1
|
Bachmann MC, Cruces P, Díaz F, Oviedo V, Goich M, Fuenzalida J, Damiani LF, Basoalto R, Jalil Y, Carpio D, Hamidi Vadeghani N, Cornejo R, Rovegno M, Bugedo G, Bruhn A, Retamal J. Spontaneous breathing promotes lung injury in an experimental model of alveolar collapse. Sci Rep 2022; 12:12648. [PMID: 35879511 PMCID: PMC9310356 DOI: 10.1038/s41598-022-16446-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Vigorous spontaneous breathing has emerged as a promotor of lung damage in acute lung injury, an entity known as “patient self-inflicted lung injury”. Mechanical ventilation may prevent this second injury by decreasing intrathoracic pressure swings and improving regional air distribution. Therefore, we aimed to determine the effects of spontaneous breathing during the early stage of acute respiratory failure on lung injury and determine whether early and late controlled mechanical ventilation may avoid or revert these harmful effects. A model of partial surfactant depletion and lung collapse was induced in eighteen intubated pigs of 32 ±4 kg. Then, animals were randomized to (1) SB‐group: spontaneous breathing with very low levels of pressure support for the whole experiment (eight hours), (2) Early MV-group: controlled mechanical ventilation for eight hours, or (3) Late MV-group: first half of the experiment on spontaneous breathing (four hours) and the second half on controlled mechanical ventilation (four hours). Respiratory, hemodynamic, and electric impedance tomography data were collected. After the protocol, animals were euthanized, and lungs were extracted for histologic tissue analysis and cytokines quantification. SB-group presented larger esophageal pressure swings, progressive hypoxemia, lung injury, and more dorsal and inhomogeneous ventilation compared to the early MV-group. In the late MV-group switch to controlled mechanical ventilation improved the lung inhomogeneity and esophageal pressure swings but failed to prevent hypoxemia and lung injury. In a lung collapse model, spontaneous breathing is associated to large esophageal pressure swings and lung inhomogeneity, resulting in progressive hypoxemia and lung injury. Mechanical ventilation prevents these mechanisms of patient self-inflicted lung injury if applied early, before spontaneous breathing occurs, but not when applied late.
Collapse
Affiliation(s)
- María Consuelo Bachmann
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Cruces
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile
| | - Franco Díaz
- Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile.,Escuela de Postgrado, Universidad Finis Terrae, Santiago, Chile
| | - Vanessa Oviedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Goich
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José Fuenzalida
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Luis Felipe Damiani
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias de La Salud, Carrera de Kinesiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yorschua Jalil
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias de La Salud, Carrera de Kinesiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Carpio
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Niki Hamidi Vadeghani
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Cornejo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Pulmonary Shunt Is Independent of Decrease in Cardiac Output during Unsupported Spontaneous Breathing in the Pig. Anesthesiology 2013; 118:914-23. [DOI: 10.1097/aln.0b013e318283c81f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background:
During mechanical ventilation (MV), pulmonary shunt is cardiac output (CO) dependent; however, whether this relationship is valid during unsupported spontaneous breathing (SB) is unknown. The CO dependency of the calculated venous admixture was investigated, with both minor and major shunt, during unsupported SB, MV, and SB with continuous positive airway pressure (CPAP).
Methods:
In seven anesthetized supine piglets breathing 100% oxygen, unsupported SB, MV (with tidal volume and respiratory rate corresponding to SB), and 8 cm H2O CPAP (airway pressure corresponding to MV) were applied at random. Venous return and CO were reduced by partial balloon occlusion of the inferior vena cava. Measurements were repeated with the left main bronchus blocked, creating a nonrecruitable pulmonary shunt.
Results:
CO decreased from 4.2 l/min (95% CI, 3.9–4.5) to 2.5 l/min (95% CI, 2.2–2.7) with partially occluded venous return. Irrespective of whether shunt was minor or major, during unsupported SB, venous admixture was independent of CO (slope: minor shunt, 0.5; major shunt, 1.1%·min−1·l−1) and mixed venous oxygen tension. During both MV and CPAP, venous admixture was dependent on CO (slope MV: minor shunt, 1.9; major shunt, 3.5; CPAP: minor shunt, 1.3; major shunt, 2.9%·min−1·l−1) and mixed-venous oxygen tension (coefficient of determination 0.61–0.86 for all regressions).
Conclusions:
In contrast to MV and CPAP, venous admixture was independent of CO during unsupported SB, and was unaffected by mixed-venous oxygen tension, casting doubt on the role of hypoxic pulmonary vasoconstriction in pulmonary blood flow redistribution during unsupported SB.
Collapse
|