conditional logistic regression analyses were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for lipoprotein(a) levels and ischemic stroke risk. Mediation analysis were further conducted to evaluate the potential mediating role of fibrinogen in the association between lipoprotein(a) and ischemic stroke risk. RESULTS The lipoprotein(a) level of subjects with ischemic stroke was significantly higher than that of subjects without ischemic stroke (P < 0.001). Each SD increment of lipoprotein(a) was associated with 27% higher odds (OR 1.27, 95%CI: 1.11, 1.45) increment in ORs of ischemic stroke. Furthermore, mediation analyses indicated that fibrinogen mediated 10.15% of the associations between lipoprotein(a) and ischemic stroke. CONCLUSIONS Higher level of lipoprotein(a) was independently associated with increased risk of ischemic stroke and fibrinogen partially mediated the associations of lipoprotein(a) and ischemic stroke risk.
Collapse
Affiliation(s)
- Zhang Youyou
- Department of Geriatric Neurology, the Second Affiliated Hospital, Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, 710004, Shaanxi, PR China
| | - Jia Ruirui
- Department of Geriatric Neurology, the Second Affiliated Hospital, Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, 710004, Shaanxi, PR China
| | - Wang Hui
- Department of Geriatric Neurology, the Second Affiliated Hospital, Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, 710004, Shaanxi, PR China
| | - Li Zhaoyang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, NO. 76, West Yanta Road, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
4
|
Dzobo KE, Kraaijenhof JM, Stroes ES, Nurmohamed NS, Kroon J. Lipoprotein(a): An underestimated inflammatory mastermind. Atherosclerosis 2022; 349:101-109. [DOI: 10.1016/j.atherosclerosis.2022.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/09/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
|
5
|
Increased Serum CD14 Level Is Associated with Depletion of TNF-α in Monocytes in Migraine Patients during Interictal Period. Int J Mol Sci 2017; 18:ijms18020398. [PMID: 28208835 PMCID: PMC5343933 DOI: 10.3390/ijms18020398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the levels of circulating CD14 in relation to the expression of tumor necrosis factor alpha (TNF-α) in monocytes, and serum levels of TNF-α and macrophage inflammatory protein-1 (MIP-1) in migraine patients. Numerous studies revealed controversial changes in the components of the immune system during attacks and the interictal period in migraine patients. Our study included 40 migraineurs and 39 controls. The levels of TNF-α, MIP-1 and CD14 were measured in peripheral monocytes and in sera with the Enzyme-Linked Immunosorbent Assay (ELISA) method, and the monocyte expression of TNF-α was also analysed by immunostaining. Serum CD14 concentrations were higher and the expression of TNF-α in monocytes was decreased in migraineurs. The serum MIP-1 level correlated with Verbal Rating Scale (VRS); the MIP-1:CD14 ratio in monocytes correlated with Visual Analogue Scale (VAS); the MIP-1:CD14 ratio correlated with Migraine Severity (MIGSEV)-Pain scores; and serum CD14 concentration correlated with migraine duration in years. Increased serum CD14 and depletion of TNF-α in monocytes can orchestrate other components of the immune system during the interictal period.
Collapse
|
6
|
Kotani K, Sahebkar A, Serban MC, Ursoniu S, Mikhailidis DP, Mariscalco G, Jones SR, Martin S, Blaha MJ, Toth PP, Rizzo M, Kostner K, Rysz J, Banach M. Lipoprotein(a) Levels in Patients With Abdominal Aortic Aneurysm. Angiology 2016; 68:99-108. [PMID: 26980774 DOI: 10.1177/0003319716637792] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Circulating markers relevant to the development of abdominal aortic aneurysm (AAA) are currently required. Lipoprotein(a), Lp(a), is considered a candidate marker associated with the presence of AAA. The present meta-analysis aimed to evaluate the association between circulating Lp(a) levels and the presence of AAA. The PubMed-based search was conducted up to April 30, 2015, to identify the studies focusing on Lp(a) levels in patients with AAA and controls. Quantitative data synthesis was performed using a random effects model, with standardized mean difference (SMD) and 95% confidence interval (CI) as summary statistics. Overall, 9 studies were identified. After a combined analysis, patients with AAA were found to have a significantly higher level of Lp(a) compared to the controls (SMD: 0.87, 95% CI: 0.41-1.33, P < .001). This result remained robust in the sensitivity analysis, and its significance was not influenced after omitting each of the included studies from the meta-analysis. The present meta-analysis confirmed a higher level of circulating Lp(a) in patients with AAA compared to controls. High Lp(a) levels can be associated with the presence of AAA, and Lp(a) may be a marker in screening for AAA. Further studies are needed to establish the clinical utility of measuring Lp(a) in the prevention and management of AAA.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- 1 Division of Community and Family Medicine, Jichi Medical University, Shimotsuke-City, Japan
| | - Amirhossein Sahebkar
- 2 Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,3 Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Maria-Corina Serban
- 4 Discipline of Pathophysiology, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Sorin Ursoniu
- 5 Discipline of Public Health, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dimitri P Mikhailidis
- 6 Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London, London, United Kingdom
| | - Giovanni Mariscalco
- 7 Department of Cardiovascular Sciences, University of Leicester Glenfield Hospital, Leicester, United Kingdom
| | - Steven R Jones
- 8 The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Seth Martin
- 8 The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Michael J Blaha
- 8 The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Peter P Toth
- 8 The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA.,9 Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Manfredi Rizzo
- 10 Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Karam Kostner
- 11 Mater Hospital, University of Queensland, St Lucia, Australia
| | - Jacek Rysz
- 12 Department of Hypertension, Nephrology and Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Poland
| | - Maciej Banach
- 12 Department of Hypertension, Nephrology and Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Poland
| | | |
Collapse
|
7
|
Abstract
The prevalence of thrombophilia and dyslipidemia among young survivors of acute coronary syndrome has not been clearly defined. The purpose of the current study was to investigate the prevalence of multiple markers of thrombophilia and dyslipidemia in a cohort of consecutive young survivors of acute coronary syndrome. The study cohort included 156 consecutive young patients (men <45 and women <50 years), admitted to the intensive cardiac care unit with newly diagnosed acute coronary syndrome. Analysis included baseline, clinical and epidemiological characteristics, angiographic coronary anatomy, echocardiographic evaluation, extensive lipid and thrombophilia laboratory profiles, and in-hospital and 1-year clinical outcomes for all patients. Acute myocardial infarction was diagnosed in 142 (92 %) patients, of whom 108 (72 %) had ST-segment elevation. Eighteen (12 %) patients had no traditional risk factors. Low levels of high-density lipoprotein (<40 mg/dL) were found in 101 (65 %) patients, and 49 (34 %) patients had elevated levels of lipoprotein(a) (Lp(a)) (>30 mg/dL). Eighteen (12 %) patients were diagnosed with antiphospholipid antibody syndrome (APS), and 73 (47 %) had at least one laboratory finding consistent with thrombophilia. Patients with APS had significantly higher levels of Lp(a) (46 ± 32 vs. 29 ± 31 mg/dL, p = 0.005). APS is a common prothrombotic state found in young survivors of acute coronary syndrome. Lp(a) levels are elevated among APS patients who present with premature acute coronary syndrome.
Collapse
|
8
|
Lipoprotein(a) in cardiovascular diseases. BIOMED RESEARCH INTERNATIONAL 2012; 2013:650989. [PMID: 23484137 PMCID: PMC3591100 DOI: 10.1155/2013/650989] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/18/2022]
Abstract
Lipoprotein(a) (Lp(a)) is an LDL-like molecule consisting of an apolipoprotein B-100 (apo(B-100)) particle attached by a disulphide bridge to apo(a). Many observations have pointed out that Lp(a) levels may be a risk factor for cardiovascular diseases. Lp(a) inhibits the activation of transforming growth factor (TGF) and contributes to the growth of arterial atherosclerotic lesions by promoting the proliferation of vascular smooth muscle cells and the migration of smooth muscle cells to endothelial cells. Moreover Lp(a) inhibits plasminogen binding to the surfaces of endothelial cells and decreases the activity of fibrin-dependent tissue-type plasminogen activator. Lp(a) may act as a proinflammatory mediator that augments the lesion formation in atherosclerotic plaques. Elevated serum Lp(a) is an independent predictor of coronary artery disease and myocardial infarction. Furthermore, Lp(a) levels should be a marker of restenosis after percutaneous transluminal coronary angioplasty, saphenous vein bypass graft atherosclerosis, and accelerated coronary atherosclerosis of cardiac transplantation. Finally, the possibility that Lp(a) may be a risk factor for ischemic stroke has been assessed in several studies. Recent findings suggest that Lp(a)-lowering therapy might be beneficial in patients with high Lp(a) levels. A future therapeutic approach could include apheresis in high-risk patients in order to reduce major coronary events.
Collapse
|
9
|
Petersen E, Wågberg F, Angquist KA. Does Lipoprotein(a) Inhibit Elastolysis in Abdominal Aortic Aneurysms? Eur J Vasc Endovasc Surg 2003; 26:423-8. [PMID: 14512007 DOI: 10.1016/s1078-5884(03)00178-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE to test the hypothesis that there is a negative association between serum levels of lipoprotein(a) (Lp(a)) and elastin-derived peptides (EDP) as well as matrix metalloproteinase (MMP)-9 activation in the aneurysm wall in patients with asymptomatic abdominal aortic aneurysms (AAA). MATERIAL AND METHODS from 30 patients operated for asymptomatic AAAs, preoperative serum samples and AAA biopsies were collected. Lp(a) (mg/L) and EDP (ng/ml) in serum were measured by enzyme linked immunosorbent assays. MMP-9 activity (arbitrary units) in the AAA wall was measured by gelatin zymography and the ratio: active MMP-9/total MMP-9 were calculated. RESULTS there was a significant negative correlation (Spearman's rho) between serum levels of Lp(a) and EDP (r= -0.707, p<0.001), as well as the share of activated MMP-9 (r= -0.461, p=0.01) in the AAA wall. CONCLUSION this preliminary study indicate that Lp(a) inhibit elastolysis in asymptomatic AAA.
Collapse
Affiliation(s)
- E Petersen
- Department of Surgery, Umeå University Hospital, Umeå, Sweden
| | | | | |
Collapse
|
10
|
Abstract
Although lipoprotein(a) (Lp[a]) has been recognized as an atherothrombogenic factor, the underlying mechanisms for this pathogenicity have not been clearly defined. Plasma levels have received most of the attention in this regard; however, discrepancies among population studies have surfaced. Particularly limited is the information on the fate of Lp(a) that enters the arterial wall, in terms of mechanisms of endothelial transport and interactions with cells and macromolecules of the extracellular matrix. A typical Lp(a) represents a low-density lipoprotein (LDL)-like particle having as a protein moiety apo B-100 linked by a single interchain disulfide bond to a unique multikringle glycoprotein, called apolipoprotein(a) (apo[a]). In vitro studies have shown that Lp(a) can be dissected into its constituents, LDL and apo(a). In turn, the latter can be cleaved by enzymes of the elastase and metalloproteinase families into fragments that exhibit a differential behavior in terms of binding to macromolecules of the extracellular matrix: fibrinogen, fibronectin, and proteoglycans. By immunochemical criteria, apo(a) predominantly localizes in areas of human arteries affected by the atherosclerotic process, where elastase and metalloproteinase enzymes operate and where apo(a) fragments are potentially generated. The accumulation of these fragments in the vessel wall is likely to depend on their affinity for the constituents of the extracellular matrix. Thus, factors that modulate inflammation and inflammation-mediated fragmentation of Lp(a)/apo(a) may play an important role in the cardiovascular pathogenicity of Lp(a). This pathogenicity may be attenuated by measures directed at preventing the activation of those vascular cells that secrete enzymes with a proteolytic potential for Lp(a)/apo(a), namely, leukocytes, macrophages, and T cells.
Collapse
Affiliation(s)
- A M Scanu
- Department of Medicine, The University of Chicago, Illinois 60637, USA
| |
Collapse
|