1
|
Kang M, Ahn B, Youk S, Jeon H, Soundarajan N, Cho ES, Park W, Park C. Individual and population diversity of 20 representative olfactory receptor genes in pigs. Sci Rep 2023; 13:18668. [PMID: 37907519 PMCID: PMC10618239 DOI: 10.1038/s41598-023-45784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Understanding the influence of genetic variations in olfactory receptor (OR) genes on the olfaction-influenced phenotypes such as behaviors, reproduction, and feeding is important in animal biology. However, our understanding of the complexity of the OR subgenome is limited. In this study, we analyzed 1120 typing results of 20 representative OR genes belonging to 13 OR families on 14 pig chromosomes from 56 individuals belonging to seven different breeds using a sequence-based OR typing method. We showed that the presence of copy number variations, conservation of locus-specific diversity, abundance of breed-specific alleles, presence of a loss-of-function allele, and low-level purifying selection in pig OR genes could be common characteristics of OR genes in mammals. The observed nucleotide sequence diversity of pig ORs was higher than that of dogs. To the best of our knowledge, this is the first report on the individual- or population-level characterization of a large number of OR family genes in livestock species.
Collapse
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seungyeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | | | - Eun-Seok Cho
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Le QVC, Youk S, Choi M, Jeon H, Kim WI, Ho CS, Park C. Development of an Immortalized Porcine Fibroblast Cell Panel With Different Swine Leukocyte Antigen Genotypes. Front Genet 2022; 13:815328. [PMID: 35198008 PMCID: PMC8859410 DOI: 10.3389/fgene.2022.815328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immortalized cell lines are valuable resources to expand the molecular characterization of major histocompatibility complex genes and their presented antigens. We generated a panel of immortalized cell lines by transfecting human telomerase reverse transcriptase (hTERT) into primary fibroblast cells prepared from ear, fetal, and lung tissues of 10 pigs from five breeds and successfully cultured them for 30-45 passages. The cell growth characteristic of the immortalized fibroblasts was similar to that of primary fibroblast, which was unable to form colonies on soft agar. The genotypes of major swine leukocyte antigen (SLA) genes, including three classical class I (SLA-1, -2, and -3) and three class II genes (DQB1, DRB1, and DQA), were determined using high-resolution typing. A total of 58 alleles, including a novel allele for SLA-2, were identified. Each cell line was unique. A cell line derived from a National Institutes of Health miniature pig was homozygous across the six major SLA genes. The expression levels of SLA classical class I genes varied among the cell lines and were slightly upregulated in the immortalized compared to the primary cells based on semiquantitative reverse transcription polymerase chain reaction. The immortalized porcine fibroblast cell lines with diverse SLA haplotypes that were developed in this study have potential to be applied in studies regarding the molecular characteristics and genetic structure of SLA genes and epitope-major histocompatibility complex interactions in pigs.
Collapse
Affiliation(s)
- Quy Van Chanh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - SeungYeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Munjeong Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Chak-Sum Ho
- Gift of Hope Organ & Tissue Donor Network, Itasca, IL, United States
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
3
|
Youk S, Le MT, Kang M, Ahn B, Choi M, Kim K, Kim TH, Kim JH, Ho CS, Park C. Development of a high-resolution typing method for SLA-3, swine MHC class I antigen 3. Anim Genet 2021; 53:166-170. [PMID: 34910829 DOI: 10.1111/age.13161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
We developed a high-resolution and comprehensive typing method for swine leukocyte antigen 3 (SLA-3), an MHC class I gene, employing locus-specific genomic PCR followed by subsequent direct sequencing. A total of 292 individuals from nine pure, one cross-breed and six cell lines were successfully typed. A total of 21 SLA-3 alleles were identified, of which four were found to be novel alleles. However, the allelic diversity of SLA-3 was lower than that of previously reported class I genes, SLA-1 and -2. More SLA-3 alleles were observed in the Landrace and Yorkshire breeds than the other breeds. SLA-3*04:01 was identified in seven out of nine breeds and was the most widely distributed allele across all breeds. Therefore, the typing method reported in this study completes our efforts to develop high-resolution typing methods for major SLA molecules, facilitating the combined analysis of major SLA genes from field samples, which is important to understand the relationship between the adaptive immune responses against pathogens and the immunogenetic makeup of an individual.
Collapse
Affiliation(s)
- S Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, 05029, Korea
| | - M T Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, 05029, Korea
| | - M Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, 05029, Korea
| | - B Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, 05029, Korea
| | - M Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, 05029, Korea
| | - K Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, 05029, Korea.,Livestock Support Department, National Agricultural Cooperative Federation Agribusiness Group, Seoul, 04516, Korea
| | - T H Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Korea
| | - J H Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, 05029, Korea
| | - C S Ho
- Gift of Hope Organ and Tissue Donor Network, 425 Spring Lake Drive, Itasca, IL, 60143, USA
| | - C Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
4
|
A comparative analysis of SLA-DRB1 genetic diversity in Colombian (creoles and commercial line) and worldwide swine populations. Sci Rep 2021; 11:4340. [PMID: 33619347 PMCID: PMC7900169 DOI: 10.1038/s41598-021-83637-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Analysing pig class II mayor histocompatibility complex (MHC) molecules is mainly related to antigen presentation. Identifying frequently-occurring alleles in pig populations is an important aspect to be considered when developing peptide-based vaccines. Colombian creole pig populations have had to adapt to local conditions since entering Colombia; a recent census has shown low amounts of pigs which is why they are considered protected by the Colombian government. Commercial hybrids are more attractive regarding production. This research has been aimed at describing the allele distribution of Colombian pigs from diverse genetic backgrounds and comparing Colombian SLA-DRB1 locus diversity to that of internationally reported populations. Twenty SLA-DRB1 alleles were identified in the six populations analysed here using sequence-based typing. The amount of alleles ranged from six (Manta and Casco Mula) to nine (San Pedreño). Only one allele (01:02) having > 5% frequency was shared by all three commercial line populations. Allele 02:01:01 was shared by five populations (around > 5% frequency). Global FST indicated that pig populations were clearly structured, as 20.6% of total allele frequency variation was explained by differences between populations (FST = 0.206). This study’s results confirmed that the greatest diversity occurred in wild boars, thereby contrasting with low diversity in domestic pig populations.
Collapse
|
5
|
Le MT, Choi H, Lee H, Le VCQ, Ahn B, Ho CS, Hong K, Song H, Kim JH, Park C. SLA-1 Genetic Diversity in Pigs: Extensive Analysis of Copy Number Variation, Heterozygosity, Expression, and Breed Specificity. Sci Rep 2020; 10:743. [PMID: 31959823 PMCID: PMC6971002 DOI: 10.1038/s41598-020-57712-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022] Open
Abstract
Swine leukocyte antigens play indispensable roles in immune responses by recognizing a large number of foreign antigens and thus, their genetic diversity plays a critical role in their functions. In this study, we developed a new high-resolution typing method for pig SLA-1 and successfully typed 307 individuals from diverse genetic backgrounds including 11 pure breeds, 1 cross bred, and 12 cell lines. We identified a total of 52 alleles including 18 novel alleles and 9 SLA-1 duplication haplotypes, including 4 new haplotypes. We observed significant differences in the distribution of SLA-1 alleles among the different pig breeds, including the breed specific alleles. SLA-1 duplication was observed in 33% of the chromosomes and was especially high in the biomedical model breeds such as SNU (100%) and NIH (76%) miniature pigs. Our analysis showed that SLA-1 duplication is associated with the increased level of SLA-1 mRNA expression in porcine cells compared to that of the single copy haplotype. Therefore, we provide here the results of the most extensive genetic analysis on pig SLA-1.
Collapse
Affiliation(s)
- Minh Thong Le
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hojun Choi
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea
| | - Hyejeong Lee
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea
| | - Van Chanh Quy Le
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea
| | - Byeongyong Ahn
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea
| | - Chak-Sum Ho
- Gift of Life Michigan, Ann Arbor, MI, 48108, USA
| | - Kwonho Hong
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea
| | - Hyuk Song
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea
| | - Jin-Hoi Kim
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea
| | - Chankyu Park
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul, 143-701, Korea.
| |
Collapse
|
6
|
Arbanasić H, Konjević D, Vranković L, Bujanić M, Stipoljev S, Balažin M, Šprem N, Škorić D, Galov A. Evolution of MHC class II SLA-DRB1 locus in the Croatian wild boar (Sus scrofa) implies duplication and weak signals of positive selection. Anim Genet 2018; 50:33-41. [PMID: 30357873 DOI: 10.1111/age.12734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
The wild boar is an ancestor of the domestic pig and an important game species with the widest geographical range of all ungulates. Although a large amount of data are available on major histocompatibility complex (MHC) variability in domestic pigs, only a few studies have been performed on wild boars. Due to their crucial role in appropriate immune responses and extreme polymorphism, MHC genes represent some of the best candidates for studying the processes of adaptive evolution. Here, we present the results on the variability and evolution of the entire MHC class II SLA-DRB1 locus exon 2 in 133 wild boars from Croatia. Using direct sequencing and cloning methods, we identified 20 SLA-DRB1 alleles, including eight new variants, with notable divergence. In some individuals, we documented functional locus duplication, and SLA-DRB1*04:10 was identified as the allele involved in the duplication. The expression of a duplicated locus was confirmed by cloning and sequencing cDNA-derived amplicons. Based on individual genotypes, we were able to assume that alleles SLA-DRB1*04:10 and SLA-DRB1*06:07 are linked as an allelic combination that co-evolves as a two-locus haplotype. Our investigation of evolutionary processes at the SLA-DRB1 locus confirmed the role of intralocus recombination in generating allelic variability, whereas tests of positive selection based on the dN/dS (non-synonymous/synonymous substitution rate ratio) test revealed atypically weak and ambiguous signals.
Collapse
Affiliation(s)
- H Arbanasić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - D Konjević
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia
| | - L Vranković
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia
| | - M Bujanić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia
| | - S Stipoljev
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - M Balažin
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - N Šprem
- Department of Fisheries, Beekeeping, Game Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - D Škorić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - A Galov
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| |
Collapse
|
7
|
Van Chanh Le Q, Le TM, Cho HS, Kim WI, Hong K, Song H, Kim JH, Park C. Analysis of peptide-SLA binding by establishing immortalized porcine alveolar macrophage cells with different SLA class II haplotypes. Vet Res 2018; 49:96. [PMID: 30241566 PMCID: PMC6151021 DOI: 10.1186/s13567-018-0590-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/29/2018] [Indexed: 02/01/2023] Open
Abstract
Primary porcine alveolar macrophages (PAM) are useful for studying viral infections and immune response in pigs; however, long-term use of these cells is limited by the cells’ short lifespan. We immortalized primary PAMs by transfecting them with both hTERT and SV40LT and established two immortalized cell lines (iPAMs) actively proliferating even after 35 passages. These cells possessed the characteristics of primary PAMs, including strong expression of swine leukocyte antigen (SLA) class II genes and the inability to grow anchorage-independently. We characterized their SLA genes and subsequently performed peptide-SLA binding assays using a peptide from porcine circovirus type 2 open reading frame 2 to experimentally measure the binding affinity of the peptide to SLA class II. The number of peptides bound to cells measured by fluorescence was very low for PK15 cells (7.0% ± 1.5), which are not antigen-presenting cells, unlike iPAM61 (33.7% ± 3.4; SLA-DQA*0201/0303, DQB1*0201/0901, DRB1*0201/1301) and iPAM303 (73.3% ± 5.4; SLA DQA*0106/0201, DQB1*0202/0701, DRB1*0402/0602). The difference in peptide binding between the two iPAMs was likely due to the allelic differences between the SLA class II molecules that were expressed. The development of an immortal PAM cell panel harboring diverse SLA haplotypes and the use of an established method in this study can become a valuable tool for evaluating the interaction between antigenic peptides and SLA molecules and is important for many applications in veterinary medicine including vaccine development.
Collapse
Affiliation(s)
- Quy Van Chanh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Thong Minh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Hye-Sun Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea.
| |
Collapse
|
8
|
Cortey M, Arocena G, Ait-Ali T, Vidal A, Li Y, Martín-Valls G, Wilson AD, Archibald AL, Mateu E, Darwich L. Analysis of the genetic diversity and mRNA expression level in porcine reproductive and respiratory syndrome virus vaccinated pigs that developed short or long viremias after challenge. Vet Res 2018; 49:19. [PMID: 29448955 PMCID: PMC5815215 DOI: 10.1186/s13567-018-0514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/08/2018] [Indexed: 11/10/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSv) infection alters the host’s cellular and humoral immune response. Immunity against PRRSv is multigenic and vary between individuals. The aim of the present study was to compare several genes that encode for molecules involved in the immune response between two groups of vaccinated pigs that experienced short or long viremic periods after PRRSv challenge. These analyses include the sequencing of four SLA Class I, two Class II allele groups, and CD163, plus the analysis by quantitative realtime qRT-PCR of the constitutive expression of TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 mRNA and other molecules in peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Martí Cortey
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.
| | - Gaston Arocena
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anna Vidal
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Yanli Li
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Gerard Martín-Valls
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Alison D Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Allan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Enric Mateu
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Laila Darwich
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| |
Collapse
|
9
|
Choi H, Le MT, Lee H, Choi MK, Cho HS, Nagasundarapandian S, Kwon OJ, Kim JH, Seo K, Park JK, Lee JH, Ho CS, Park C. Sequence variations of the locus-specific 5' untranslated regions of SLA class I genes and the development of a comprehensive genomic DNA-based high-resolution typing method for SLA-2. ACTA ACUST UNITED AC 2016; 86:255-66. [PMID: 26381046 DOI: 10.1111/tan.12648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/30/2015] [Accepted: 08/03/2015] [Indexed: 11/30/2022]
Abstract
The genetic diversity of the major histocompatibility complex (MHC) class I molecules of pigs has not been well characterized. Therefore, the influence of MHC genetic diversity on the immune-related traits of pigs, including disease resistance and other MHC-dependent traits, is not well understood. Here, we attempted to develop an efficient method for systemic analysis of the polymorphisms in the epitope-binding region of swine leukocyte antigens (SLA) class I genes. We performed a comparative analysis of the last 92 bp of the 5' untranslated region (UTR) to the beginning of exon 4 of six SLA classical class I-related genes, SLA-1, -2, -3, -4, -5, and -9, from 36 different sequences. Based on this information, we developed a genomic polymerase chain reaction (PCR) and direct sequencing-based comprehensive typing method for SLA-2. We successfully typed SLA-2 from 400 pigs and 8 cell lines, consisting of 9 different pig breeds, and identified 49 SLA-2 alleles, including 31 previously reported alleles and 18 new alleles. We observed differences in the composition of SLA-2 alleles among different breeds. Our method can be used to study other SLA class I loci and to deepen our knowledge of MHC class I genes in pigs.
Collapse
Affiliation(s)
- H Choi
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - M T Le
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - H Lee
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - M-K Choi
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - H-S Cho
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | | | - O-J Kwon
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - J-H Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - K Seo
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - J-K Park
- Department of Swine and Poultry Science, Korea National College of Agriculture and Fisheries, Jeonju-si, South Korea
| | - J-H Lee
- Department of Animal Resource and Life Science, Chungnam National University, Daejeon, South Korea
| | - C-S Ho
- Histocompatibility Laboratory, Gift of Life Michigan, Ann Arbor, MI, USA
| | - C Park
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
10
|
Choi NR, Seo DW, Choi KM, Ko NY, Kim JH, Kim HI, Jung WY, Lee JH. Analysis of Swine Leukocyte Antigen Haplotypes in Yucatan Miniature Pigs Used as Biomedical Model Animal. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:321-6. [PMID: 26950861 PMCID: PMC4811781 DOI: 10.5713/ajas.15.0331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 11/27/2022]
Abstract
The porcine major histocompatibility complex (MHC) is called swine leukocyte antigen (SLA), which controls immune responses and transplantation reactions. The SLA is mapped on pig chromosome 7 (SSC7) near the centromere. In this study, 3 class I (SLA-1, SLA-3, and SLA-2) and 3 class II (DRB1, DQB1, and DQA) genes were used for investigation of SLA haplotypes in Yucatan miniature pigs in Korea. This pig breed is a well-known model organism for biomedical research worldwide. The current study indicated that Korean Yucatan pig population had 3 Class I haplotypes (Lr-4.0, Lr-6.0, and Lr-25.0) and 3 class II haplotypes (Lr-0.5, Lr-0.7, and Lr-0.25). The combinations of SLA class I and II haplotype together, 2 homozygous (Lr-4.5/4.5 and Lr-6.7/6.7) and 3 heterozygous (Lr-4.5/6.7, Lr-4.5/25.25, and Lr-6.7/25.25) haplotypes were identified, including previously unidentified new heterozygous haplotypes (Lr-4.5/4.7). In addition, a new SLA allele typing method using Agilent 2100 bioanalyzer was developed that permitted more rapid identification of SLA haplotypes. These results will facilitate the breeding of SLA homozygous Yucatan pigs and will expedite the possible use of these pigs for the biomedical research, especially xenotransplantation research.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Ho Kim
- Optipharm Inc, Cheongju 28158, Korea
| | | | - Woo-Young Jung
- Hanwoo Improvement Center, National Agricultural Cooperative Federation, Seosan 31948, Korea
| | | |
Collapse
|
11
|
Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2) Gene and Development of a High-Resolution Typing Method. PLoS One 2015; 10:e0135922. [PMID: 26305091 PMCID: PMC4549063 DOI: 10.1371/journal.pone.0135922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
The genetic structure and function of MHC class I chain-related (MIC) genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT) method. Our results showed that the SLA-MIC2 gene has a similar molecular organization as the human and cattle orthologs, and is expressed in only a few tissues including the small intestine, lung, and heart. A total of fifteen SLA-MIC2 alleles were identified from typing 145 animals, ten of which were previously unreported. Our analysis showed that the previously reported and tentatively named SLA-MIC2*05, 07, and 01 alleles occurred most frequently. The observed heterozygosity varied from 0.26 to 0.73 among breeds. The number of alleles of the SLA-MIC2 gene in pigs is somewhat lower compared to the number of alleles of the porcine MHC class I and II genes; however, the level of heterozygosity was similar. Our results indicate the comprehensiveness of using genomic DNA-based typing for the systemic study of the SLA-MIC2 gene. The method developed for this study, as well as the detailed information that was obtained, could serve as fundamental tools for understanding the influence of the SLA-MIC2 gene on porcine immune responses.
Collapse
|
12
|
Le M, Choi H, Choi MK, Cho H, Kim JH, Seo HG, Cha SY, Seo K, Dadi H, Park C. Development of a simultaneous high resolution typing method for three SLA class II genes, SLA-DQA, SLA-DQB1, and SLA-DRB1 and the analysis of SLA class II haplotypes. Gene 2015; 564:228-32. [PMID: 25824383 DOI: 10.1016/j.gene.2015.03.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 11/28/2022]
Abstract
The characterization of the genetic variations of major histocompatibility complex (MHC) is essential to understand the relationship between the genetic diversity of MHC molecules and disease resistance and susceptibility in adaptive immunity. We previously reported the development of high-resolution individual locus typing methods for three of the most polymorphic swine leukocyte antigens (SLA) class II loci, namely, SLA-DQA, SLA-DQB1, and SLA-DRB1. In this study, we extensively modified our previous protocols and developed a method for the simultaneous amplification of the three SLA class II genes and subsequent analysis of individual loci using direct sequencing. The unbiased and simultaneous amplification of alleles from the all three hyper-polymorphic and pseudogene containing genes such as MHC genes is extremely challenging. However, using this method, we demonstrated the successful typing of SLA-DQA, SLA-DQB1, and SLA-DRB1 for 31 selected individuals comprising 26 different SLA class II haplotypes which were identified from 700 animals using the single locus typing methods. The results were identical to the known genotypes from the individual locus typing. The new method has significant benefits over the individual locus typing, including lower typing cost, use of less biomaterial, less effort and fewer errors in handling large samples for multiple loci. We also extensively characterized the haplotypes of SLA class II genes and reported three new haplotypes. Our results should serve as a basis to investigate the possible association between polymorphisms of MHC class II and differences in immune responses to exogenous antigens.
Collapse
Affiliation(s)
- MinhThong Le
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Hojun Choi
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Min-Kyeung Choi
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Hyesun Cho
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Se-Yeon Cha
- College of Veterinary Medicine, Chonbuk National University, South Korea
| | - Kunho Seo
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hailu Dadi
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea.
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea.
| |
Collapse
|
13
|
Jung WY, Choi NR, Seo DW, Lim HT, Ho CS, Lee JH. Sequence-based characterization of five SLA loci in Asian wild boars. Int J Immunogenet 2014; 41:397-400. [PMID: 25053502 DOI: 10.1111/iji.12141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/18/2014] [Accepted: 07/03/2014] [Indexed: 11/29/2022]
Abstract
Two swine leucocyte antigen (SLA) class I (SLA-1 and SLA-2) and three class II (DRB1, DQB1 and DQA) genes were investigated for their diversity in Asian wild boars using a sequence-based typing method. A total of 15 alleles were detected at these loci, with eleven being novel. The findings provide one of the first glimpses of the SLA allelic diversity and architecture in the wild boar populations.
Collapse
Affiliation(s)
- W Y Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Korea; Hanwoo Improvement Center, National Agricultural Cooperative Federation, Seosan, Chungnam, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Kwak HH, Park KM, Nam HS, Park SM, Woo HM. Disparate hypervariable region-1 of mitochondrial DNA did not induce skin allograft rejection in cloned porcine models. Transplant Proc 2014; 45:1787-91. [PMID: 23769044 DOI: 10.1016/j.transproceed.2013.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Alloantigen recognition in skin transplantation is the bane for surgeons. Several studies have mainly focused on the immunogenicity of major histocompatibility (MHC) antigens and H-Y minor histocompatibility antigens. However, the roles of the mitochondrial DNA (mtDNA) encorded miHA have not been identified. Therefore, we sought to address the antigenicity of the hypervariable region 1 (HV-1) of mtDNA in skin transplantation using cloned pig models. METHODS Swine leukocyte antigen and HV-1 of mtDNA were analyzed using sequencing methods. Skin transplantation was performed between MHC-matched, mtDNA-mismatched cloned miniature pigs. Full-thickness skin was grafted between cloned pigs without any immunosuppressants. The grafted tissues were observed for 3 months and evaluated histologically. RESULTS The cloned pigs shared identical MHC but mtDNA mismatched at 9 positions. Skin grafts between the cloned pigs were accepted and hair growth maintained, whereas MHC-mismatched grafts showed acute rejection within 7 days after transplantation and were replaced by hairless scar tissue. CONCLUSIONS HV-1 disparate skin grafts were not recognized as alloantigenic by MHC-matched cloned pigs.
Collapse
Affiliation(s)
- H-H Kwak
- Stem Cell Institute, Kangwon National University, ChunCheon, Gangwon-do, Korea
| | | | | | | | | |
Collapse
|
15
|
Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Vet Res Commun 2013; 37:293-301. [DOI: 10.1007/s11259-013-9574-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 12/18/2022]
|
16
|
Le MT, Choi H, Choi MK, Nguyen DT, Kim JH, Seo HG, Cha SY, Seo K, Chun T, Schook LB, Park C. Comprehensive and high-resolution typing of swine leukocyte antigen DQA from genomic DNA and determination of 25 new SLA class II haplotypes. ACTA ACUST UNITED AC 2013; 80:528-35. [PMID: 23137324 DOI: 10.1111/tan.12017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported the development of genomic-DNA-based high-resolution genotyping methods for SLA-DQB1 and DRB1. Here, we report the successful typing of SLA-DQA using similar methodological principles. We designed a method for comprehensive genotyping of SLA-DQA using intronic sequence information of SLA-DQA exon 2 that we had obtained from 12 animals with different SLA-DQB1 genotypes. We expanded our typing to 76 selected animals with diverse DQB1 and DRB1 genotypes, 140 random animals from 7 pig breeds, and 3 wild boars. This resulted in the identification of 17 DQA alleles with 49 genotypes. Two new alleles were identified from wild boars. Combine with SLA-DQB1, and DRB1 typing results, we identified 34 SLA class II haplotypes including 25 that were previously unreported.
Collapse
Affiliation(s)
- M T Le
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Domestication does not narrow MHC diversity in Sus scrofa. Immunogenetics 2012; 65:195-209. [PMID: 23239371 DOI: 10.1007/s00251-012-0671-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
The Major Histocompatibility Complex (MHC) is a multigene family of outstanding polymorphism. MHC molecules bind antigenic peptides in the peptide-binding region (PBR) that consists of five binding pockets (P). In this study, we compared the genetic diversity of domestic pigs to that of the modern representatives of their wild ancestors, the wild boar, in two MHC loci, the oligomorphic DQA and the polymorphic DRB1. MHC nucleotide polymorphism was compared with the actual functional polymorphism in the PBR and the binding pockets P1, P4, P6, P7, and P9. The analysis of approximately 200 wild boars collected throughout Europe and 120 domestic pigs from four breeds (three pureblood, Pietrain, Leicoma, and Landrace, and one mixed Danbred) revealed that wild boars and domestic pigs share the same levels of nucleotide and amino acid polymorphism, allelic richness, and heterozygosity. Domestication did not appear to act as a bottleneck that would narrow MHC diversity. Although the pattern of polymorphism was uniform between the two loci, the magnitude of polymorphism was different. For both loci, most of the polymorphism was located in the PBR region and the presence of positive selection was supported by a statistically significant excess of nonsynonymous substitutions over synonymous substitutions in the PBR. P4 and P6 were the most polymorphic binding pockets. Functional polymorphism, i.e., the number and the distribution of pocket variants within and among populations, was significantly narrower than genetic polymorphism, indicative of a hierarchical action of selection pressures on MHC loci.
Collapse
|
18
|
Genome-level identification, gene expression, and comparative analysis of porcine ß-defensin genes. BMC Genet 2012; 13:98. [PMID: 23150902 PMCID: PMC3499285 DOI: 10.1186/1471-2156-13-98] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Beta-defensins (β-defensins) are innate immune peptides with evolutionary conservation across a wide range of species and has been suggested to play important roles in innate immune reactions against pathogens. However, the complete β-defensin repertoire in the pig has not been fully addressed. RESULT A BLAST analysis was performed against the available pig genomic sequence in the NCBI database to identify β-defensin-related sequences using previously reported β-defensin sequences of pigs, humans, and cattle. The porcine β-defensin gene clusters were mapped to chromosomes 7, 14, 15 and 17. The gene expression analysis of 17 newly annotated porcine β-defensin genes across 15 tissues using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) showed differences in their tissue distribution, with the kidney and testis having the largest pBD expression repertoire. We also analyzed single nucleotide polymorphisms (SNPs) in the mature peptide region of pBD genes from 35 pigs of 7 breeds. We found 8 cSNPs in 7 pBDs. CONCLUSION We identified 29 porcine β-defensin (pBD) gene-like sequences, including 17 unreported pBDs in the porcine genome. Comparative analysis of β-defensin genes in the pig genome with those in human and cattle genomes showed structural conservation of β-defensin syntenic regions among these species.
Collapse
|
19
|
Jung WY, Seo DW, Choi NR, Lee JH, Jin DI, Hwang SS, Yang BC, Chung HJ, Kim KW, Park JK, Lee HC. Investigation of SLA class I and II haplotypes in the NIH miniature pigs. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|