1
|
Leng L, Zhuang K, Lin H, Ding J, Yang S, Yuan Z, Huang C, Chen G, Chen Z, Wang M, Wang H, Sun H, Li H, Chang H, Chen Z, Xu Q, Yuan T, Zhang J. Menin Reduces Parvalbumin Expression and is Required for the Anti-Depressant Function of Ketamine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305659. [PMID: 38044302 PMCID: PMC10837338 DOI: 10.1002/advs.202305659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Indexed: 12/05/2023]
Abstract
Dysfunction of parvalbumin (PV) neurons is closely involved in depression, however, the detailed mechanism remains unclear. Based on the previous finding that multiple endocrine neoplasia type 1 (Protein: Menin; Gene: Men1) mutation (G503D) is associated with a higher risk of depression, a Menin-G503D mouse model is generated that exhibits heritable depressive-like phenotypes and increases PV expression in brain. This study generates and screens a serial of neuronal specific Men1 deletion mice, and found that PV interneuron Men1 deletion mice (PcKO) exhibit increased cortical PV levels and depressive-like behaviors. Restoration of Menin, knockdown PV expression or inhibition of PV neuronal activity in PV neurons all can ameliorate the depressive-like behaviors of PcKO mice. This study next found that ketamine stabilizes Menin by inhibiting protein kinase A (PKA) activity, which mediates the anti-depressant function of ketamine. These results demonstrate a critical role for Menin in depression, and prove that Menin is key to the antidepressant function of ketamine.
Collapse
Affiliation(s)
- Lige Leng
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Kai Zhuang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Hui Lin
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Jinjun Ding
- Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghai200030P. R. China
| | - Shangchen Yang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Ziqi Yuan
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Changquan Huang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Guimiao Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Zhenlei Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Mengdan Wang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Han Wang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Hao Sun
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Huifang Li
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - He Chang
- Department of GeriatricsXiang'an Hospital of Xiamen universityXiamenFujian361102P. R. China
| | - Zhenyi Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Qi Xu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical CollegeNeuroscience CenterChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Tifei Yuan
- Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghai200030P. R. China
| | - Jie Zhang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| |
Collapse
|
2
|
Weiss F, Caruso V, De Rosa U, Beatino MF, Barbuti M, Nicoletti F, Perugi G. The role of NMDA receptors in bipolar disorder: A systematic review. Bipolar Disord 2023; 25:624-636. [PMID: 37208966 DOI: 10.1111/bdi.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Glutamatergic transmission and N-methyl-D-aspartate receptors (NMDARs) have been implicated in the pathophysiology schizophrenic spectrum and major depressive disorders. Less is known about the role of NMDARs in bipolar disorder (BD). The present systematic review aimed to investigate the role of NMDARs in BD, along with its possible neurobiological and clinical implications. METHODS We performed a computerized literature research on PubMed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, using the following string: (("Bipolar Disorder"[Mesh]) OR (manic-depressive disorder[Mesh]) OR ("BD") OR ("MDD")) AND ((NMDA [Mesh]) OR (N-methyl-D-aspartate) OR (NMDAR[Mesh]) OR (N-methyl-D-aspartate receptor)). RESULTS Genetic studies yield conflicting results, and the most studied candidate for an association with BD is the GRIN2B gene. Postmortem expression studies (in situ hybridization and autoradiographic and immunological studies) are also contradictory but suggest a reduced activity of NMDARs in the prefrontal, superior temporal cortex, anterior cingulate cortex, and hippocampus. CONCLUSIONS Glutamatergic transmission and NMDARs do not appear to be primarily involved in the pathophysiology of BD, but they might be linked to the severity and chronicity of the disorder. Disease progression could be associated with a long phase of enhanced glutamatergic transmission, with ensuing excitotoxicity and neuronal damage, resulting into a reduced density of functional NMDARs.
Collapse
Affiliation(s)
- Francesco Weiss
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Valerio Caruso
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ugo De Rosa
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maria Francesca Beatino
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Margherita Barbuti
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Giulio Perugi
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Differential distribution of inhibitory neuron types in subregions of claustrum and dorsal endopiriform nucleus of the short-tailed fruit bat. Brain Struct Funct 2022; 227:1615-1640. [PMID: 35188589 DOI: 10.1007/s00429-022-02459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022]
Abstract
Few brain regions have such wide-ranging inputs and outputs as the claustrum does, and fewer have posed equivalent challenges in defining their structural boundaries. We studied the distributions of three calcium-binding proteins-calretinin, parvalbumin, and calbindin-in the claustrum and dorsal endopiriform nucleus of the fruit bat, Carollia perspicillata. The proportionately large sizes of claustrum and dorsal endopiriform nucleus in Carollia brain afford unique access to these structures' intrinsic anatomy. Latexin immunoreactivity permits a separation of claustrum into core and shell subregions and an equivalent separation of dorsal endopiriform nucleus. Using latexin labeling, we found that the claustral shell in Carollia brain can be further subdivided into at least four distinct subregions. Calretinin and parvalbumin immunoreactivity reinforced the boundaries of the claustral core and its shell subregions with diametrically opposite distribution patterns. Calretinin, parvalbumin, and calbindin all colocalized with GAD67, indicating that these proteins label inhibitory neurons in both claustrum and dorsal endopiriform nucleus. Calretinin, however, also colocalized with latexin in a subset of neurons. Confocal microscopy revealed appositions that suggest synaptic contacts between cells labeled for each of the three calcium-binding proteins and latexin-immunoreactive somata in claustrum and dorsal endopiriform nucleus. Our results indicate significant subregional differences in the intrinsic inhibitory connectivity within and between claustrum and dorsal endopiriform nucleus. We conclude that the claustrum is structurally more complex than previously appreciated and that claustral and dorsal endopiriform nucleus subregions are differentially modulated by multiple inhibitory systems. These findings can also account for the excitability differences between claustrum and dorsal endopiriform nucleus described previously.
Collapse
|
4
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
5
|
Alcaide J, Guirado R, Crespo C, Blasco-Ibáñez JM, Varea E, Sanjuan J, Nacher J. Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients. Int J Bipolar Disord 2019; 7:24. [PMID: 31728775 DOI: 10.1186/s40345-019-0161-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alterations in the structure and physiology of interneurons in the prefrontal cortex (PFC) are important factors in the etiopathology of different psychiatric disorders. Among the interneuronal subpopulations, parvalbumin (PV) expressing cells appear to be specially affected. Interestingly, during development and adulthood the connectivity of these interneurons is regulated by the presence of perineuronal nets (PNNs), specialized regions of the extracellular matrix, which are frequently surrounding PV expressing neurons. Previous reports have found anomalies in the density of PNNs in the PFC of schizophrenic patients. However, although some studies have described alterations in PNNs in some extracortical regions of bipolar disorder patients, there are no studies focusing on the prefrontocortical PNNs of bipolar or major depression patients. For this reason, we have analyzed the density of PNNs in post-mortem sections of the dorsolateral PFC (DLPFC) from the Stanley Neuropathology Consortium, which includes controls, schizophrenia, bipolar and major depression patients. RESULTS We have not observed differences in the distribution of PV+ cells or PNNs, or in the percentage of PV+ interneurons surrounded by PNNs. The density of PV+ interneurons was similar in all the experimental groups, but there was a significantly lower density of PNNs in the DLPFC of bipolar disorder patients and a tendency towards a decrease in schizophrenic patients. No differences were found when evaluating the density of PV+ cells surrounded by PNNs. Interestingly, when assessing the influence of demographic data, we found an inverse correlation between the density of PNNs and the presence of psychosis. CONCLUSIONS The present results point to prefrontocortical PNNs and their role in the regulation of neuronal plasticity as putative players in the etiopathology of bipolar disorder and schizophrenia. Our findings also suggest a link between these specialized regions of the extracellular matrix and the presence of psychosis.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Ramón Guirado
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Carlos Crespo
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - José Miguel Blasco-Ibáñez
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Emilio Varea
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Julio Sanjuan
- Department of Medicine, Universitat de València, Valencia, Spain.,CIBERSAM: Spanish National Network for Research in Mental Health, Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain. .,CIBERSAM: Spanish National Network for Research in Mental Health, Madrid, Spain. .,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
6
|
Toker L, Mancarci BO, Tripathy S, Pavlidis P. Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Biol Psychiatry 2018; 84:787-796. [PMID: 30177255 PMCID: PMC6226343 DOI: 10.1016/j.biopsych.2018.07.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND High-throughput expression analyses of postmortem brain tissue have been widely used to study bipolar disorder and schizophrenia. However, despite the extensive efforts, no consensus has emerged as to the functional interpretation of the findings. We hypothesized that incorporating information on cell type-specific expression would provide new insights. METHODS We reanalyzed 15 publicly available bulk tissue expression datasets on schizophrenia and bipolar disorder, representing various brain regions from eight different cohorts of subjects (unique subjects: 332 control, 129 bipolar disorder, 341 schizophrenia). We studied changes in the expression profiles of cell type marker genes and evaluated whether these expression profiles could serve as surrogates for relative abundance of their corresponding cells. RESULTS In both bipolar disorder and schizophrenia, we consistently observed an increase in the expression profiles of cortical astrocytes and a decrease in the expression profiles of fast-spiking parvalbumin interneurons. No changes in astrocyte expression profiles were observed in subcortical regions. Furthermore, we found that many of the genes previously identified as differentially expressed in schizophrenia are highly correlated with the expression profiles of astrocytes or fast-spiking parvalbumin interneurons. CONCLUSIONS Our results indicate convergence of transcriptome studies of schizophrenia and bipolar disorder on changes in cortical astrocytes and fast-spiking parvalbumin interneurons, providing a unified interpretation of numerous studies. We suggest that these changes can be attributed to alterations in the relative abundance of the cells and are important for understanding the pathophysiology of the disorders.
Collapse
Affiliation(s)
- Lilah Toker
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Burak Ogan Mancarci
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shreejoy Tripathy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Fan Z, Qian Y, Lu Q, Wang Y, Chang S, Yang L. DLGAP1 and NMDA receptor-associated postsynaptic density protein genes influence executive function in attention deficit hyperactivity disorder. Brain Behav 2018; 8:e00914. [PMID: 29484270 PMCID: PMC5822579 DOI: 10.1002/brb3.914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Objective To explore the association of DLGAP1 gene with executive function (EF) in attention deficit hyperactivity disorder (ADHD) children. Method A total of 763 ADHD children and 140 healthy controls were enrolled. The difference of EF between ADHD and controls was analyzed using the analysis of covariance (ANCOVA), with IQ, sex, and age as covariates. Both the associations of SNPs with EF and three symptom traits of ADHD were conducted using an additive linear regression model by PLINK with the same covariates as ANCOVA. Results Compared with controls, children with ADHD showed poorer cognitive flexibility and inhibition. Two SNPs (rs2049161, p-value = 5.08e-7, adjusted p-value = 1.63e-4, rs16946051, p-value = 5.18e-7, adjusted p-value = 1.66e-4) survived multiple tests in Trail Making Test. Both SNPs also showed association with TOH (rs2049161, p = 6.82e-4, rs16946051, p = 7.91e-4). Set-based analysis for gene DLGAP1 and its functional pathway DLGAP1-DLG4-NMDA showed they were associated with cognitive flexibility at both gene (p = .0057) and pathway level (p = .0321). Furthermore, the gene and pathway also showed association with ADHD symptom score. The associated SNPs and their LD proxies were related to the expression of DLGAP1 in medulla and frontal cortex. Conclusion Children with ADHD showed deficit in EF, especially, cognitive flexibility and inhibition. DLGAP1 was associated with cognitive flexibility and plan, and the role of DLGAP1 might be implemented through the complex of DLGAP1-DLG4-NMDA.
Collapse
Affiliation(s)
- Zili Fan
- Peking University Sixth Hospital (Institute of Mental Health)National Clinical Research Center for Mental Disorders & Key Laboratory of Mental HealthMinistry of Health (Peking University)BeijingChina
| | - Ying Qian
- Peking University Sixth Hospital (Institute of Mental Health)National Clinical Research Center for Mental Disorders & Key Laboratory of Mental HealthMinistry of Health (Peking University)BeijingChina
| | - Qing Lu
- Peking University Sixth Hospital (Institute of Mental Health)National Clinical Research Center for Mental Disorders & Key Laboratory of Mental HealthMinistry of Health (Peking University)BeijingChina
| | - Yufeng Wang
- Peking University Sixth Hospital (Institute of Mental Health)National Clinical Research Center for Mental Disorders & Key Laboratory of Mental HealthMinistry of Health (Peking University)BeijingChina
| | - Suhua Chang
- CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Li Yang
- Peking University Sixth Hospital (Institute of Mental Health)National Clinical Research Center for Mental Disorders & Key Laboratory of Mental HealthMinistry of Health (Peking University)BeijingChina
| |
Collapse
|
8
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
9
|
Dean B, Gibbons AS, Boer S, Uezato A, Meador-Woodruff J, Scarr E, McCullumsmith RE. Changes in cortical N-methyl- d-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Aust N Z J Psychiatry 2016; 50:275-83. [PMID: 26013316 PMCID: PMC7683009 DOI: 10.1177/0004867415586601] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. METHOD We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. RESULTS Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p < 0.01) and GRIN2C mRNA (laminae I-VI; -27%, p < 0.05) were lower in the anterior cingulate cortex and NMDAR binding was lower in the outer lamina IV of the dorsolateral prefrontal cortex (-19%, p < 0.01). In major depressive disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p < 0.05). In suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p < 0.01) but lower (-35%, p = 0.02) in dorsolateral prefrontal cortex while post-synaptic density protein 95 was higher (+26%, p < 0.05) in anterior cingulate cortex. CONCLUSION These data suggest that differences in cortical NMDAR expression and post-synaptic density protein 95 are present in psychiatric disorders and suicide completion and may contribute to different responses to ketamine.
Collapse
Affiliation(s)
- Brian Dean
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Andrew S Gibbons
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Simone Boer
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Akihito Uezato
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Elizabeth Scarr
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
10
|
Ganguly P, Holland FH, Brenhouse HC. Functional Uncoupling NMDAR NR2A Subunit from PSD-95 in the Prefrontal Cortex: Effects on Behavioral Dysfunction and Parvalbumin Loss after Early-Life Stress. Neuropsychopharmacology 2015; 40:2666-75. [PMID: 25953359 PMCID: PMC4864660 DOI: 10.1038/npp.2015.134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 11/09/2022]
Abstract
Exposure to early-life stress increases vulnerability to psychiatric disorders, including depression, schizophrenia, and anxiety. Growing evidence implicates aberrant development of the prefrontal cortex (PFC) in the effects of early-life stress, which often emerge in adolescence or young adulthood. Specifically, early-life stress in the form of maternal separation (MS) in rodents has been shown to decrease parvalbumin (PVB)-positive interneurons in the adolescent PFC; however, the mechanism underpinning behavioral dysfunction and PVB loss is not yet known. We recently reported that MS causes overexpression of the NMDA subunit NR2A in the PFC of adolescent rats. Elevated PFC NR2A is also found in developmental models of schizophrenia and is correlated with behavioral deficits, acting largely through its association with the postsynaptic protein PSD-95. In addition, adolescent maturation of PVB-positive interneurons relies on NR2A-driven NMDA activity. Therefore, it is possible that the NR2A/PSD-95 signaling complex has a role in adolescent MS effects. Here, we aimed to determine whether a discrete manipulation of PFC NR2A could prevent MS effects on PFC-controlled behaviors, including cognition, anxiety, and novelty-induced hyperlocomotion, as well as PVB loss in adolescence. We intracranially infused the NR2A-specific blocking peptide TAT2A in order to uncouple NR2A from PSD-95 in the early-adolescent PFC, without antagonizing the NMDA receptor. We demonstrated that MS rats treated with TAT2A during early adolescence were protected from MS-induced PVB loss and exhibited less anxious behavior than those infused with control peptide. These data implicate NR2A-related N-methyl-D-aspartate receptor development in adolescent behavioral and neural consequences of early-life stress.
Collapse
Affiliation(s)
- Prabarna Ganguly
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Heather C Brenhouse
- Department of Psychology, Northeastern University, Boston, MA, USA,Department of Psychology, Northeastern University, 125 NI, Boston, MA 02115, USA, Tel: +1 617 373 6856, Fax: +1 617 373 8714, E-mail:
| |
Collapse
|
11
|
Bitanihirwe BKY, Woo TUW. Transcriptional dysregulation of γ-aminobutyric acid transporter in parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. Psychiatry Res 2014; 220:1155-9. [PMID: 25312391 PMCID: PMC4447488 DOI: 10.1016/j.psychres.2014.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/15/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022]
Abstract
Parvalbumin (PV)-containing neurons are functionally compromised in schizophrenia. Using double in situ hybridization in postmortem human prefrontal cortex, we found that the messenger RNA (mRNA) for the γ-aminobutyric acid (GABA) transporter GAT-1 was undetectable in 22-41% of PV neurons in layers 3-4 in schizophrenia. In the remaining PV neurons with detectable GAT-1 mRNA, transcript expression was decreased by 26% in layer 3. Hence, the dysfunction of PV neurons involves the molecular dysregulation of presynaptic GABA reuptake.
Collapse
Affiliation(s)
- Byron K. Y. Bitanihirwe
- System and Cell Biology of Neurodegeneration, University of Zürich, Zürich, Switzerland,Program in Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
12
|
The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci Biobehav Rev 2014; 47:336-58. [PMID: 25218759 DOI: 10.1016/j.neubiorev.2014.08.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 08/08/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Mood disorders such as major depressive disorder and bipolar disorder are chronic and recurrent illnesses that cause significant disability and affect approximately 350 million people worldwide. Currently available biogenic amine treatments provide relief for many and yet fail to ameliorate symptoms for others, highlighting the need to diversify the search for new therapeutic strategies. Here we present recent evidence implicating the role of N-methyl-D-aspartate receptor (NMDAR) signaling in the pathophysiology of mood disorders. The possible role of NMDARs in mood disorders has been supported by evidence demonstrating that: (i) both BPD and MDD are characterized by altered levels of central excitatory neurotransmitters; (ii) NMDAR expression, distribution, and function are atypical in patients with mood disorders; (iii) NMDAR modulators show positive therapeutic effects in BPD and MDD patients; and (iv) conventional antidepressants/mood stabilizers can modulate NMDAR function. Taken together, this evidence suggests the NMDAR system holds considerable promise as a therapeutic target for developing next generation drugs that may provide more rapid onset relief of symptoms. Identifying the subcircuits involved in mood and elucidating the role of NMDARs subtypes in specific brain circuits would constitute an important step toward the development of more effective therapies with fewer side effects.
Collapse
|
13
|
Savitz JB, Price JL, Drevets WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 2014; 42:132-47. [PMID: 24603026 DOI: 10.1016/j.neubiorev.2014.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Abstract
The question of whether BD is primarily a developmental disorder or a progressive, neurodegenerative disorder remains unresolved. Here, we review the morphometric postmortem and neuroimaging literature relevant to the neuropathology of bipolar disorder (BD). We focus on the medial prefrontal cortex (mPFC) network, a key system in the regulation of emotional, behavioral, endocrine, and innate immunological responses to stress. We draw four main conclusions: the mPFC is characterized by (1) a decrease in volume, (2) reductions in neuronal size, and/or changes in neuronal density, (3) reductions in glial cell density, and (4) changes in gene expression. These data suggest the presence of dendritic atrophy of neurons and the loss of oligodendroglial cells in BD, although some data additionally suggest a reduction in the cell counts of specific subpopulations of GABAergic interneurons. Based on the weight of the postmortem and neuroimaging literature discussed herein, we favor a complex hypothesis that BD primarily constitutes a developmental disorder, but that additional, progressive, histopathological processes also are associated with recurrent or chronic illness. Conceivably BD may be best conceptualized as a progressive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Jonathan B Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA; Faculty of Community Medicine, University of Tulsa, Tulsa, OK, USA.
| | - Joseph L Price
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA; Janssen Pharmaceuticals of Johnson & Johnson, Inc., Titusville, NJ, USA
| |
Collapse
|
14
|
Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S, Woo TUW. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry 2013; 74:427-35. [PMID: 23790226 PMCID: PMC3752333 DOI: 10.1016/j.biopsych.2013.05.007] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/16/2013] [Accepted: 05/05/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Perineuronal nets (PNNs) are extracellular matrix structures that enwrap many neurons in the brain. They regulate the postnatal experience-dependent maturation of brain circuits and maintain their functional integrity in the mature brain by stabilizing their synaptic architecture. METHODS Eighty-six postmortem human brains were included in this study. We used Wisteria Floribunda agglutinin histochemistry to visualize PNNs to investigate whether the densities of PNNs in the prefrontal cortex (PFC) and primary visual cortex were altered in subjects with schizophrenia or bipolar disorder. In addition, we quantified the normal postnatal development of PNNs in the human PFC. RESULTS The densities of PNNs were decreased by 70%-76% in layers 3 and 5 of the PFC in schizophrenia, compared with the normal control subjects, but not in bipolar disorder. This finding was replicated in a separate group of schizophrenia and normal control subjects. In addition, PNN densities in the primary visual cortex were unaltered in either condition. Finally, the number of PNNs in the PFC increased during postnatal development through the peripubertal period until late adolescence and early adulthood. CONCLUSIONS These findings suggest that PNN deficit contributes to PFC dysfunction in schizophrenia. That the timing of PNN development overlaps with the period when schizophrenia symptomatology gradually emerges raises the possibility that aberrant PNN formation might contribute to the onset of illness. Thus, characterization of the molecular mechanisms underlying PNN deficit might have important implications for the conceptualization of novel strategies for the diagnosis, treatment, early intervention, and prevention of schizophrenia.
Collapse
Affiliation(s)
- Sarah A. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA 02478
| | - Katina M. Athanas
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA 02478
| | - Harry Pantazopoulos
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215,Laboratory of Translational Neuroscience, McLean Hospital, Belmont, MA 02478
| | - Noel Shaskan
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA 02478
| | - Eleonora Passeri
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA 02478,Department of Psychiatry, Harvard Medical School, Boston, MA 02215
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215,Laboratory of Translational Neuroscience, McLean Hospital, Belmont, MA 02478
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA 02478,Department of Psychiatry, Harvard Medical School, Boston, MA 02215,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215
| |
Collapse
|