1
|
Song L, Cai C, Lin C, Lv Y, Liu Y, Ye X, Liu M, Dai X. Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:57-65. [PMID: 38377769 DOI: 10.1016/j.wasman.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
An annual production of about 500 million tons of household food waste (HFW) has been documented, resulting in significant implications for human health and the environment in the absence of appropriate treatment. The anaerobic fermentation of HFW in an open system offers the potential to recover high value-added products, lactic acid (LA), thereby simultaneously addressing waste treatment and enhancing resource recovery efficiency. Most of LA fermentation studies have been conducted under mesophilic and thermophilic conditions, with limited research on the production of LA through anaerobic fermentation under hyperthermophilic conditions. This study aimed to produce LA through anaerobic fermentation from HFW under hyperthermophilic conditions (70 ± 1 °C), while varying pH values (5.0 ± 0.1, 7.0 ± 0.1, and 9.0 ± 0.1), and compare the results with LA production under mesophilic (35 ± 1 °C) and thermophilic (52 ± 1 °C) conditions. The findings of this study indicated that the combination of hyperthermophilic conditions and a neutral pH (pH7_70) yielded the highest concentration of LA, measuring at 17.75 ± 1.51 g/L. The mechanism underlying the high yield of LA at 70 °C was elucidated through the combined analysis of organics dissolution, enzymes activities, and 16S rRNA microbiome sequencing.
Collapse
Affiliation(s)
- Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Chenhang Cai
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Blanquart S, Groussin M, Le Roy A, Szöllosi GJ, Girard E, Franzetti B, Gouy M, Madern D. Resurrection of Ancestral Malate Dehydrogenases Reveals the Evolutionary History of Halobacterial Proteins : Deciphering Gene Trajectories and Changes in Biochemical Properties. Mol Biol Evol 2021; 38:3754-3774. [PMID: 33974066 PMCID: PMC8382911 DOI: 10.1093/molbev/msab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extreme halophilic Archaea thrive in high salt, where, through proteomic adaptation, they cope with the strong osmolarity and extreme ionic conditions of their environment. In spite of wide fundamental interest, however, studies providing insights into this adaptation are scarce, because of practical difficulties inherent to the purification and characterization of halophilic enzymes. In this work, we describe the evolutionary history of malate dehydrogenases (MalDH) within Halobacteria (a class of the Euryarchaeota phylum). We resurrected nine ancestors along the inferred halobacterial MalDH phylogeny, including the Last Common Ancestral MalDH of Halobacteria (LCAHa) and compared their biochemical properties with those of five modern halobacterial MalDHs. We monitored the stability of these various MalDHs, their oligomeric states and enzymatic properties, as a function of concentration for different salts in the solvent. We found that a variety of evolutionary processes such as amino acid replacement, gene duplication, loss of MalDH gene and replacement owing to horizontal transfer resulted in significant differences in solubility, stability and catalytic properties between these enzymes in the three Halobacteriales, Haloferacales and Natrialbales orders since the LCAHa MalDH.We also showed how a stability trade-off might favor the emergence of new properties during adaptation to diverse environmental conditions. Altogether, our results suggest a new view of halophilic protein adaptation in Archaea.
Collapse
Affiliation(s)
| | - Mathieu Groussin
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Aline Le Roy
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Gergely J Szöllosi
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France.,MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Budapest, H-1117, Hungary
| | - Eric Girard
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Bruno Franzetti
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Manolo Gouy
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France
| | | |
Collapse
|
3
|
Takahashi M, Takahashi E, Joudeh LI, Marini M, Das G, Elshenawy MM, Akal A, Sakashita K, Alam I, Tehseen M, Sobhy MA, Stingl U, Merzaban JS, Di Fabrizio E, Hamdan SM. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea. FASEB J 2018; 32:3346-3360. [PMID: 29401622 PMCID: PMC6051491 DOI: 10.1096/fj.201700862rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of Thermococcus kodakarensis DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.
Collapse
Affiliation(s)
- Masateru Takahashi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Etsuko Takahashi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Luay I Joudeh
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Monica Marini
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Gobind Das
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Mohamed M Elshenawy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Anastassja Akal
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia.,KAUST Catalysis Center, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Kosuke Sakashita
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia; and
| | - Muhammad Tehseen
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Mohamed A Sobhy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Ulrich Stingl
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia.,Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | - Jasmeen S Merzaban
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Enzo Di Fabrizio
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Samir M Hamdan
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Perez-Fernandez CA, Iriarte M, Hinojosa-Delgadillo W, Veizaga-Salinas A, Cano RJ, Rivera-Perez J, Toranzos GA. First insight into microbial diversity and ion concentration in the Uyuni salt flat, Bolivia. CARIBB J SCI 2016. [DOI: 10.18475/cjos.v49i1.a6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Peng HL, Egawa T, Chang E, Deng H, Callender R. Mechanism of Thermal Adaptation in the Lactate Dehydrogenases. J Phys Chem B 2015; 119:15256-62. [PMID: 26556099 DOI: 10.1021/acs.jpcb.5b09909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 °C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 °C) for comparison to the mesophile phLDH (38-39 °C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced β-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Tsuyoshi Egawa
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
6
|
Abstract
Enzymes require some flexibility for catalysis. Biotechnologists prefer stable enzymes but often this stabilization comes at the cost of reduced efficiency. Enzymes from thermophiles have low flexibility but poor catalytic rates. Enzymes from psychrophiles are less stable but show good catalytic rates at low temperature. In organic solvents enzymes perform poorly as the prior drying makes the enzyme molecules very rigid. Adding water or increasing reaction temperature improves flexibility and catalytic rates. In case of hydrolases, flexibility and enantioselectivity have interdependence. Understanding the complex role of protein flexibility in biocatalysis can help in designing biotechnological processes.
Collapse
Affiliation(s)
- Joyeeta Mukherjee
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Mukherjee J, Mishra P, Gupta MN. Urea treated subtilisin as a biocatalyst for transformations in organic solvents. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.02.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Pack SP, Kang TJ, Yoo YJ. Protein Thermostabilizing Factors: High Relative Occurrence of Amino Acids, Residual Properties, and Secondary Structure Type in Different Residual State. Appl Biochem Biotechnol 2013; 171:1212-26. [DOI: 10.1007/s12010-013-0195-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/12/2013] [Indexed: 11/29/2022]
|
9
|
Basu S, Sen S. Do Homologous Thermophilic–Mesophilic Proteins Exhibit Similar Structures and Dynamics at Optimal Growth Temperatures? A Molecular Dynamics Simulation Study. J Chem Inf Model 2013; 53:423-34. [DOI: 10.1021/ci300474h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sohini Basu
- Molecular modeling Section, Biolab, Chembiotek, TCG Lifesciences Ltd., Bengal Intelligent Park, Tower-B 2nd Floor, Block-EP & GP, Sector-V, Salt Lake Electronic Complex, Calcutta-700091, India
| | - Srikanta Sen
- Molecular modeling Section, Biolab, Chembiotek, TCG Lifesciences Ltd., Bengal Intelligent Park, Tower-B 2nd Floor, Block-EP & GP, Sector-V, Salt Lake Electronic Complex, Calcutta-700091, India
| |
Collapse
|
10
|
Michels PC, Clark DS. Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen. Appl Environ Microbiol 2010; 63:3985-91. [PMID: 16535711 PMCID: PMC1389267 DOI: 10.1128/aem.63.10.3985-3991.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988).
Collapse
|
11
|
Majumder AB, Mondal K, Singh TP, Gupta MN. Designing cross-linked lipase aggregates for optimum performance as biocatalysts. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701685601] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Jahandideh S, Barzegari Asadabadi E, Abdolmaleki P, Jahandideh M, Hoseini S. Protein psychrophilicity: Role of residual structural properties in adaptation of proteins to low temperatures. J Theor Biol 2007; 248:721-6. [PMID: 17669434 DOI: 10.1016/j.jtbi.2007.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/26/2007] [Accepted: 06/25/2007] [Indexed: 11/20/2022]
Abstract
In order to investigate the structural distribution responsible for protein psychrophilicity, a systematic comparative analysis of 13 pairs of psychrophilic and mesophilic proteins is reported. Three kinds of residue structural states such as exposed, intermediate and buried were considered for analyzing the structural patterns of single amino acids and amino acids in different groups. The statistical test revealed that higher frequency in exposed state of Ala, higher frequency in intermediate state of His, lower frequency in buried state of Lys, lower frequency in exposed state of Gln, higher frequency in exposed state and in intermediate state of Thr, higher frequency in exposed and intermediate state of tiny and small amino acids groups could be critical factors related with protein psychrophilicity. Such structure-based differences of residual properties would help to develop a strategy for designing psychrophilic proteins.
Collapse
Affiliation(s)
- Samad Jahandideh
- Department of Biophysics, Faculty of Science, Tarbiat Modares University, P.O. Box 14115/175, Tehran, Iran
| | | | | | | | | |
Collapse
|
13
|
Gakhar L, Malik ZA, Allen CCR, Lipscomb DA, Larkin MJ, Ramaswamy S. Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. J Bacteriol 2005; 187:7222-31. [PMID: 16237006 PMCID: PMC1272967 DOI: 10.1128/jb.187.21.7222-7231.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rieske nonheme iron oxygenases form a large class of aromatic ring-hydroxylating dioxygenases found in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth, making them good candidates for use in synthesis of chiral intermediates and bioremediation. Studies of the chemical stability and thermostability of these enzymes thus become important. We report here the structure of free and substrate (indole)-bound forms of naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. The structure of the Rhodococcus enzyme reveals that, despite a approximately 30% sequence identity between these naphthalene dioxygenases, their overall structures superpose very well with a root mean square deviation of less than 1.6 A. The differences in the active site of the two enzymes are pronounced near the entrance; however, indole binds to the Rhodococcus enzyme in the same orientation as in the Pseudomonas enzyme. Circular dichroism spectroscopy experiments show that the Rhodococcus enzyme has higher thermostability than the naphthalene dioxygenase from Pseudomonas species. The Pseudomonas enzyme has an apparent melting temperature of 55 degrees C while the Rhodococcus enzyme does not completely unfold even at 95 degrees C. Both enzymes, however, show similar unfolding behavior in urea, and the Rhodococcus enzyme is only slightly more tolerant to unfolding by guanidine hydrochloride. Structure analysis suggests that the higher thermostability of the Rhodococcus enzyme may be attributed to a larger buried surface area and extra salt bridge networks between the alpha and beta subunits in the Rhodococcus enzyme.
Collapse
Affiliation(s)
- Lokesh Gakhar
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pack SP, Yoo YJ. Packing-based difference of structural features between thermophilic and mesophilic proteins. Int J Biol Macromol 2005; 35:169-74. [PMID: 15811472 DOI: 10.1016/j.ijbiomac.2005.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 01/18/2005] [Accepted: 01/20/2005] [Indexed: 11/26/2022]
Abstract
Twenty pairs of thermophilic and mesophilic proteins were compared in terms of residue packing distribution to obtain structural features related to protein thermostability. Based on residue packing concept, structural features of residues such as residue packing distribution, inner/outer position, secondary structure and water solvation were investigated. The statistical tests revealed that higher frequency in well-packed state of residues, lower frequency in exposed state and higher frequency in well-packed state of inner positioned residues, and higher frequency in well-packed state of 3/10 helix residues could be general structural features thermophilic proteins have.
Collapse
Affiliation(s)
- Seung Pil Pack
- School of Chemical Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
15
|
Madern D, Zaccai G. Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein. Biochimie 2005; 86:295-303. [PMID: 15194233 DOI: 10.1016/j.biochi.2004.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 04/01/2004] [Indexed: 11/30/2022]
Abstract
Malate dehydrogenase from the extreme halophilic bacterium, Salinibacter ruber (Sr MalDH) was purified and characterised as a tetramer by sedimentation velocity measurements, showing the enzyme belongs to the LDH-like group of MalDHs. In contrast to most other halophilic enzymes, which unfold when incubated at low salt concentration, Sr MalDH is completely stable in absence of salt. Its amino acid composition does not display the strong acidic character specific of halophilic proteins. The enzyme displays a strong KCl-concentration dependent variation in K(m) for oxaloacetate, but not for the NADH co-factor. Its activity is reduced by high salt concentration, but remains sufficient for the enzyme to sustain catalysis at approximately 30% of its maximal rates in 3 M KCl. The properties of the protein were compared with those from other LDH-like MalDHs of bacterial and archaeal origins, showing that Sr MalDH in fact behaves like a non-halophilic enzyme.
Collapse
Affiliation(s)
- Dominique Madern
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale CEA-CNRS-UJF, UMR 5075, 41, rue Jules-Horowitz, Grenoble 38042, France.
| | | |
Collapse
|
16
|
Pack SP, Yoo YJ. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. J Biotechnol 2004; 111:269-77. [PMID: 15246663 DOI: 10.1016/j.jbiotec.2004.01.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/10/2003] [Accepted: 01/19/2004] [Indexed: 11/29/2022]
Abstract
Structural distributions of each amino acid were compared between 20 pairs of thermophilic and mesophilic proteins to obtain thermostable factors. Five kinds of residual structure states such as fully-exposed, exposed, partially exposed (or partially buried), buried, well-buried states were considered for analyzing the structural patterns of amino acids. The statistical tests revealed that lower frequency in partially exposed state of SER, lower frequency in exposed state and higher frequency in well-buried state of ALA, higher frequency in buried state of GLU, higher frequency in exposed state of ARG, etc. could be critical factors related with protein thermostability.
Collapse
Affiliation(s)
- Seung Pil Pack
- School of Chemical Engineering, Seoul National University, Seoul 151-742, South Korea
| | | |
Collapse
|
17
|
Abstract
MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the well-studied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of approximately 3 nm, which is approximately 100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.
Collapse
Affiliation(s)
- Osigwe Esue
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
18
|
Pack SP, Yoo YJ. Protein thermostability: structure-based difference of residual properties between thermophilic and mesophilic proteins. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.molcatb.2003.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Englander SW, Hiller R. Dynamics and thermodynamics of hyperthermophilic proteins by hydrogen exchange. Methods Enzymol 2001; 334:342-50. [PMID: 11398477 DOI: 10.1016/s0076-6879(01)34481-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The naturally occurring hydrogen exchange of protein molecules can provide nonperturbing site-resolved measurements of protein stability and flexibility and changes therein. The measurement and understanding of these issues is especially pertinent to studies of thermophilic proteins. This chapter briefly reviews the considerations necessary for measuring hydrogen exchange and translating HX measurements into these detailed protein parameters.
Collapse
Affiliation(s)
- S W Englander
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19109-6059, USA
| | | |
Collapse
|
20
|
Kannan N, Vishveshwara S. Aromatic clusters: a determinant of thermal stability of thermophilic proteins. PROTEIN ENGINEERING 2000; 13:753-61. [PMID: 11161106 DOI: 10.1093/protein/13.11.753] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A number of factors have been elucidated as responsible for the thermal stability of thermophilic proteins. However, the contribution of aromatic interactions to thermal stability has not been systematically studied. In the present investigation we used a graph spectral method to identify aromatic clusters in a dataset of 24 protein families for which the crystal structures of both the thermophilic and their mesophilic homologues are known. Our analysis shows a presence of additional aromatic clusters or enlarged aromatic networks in 17 different thermophilic protein families, which are absent in the corresponding mesophilic homologue. The additional aromatic clusters identified in the thermophiles are smaller in size and are largely found on the protein surface. The aromatic clusters are found to be relatively rigid regions of the surface and often the additional aromatic cluster is located close to the active site of the thermophilic enzyme. The residues in the additional aromatic clusters are preferably mutated to Leu, Ser or Ile in the mesophilic homologue. An analysis of the packing geometry of the pairwise aromatic interaction in the additional aromatic clusters shows a preference for a T-shaped orthogonal packing geometry. The present study also provides new insights for protein engineers to design thermostable and thermophilic proteins.
Collapse
Affiliation(s)
- N Kannan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
21
|
Abstract
Halophilic enzymes, while performing identical enzymatic functions as their non-halophilic counterparts, have been shown to exhibit substantially different properties, among them the requirement for high salt concentrations, in the 1-4 M range, for activity and stability, and a high excess of acidic over basic amino residues. The following communication reviews the functional and structural properties of two proteins isolated from the extremely halophilic archaeon Haloarcula marismortui: the enzyme malate-dehydrogenase (hMDH) and the 2Fe-2S protein ferredoxin. It is argued that the high negative surface charge of halophilic proteins makes them more soluble and renders them more flexible at high salt concentrations, conditions under which non-halophilic proteins tend to aggregate and become rigid. This high surface charge is neutralized mainly by tightly bound water dipoles. The requirement of high salt concentration for the stabilization of halophilic enzymes, on the other hand, is due to a low affinity binding of the salt to specific sites on the surface of the folded polypeptide, thus stabilizing the active conformation of the protein.
Collapse
Affiliation(s)
- M Mevarech
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| | | | | |
Collapse
|
22
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
23
|
Lebbink JH, Kaper T, Bron P, van der Oost J, de Vos WM. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry 2000; 39:3656-65. [PMID: 10736164 DOI: 10.1021/bi991483q] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus (CelB) is the most thermostable and thermoactive family 1 glycosylhydrolase described to date. To obtain more insight in the molecular determinants of adaptations to high temperatures and study the possibility of optimizing low-temperature activity of a hyperthermostable enzyme, we generated a library of random CelB mutants in Escherichia coli. This library was screened for increased activity on p-nitrophenyl-beta-D-glucopyranoside at room temperature. Multiple CelB variants were identified with up to 3-fold increased rates of hydrolysis of this aryl glucoside, and 10 of them were characterized in detail. Amino acid substitutions were identified in the active-site region, at subunit interfaces, at the enzyme surface, and buried in the interior of the monomers. Characterization of the mutants revealed that the increase in low-temperature activity was achieved in different ways, including altered substrate specificity and increased flexibility by an apparent overall destabilization of the enzyme. Kinetic characterization of the active-site mutants showed that in all cases the catalytic efficiency at 20 degrees C on p-nitrophenyl-beta-D-glucose, as well as on the disaccharide cellobiose, was increased up to 2-fold. In most cases, this was achieved at the expense of beta-galactosidase activity at 20 degrees C and total catalytic efficiency at 90 degrees C. Substrate specificity was found to be affected by many of the observed amino acid substitutions, of which only some are located in the vicinity of the active site. The largest effect on substrate specificity was observed with the CelB variant N415S that showed a 7.5-fold increase in the ratio of p-nitrophenyl-beta-D-glucopyranoside/p-nitrophenyl-beta-D-galactopyra noside hydrolysis. This asparagine at position 415 is predicted to interact with active-site residues that stabilize the hydroxyl group at the C4 position of the substrate, the conformation of which is equatorial in glucose-containing substrates and axial in galactose-containing substrates.
Collapse
Affiliation(s)
- J H Lebbink
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Madern D, Ebel C, Mevarech M, Richard SB, Pfister C, Zaccai G. Insights into the molecular relationships between malate and lactate dehydrogenases: structural and biochemical properties of monomeric and dimeric intermediates of a mutant of tetrameric L-[LDH-like] malate dehydrogenase from the halophilic archaeon Haloarcula marismortui. Biochemistry 2000; 39:1001-10. [PMID: 10653644 DOI: 10.1021/bi9910023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L-Malate (MalDH) and L-lactate (LDH) dehydrogenases belong to the same family of NAD-dependent enzymes. LDHs are tetramers, whereas MalDHs can be either dimeric or tetrameric. To gain insight into molecular relationships between LDHs and MalDHs, we studied folding intermediates of a mutant of the LDH-like MalDH (a protein with LDH-like structure and MalDH enzymatic activity) from the halophilic archaeon Haloarcula marismortui (Hm MalDH). Crystallographic analysis of Hm MalDH had shown a tetramer made up of two dimers interacting mainly via complex salt bridge clusters. In the R207S/R292S Hm MalDH mutant, these salt bridges are disrupted. Its structural parameters, determined by neutron scattering and analytical centrifugation under different conditions, showed the protein to be a tetramer in 4 M NaCl. At lower salt concentrations, stable oligomeric intermediates could be trapped at a given pH, temperature, or NaCl solvent concentration. The spectroscopic properties and enzymatic behavior of monomeric, dimeric, and tetrameric species were thus characterized. The properties of the dimeric intermediate were compared to those of dimeric intermediates of LDH and dimeric MalDHs. A detailed analysis of the putative dimer-dimer contact regions in these enzymes provided an explanation of why some can form tetramers and others cannot. The study presented here makes Hm MalDH the best characterized example so far of an LDH-like MalDH.
Collapse
Affiliation(s)
- D Madern
- Institut de Biologie Structurale, CEA-CNRS, 41 Avenue des Martyrs, F-38027 Grenoble Cedex 1, France.
| | | | | | | | | | | |
Collapse
|
25
|
Knapp S, Kardinahl S, Hellgren N, Tibbelin G, Schäfer G, Ladenstein R. Refined crystal structure of a superoxide dismutase from the hyperthermophilic archaeon Sulfolobus acidocaldarius at 2.2 A resolution. J Mol Biol 1999; 285:689-702. [PMID: 9878438 DOI: 10.1006/jmbi.1998.2344] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extremely thermostable superoxide dismutase from the hyperthermophilic archaeon Sulfolobus acidocaldarius was crystallized and the three-dimensional structure was determined by X-ray diffraction methods. The enzyme crystallized in the monoclinic spacegroup C2 with the cell dimensions a=168.1 A, b=91.3 A, c=85.7 A, beta=91.4 degrees. The diffraction limit of these crystals was 2.2 A. The crystals were very stable in the X-ray beam and measured diffraction data of a single crystal had a completeness of 99.5 % up to a resolution of 2.2 A. The crystal structure of S. acidocaldarius superoxide dismutase was solved by Patterson search methods using a dimer of Thermus thermophilus superoxide dismutase as a search model. The asymmetric unit accommodates three dimers. Two dimers form a tetramer by using only local symmetries; the third dimer forms a tetramer as well, however, by using the crystallographic 2-fold symmetry. The three-dimensional structure of the S. acidocaldarius dismutase has typical features of tetrameric dismutases. Secondary structure elements as well as residues important for the catalytic activity of the enzyme were found to be highly conserved. The model was refined at a resolution of 2.2 A and yielded a crystallographic R-value of 17.4 % (Rfree=22.3 %). A structural comparison of the two extremely stable tetrameric dismutases from S. acidocaldarius and Aquifex pyrophilus with the less stable enzyme from T. thermophilus and Mycoplasma tuberculosis revealed the structural determinants which are probably responsible for the high intrinsic stability of S. acidocaldarius dismutase. The most obvious factor which may give rise to the extraordinary thermal stability of S. acidocaldarius dismutase (melting temperature of about 125 degreesC) is the increase in intersubunit ion pairs and hydrogen bonds and, more importantly, the significant reduction of solvent-accessible hydrophobic surfaces, as well as an increase in the percentage of buried hydrophobic residues.
Collapse
Affiliation(s)
- S Knapp
- NOVUM, Centre for Structural Biochemistry (CSB), Karolinska Institute, Huddinge, S-14157, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Ichikawa JK, Clarke S. A highly active protein repair enzyme from an extreme thermophile: the L-isoaspartyl methyltransferase from Thermotoga maritima. Arch Biochem Biophys 1998; 358:222-31. [PMID: 9784234 DOI: 10.1006/abbi.1998.0830] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that the open reading frame in the Thermotoga maritima genome tentatively identified as the pcm gene (R. V. Swanson et al., J. Bacteriol. 178, 484-489, 1996) does indeed encode a protein L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.1.1.77) and that this protein repair enzyme displays several novel features. We expressed the 317 amino acid pcm gene product of this thermophilic bacterium in Escherichia coli as a fusion protein with an N-terminal 20 residue hexa-histidine-containing sequence. This protein contains a C-terminal domain of approximately 100 residues not previously seen in this enzyme from various prokaryotic or eukaryotic species and which does not have sequence similarity to any other entry in the GenBank databases. The C-terminal region appears to be required for enzymatic function as no activity is detected in two recombinant constructs lacking this domain. Sedimentation equilibrium analysis indicated that the enzyme is monomeric in solution. The Km values for measured for peptide and protein substrates were found to be intermediate between those of the high-affinity human enzyme and those of the lower-affinity wheat, nematode, and E. coli enzymes. The enzyme was extremely heat stable, with no loss of activity after 60 min at 100 degreesC. Enzyme activity was observed at temperatures as high as 93 degreesC with an optimal activity of 164 nmol/min/mg protein at 85 degreesC. This activity is approximately 18-fold higher than the maximal activities of mesophilic homologs at 37 degreesC. These data suggest that the Thermotoga enzyme has unique features for initiating repair in damaged proteins containing L-isoaspartyl residues at elevated temperatures.
Collapse
Affiliation(s)
- J K Ichikawa
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, 90095-1569, USA
| | | |
Collapse
|
27
|
Abstract
Enzymes synthesized by thermophiles (organisms with optimal growth temperatures > 60 degrees C) and hyperthermophiles (optimal growth temperatures > 80 degrees C) are typically thermostable (resistant to irreversible inactivation at high temperatures) and thermophilic (optimally active at high temperatures, i.e., > 60 degrees C). These enzymes, called thermozymes, share catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, thermozymes usually retain their thermal properties, suggesting that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, and crystal structure comparisons indicate that thermozymes are, indeed, very similar to mesophilic enzymes. No obvious sequence or structural features account for enzyme thermostability and thermophilicity. Thermostability and thermophilicity molecular mechanisms are varied, differing from enzyme to enzyme. Thermostability and thermophilicity are usually caused by the accumulation of numerous subtle sequence differences. This review concentrates on the mechanisms involved in enzyme thermostability and thermophilicity. Their relationships with protein rigidity and flexibility and with protein folding and unfolding are discussed. Intrinsic stabilizing forces (e.g., salt bridges, hydrogen bonds, hydrophobic interactions) and extrinsic stabilizing factors are examined. Finally, thermozymes' potential as catalysts for industrial processes and specialty uses are discussed, and lines of development (through new applications, and protein engineering) are also proposed.
Collapse
Affiliation(s)
- C Vieille
- Department of Biochemistry, Michigan State University, East Lansing 48909, USA
| | | | | |
Collapse
|
28
|
Závodszky P, Kardos J, Petsko GA. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A 1998; 95:7406-11. [PMID: 9636162 PMCID: PMC22632 DOI: 10.1073/pnas.95.13.7406] [Citation(s) in RCA: 425] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17 degreesC higher melting temperature. Its temperature optimum is 22-25 degreesC higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a "corresponding state" regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.
Collapse
Affiliation(s)
- P Závodszky
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Pf. 7, H-1518 Budapest, Hungary
| | | | | |
Collapse
|
29
|
Auerbach G, Ostendorp R, Prade L, Korndörfer I, Dams T, Huber R, Jaenicke R. Lactate dehydrogenase from the hyperthermophilic bacterium thermotoga maritima: the crystal structure at 2.1 A resolution reveals strategies for intrinsic protein stabilization. Structure 1998; 6:769-81. [PMID: 9655830 DOI: 10.1016/s0969-2126(98)00078-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND L(+)-Lactate dehydrogenase (LDH) catalyzes the last step in anaerobic glycolysis, the conversion of pyruvate to lactate, with the concomitant oxidation of NADH. Extensive physicochemical and structural investigations of LDHs from both mesophilic and thermophilic organisms have been undertaken in order to study the temperature adaptation of proteins. In this study we aimed to determine the high-resolution structure of LDH from the hyperthermophilic bacterium Thermotoga maritima (TmLDH), the most thermostable LDH to be isolated so far. It was hoped that the structure of TmLDH would serve as a model system to reveal strategies of protein stabilization at temperatures near the boiling point of water. RESULTS The crystal structure of the extremely thermostable TmLDH has been determined at 2.1 A resolution as a quaternary complex with the cofactor NADH, the allosteric activator fructose-1,6-bisphosphate, and the substrate analog oxamate. The structure of TmLDH was solved by Patterson search methods using a homology-based model as a search probe. The native tetramer shows perfect 222 symmetry. Structural comparisons with five LDHs from mesophilic and moderately thermophilic organisms and with other ultrastable enzymes from T. maritima reveal possible strategies of protein thermostabilization. CONCLUSIONS Structural analysis of TmLDH and comparison of the enzyme to moderately thermophilic and mesophilic homologs reveals a strong conservation of both the three-dimensional fold and the catalytic mechanism. Going from lower to higher physiological temperatures a variety of structural differences can be observed: an increased number of intrasubunit ion pairs; a decrease of the ratio of hydrophobic to charged surface area, mainly caused by an increased number of arginine and glutamate sidechains on the protein surface; an increased secondary structure content including an additional unique 'thermohelix' (alphaT) in TmLDH; more tightly bound intersubunit contacts mainly based on hydrophobic interactions; and a decrease in both the number and the total volume of internal cavities. Similar strategies for thermal adaptation can be observed in other enzymes from T. maritima.
Collapse
Affiliation(s)
- G Auerbach
- Max-Planck-Institut für Biochemie Abt. Strukturforschung, 82152, Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Klyachko O, Ozernyuk N. Functional and Structural Properties of Lactate Dehydrogenase from Embryos of Different Fishes. Comp Biochem Physiol B Biochem Mol Biol 1998. [DOI: 10.1016/s0305-0491(97)00267-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Knapp S, de Vos WM, Rice D, Ladenstein R. Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution. J Mol Biol 1997; 267:916-32. [PMID: 9135121 DOI: 10.1006/jmbi.1996.0900] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The extremely thermostable glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima has been crystallized and the three-dimensional structure has been determined by X-ray diffraction methods. Crystals up to a maximum size of 1.2 mm have been grown in 3% polyethylene glycol, 120 mM ammonium acetate and 50 mM bis-tris propane (pH 6.5). The enzyme crystallized in the trigonal space group P3(1)21 with the cell dimensions a = b = 147.3 A, c = 273.6 A. The diffraction limit of these crystals is 3.0 A. Measured diffraction data have a completeness of 94% up to a resolution of 3.0 A and contain 75% of all possible data in the last resolution shell between 3.1 and 3.0 A. The crystal structure of T. maritima glutamate dehydrogenase has been solved by Patterson search methods using the hexameric Pyrococcus furiosus glutamate dehydrogenase as a search model. The crystallographic refinement has been carried out to a maximum resolution of 3.1 A and an crystallographic R-value of 22.5% (Rfree = 29.5%). The three-dimensional structure of the T. maritima enzyme shows typical features of hexameric glutamate dehydrogenases: six subunits are arranged in 32 symmetry. Each subunit consists of two domains connected by a flexible hinge region. Secondary structure elements as well as residues important for the catalytic activity of the enzyme are highly conserved. A structural comparison of the two glutamate dehydrogenases from the hyperthermophiles T. maritima and P. furiosus with the enzyme from the mesophilic bacterium Clostridium symbiosum has revealed that common as well as distinct mechanisms contribute to the thermal stability of these enzymes. The number of intrasubunit ion pairs is increased and the volume of intrasubunit cavities decreased in both thermostable enzymes, whereas striking differences have been observed in the subunit interfaces. In P. furiosus glutamate dehydrogenase the subunit interactions are dominated by ionic interactions realized by large saltbridge networks. However, in T. maritima glutamate dehydrogenase the number of intersubunit ion pairs is reduced and the hydrophobic interactions are increased.
Collapse
Affiliation(s)
- S Knapp
- Karolinska Institutet NOVUM, Centre for Structural Biochemistry (CSB), Huddinge, Sweden
| | | | | | | |
Collapse
|
32
|
Sánchez ME, Londei P, Amils R. Total reconstitution of active small ribosomal subunits of the extreme halophilic archaeon Haloferax mediterranei. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1292:140-4. [PMID: 8547336 DOI: 10.1016/0167-4838(95)00179-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The small ribosomal subunit of the halophilic archaeon Haloferax mediterranei has been reconstituted from its dissociated rRNA and protein components. Efficient reconstitution of particles, fully active in poly(U)-dependent polyphenylalanine synthesis, occurs after 2 h of incubation at 36 degrees C in the presence of 1.5 M of (NH4)2SO4, 100 mM of MgAc2, 20 mM Tris-HCl (pH 8.2) and 6 mM 2-mercaptoethanol. Important differences in the optimal ionic conditions for the reconstitution of the 30S and the 50S ribosomal subunits from Haloferax mediterranei have been found. K+ and NH4+ ions have differing abilities to promote the reconstitution of the particles. The assembly of 30S ribosomal subunits of H. mediterranei has a higher tolerance to ionic strength than the assembly of the 50S subunits and it is independent of the Mg2+ concentration present in the system.
Collapse
Affiliation(s)
- M E Sánchez
- Centro de Biología Molecular, C.S.I.C.-U.A.M., Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
33
|
Jaenicke R, Schurig H, Beaucamp N, Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:181-269. [PMID: 8791626 DOI: 10.1016/s0065-3233(08)60363-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
34
|
Schurig H, Rutkat K, Rachel R, Jaenicke R. Octameric enolase from the hyperthermophilic bacterium Thermotoga maritima: purification, characterization, and image processing. Protein Sci 1995; 4:228-36. [PMID: 7757011 PMCID: PMC2143061 DOI: 10.1002/pro.5560040209] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enolase (2-phospho-D-glycerate hydrolase; EC 4.2.1.11) from the hyperthermophilic bacterium Thermotoga maritima was purified to homogeneity. The N-terminal 25 amino acids of the enzyme reveal a high degree of similarity to enolases from other sources. As shown by sedimentation analysis and gel-permeation chromatography, the enzyme is a 345-kDa homoctamer with a subunit molecular mass of 48 +/- 5 kDa. Electron microscopy and image processing yield ring-shaped particles with a diameter of 17 nm and fourfold symmetry. Averaging of the aligned particles proves the enzyme to be a tetramer of dimers. The enzyme requires divalent cations in the activity assay, Mg2+ being most effective. The optimum temperature for catalysis is 90 degrees C, the temperature dependence yields a nonlinear Arrhenius profile with limiting activation energies of 75 kJ mol-1 and 43 kJ mol-1 at temperatures below and above 45 degrees C. The pH optimum of the enzyme lies between 7 and 8. The apparent Km values for 2-phospho-D-glycerate and Mg2+ at 75 degrees C are 0.07 mM and 0.03 mM; with increasing temperature, they are decreased by factors 2 and 30, respectively. Fluoride and phosphate cause competitive inhibition with a Ki of 0.14 mM. The enzyme shows high intrinsic thermal stability, with a thermal transition at 90 and 94 degrees C in the absence and in the presence of Mg2+.
Collapse
Affiliation(s)
- H Schurig
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
35
|
|
36
|
|
37
|
Schr�der C, Selig M, Sch�nheit P. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch Microbiol 1994. [DOI: 10.1007/bf00307766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
|
39
|
Purification and properties of glutamine synthetase from the archaebacterium Halobacterium salinarium. Arch Microbiol 1993. [DOI: 10.1007/bf00244269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Arnone MI, Birolo L, Giamberini M, Cubellis MV, Nitti G, Sannia G, Marino G. Limited proteolysis as a probe of conformational changes in aspartate aminotransferase from Sulfolobus solfataricus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:1183-9. [PMID: 1551394 DOI: 10.1111/j.1432-1033.1992.tb16745.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The analysis of conformational transitions using limited proteolysis was carried out on a hyperthermophilic aspartate aminotransferase isolated from the archaebacterium Sulfolobus solfataricus, in comparison with pig cytosolic aspartate aminotransferase, a thoroughly studied mesophilic aminotransferase which shares about 15% similarity with the archaebacterial protein. Aspartate aminotransferase from S. solfataricus is cleaved at residue 28 by thermolysin and residues 32 and 33 by trypsin; analogously, pig heart cytosolic aspartate aminotransferase is cleaved at residues 19 and 25 [Iriarte, A., Hubert, E., Kraft, K. & Martinez-Carrion, M. (1984) J. Biol. Chem. 259, 723-728] by trypsin. In the case of aspartate aminotransferase from S. solfataricus, proteolytic cleavages also result in transaminase inactivation thus indicating that both enzymes, although evolutionarily distinct, possess a region involved in catalysis and well exposed to proteases which is similarly positioned in their primary structure. It has been reported that the binding of substrates induces a conformational transition in aspartate aminotransferases and protects the enzymes against proteolysis [Gehring, H. (1985) in Transaminases (Christen, P. & Metzler, D. E., eds) pp. 323-326, John Wiley & Sons, New York]. Aspartate aminotransferase from S. solfataricus is protected against proteolysis by substrates, but only at high temperatures (greater than 60 degrees C). To explain this behaviour, the kinetics of inactivation caused by thermolysin were measured in the temperature range 25-75 degrees C. The Arrhenius plot of the proteolytic kinetic constants measured in the absence of substrates is not rectilinear, while the same plot of the constants measured in the presence of substrates is a straight line. Limited proteolysis experiments suggest that aspartate aminotransferase from S. solfataricus undergoes a conformational transition induced by the binding of substrates. Another conformational transition which depends on temperature and occurs in the absence of substrates could explain the non-linear Arrhenius plot of the proteolytic kinetic constants. The latter conformational transition might also be related to the functioning of the archaebacterial aminotransferase since the Arrhenius plot of kcat is non-linear as well.
Collapse
Affiliation(s)
- M I Arnone
- Dipartimento di Chimica Organica e Biologica, Università di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Eisenberg H, Mevarech M, Zaccai G. Biochemical, structural, and molecular genetic aspects of halophilism. ADVANCES IN PROTEIN CHEMISTRY 1992; 43:1-62. [PMID: 1442321 DOI: 10.1016/s0065-3233(08)60553-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Eisenberg
- Structural Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
42
|
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, FRG
| |
Collapse
|
43
|
Zaccai G, Eisenberg H. Halophilic proteins and the influence of solvent on protein stabilization. Trends Biochem Sci 1990; 15:333-7. [PMID: 2238041 DOI: 10.1016/0968-0004(90)90068-m] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Competition between protein-solvent and protein-protein interactions is arguably the most important contributing factor to polypeptide folding in general. A study of halophilic proteins, correlating their stability and solution structures in different conditions, focuses on the effects of a high salt solvent. A mechanism is proposed to explain how these proteins have adapted to such an extreme environment.
Collapse
Affiliation(s)
- G Zaccai
- Institut Laue Langevin, (CNRS URA 1333), Grenoble, France
| | | |
Collapse
|
44
|
Abstract
Life on earth is ubiquitous within the limits from -5 to 110 degrees C for temperature, 0.1 to 120 MPa for hydrostatic pressure, 1.0 to 0.6 for water activity and pH 1 to 12. In general, mutative adaptation of proteins to changing environmental conditions tends to maintain 'corresponding states' regarding overall topology, flexibility and hydration. Due to the minute changes in the free energy of stabilization responsible for enhanced stability, nature provides a wide variety of different adaptative strategies. In the case of thermophilic proteins, improved packing densities are crucial. In halophilic proteins, decreased hydrophobicity and clustered surface charges serve to increase water and salt binding required for solubilization at high salt concentration. In the case of barophiles, high-pressure adaptation is expected to be less important than adaptation to low temperatures governing the deep sea. Nothing is known with respect to the mechanisms underlying psychrophilic and acidophilic/alkalophilic adaptation.
Collapse
Affiliation(s)
- R Jaenicke
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, FRG
| | | |
Collapse
|
45
|
Wrba A, Jaenicke R, Huber R, Stetter KO. Lactate dehydrogenase from the extreme thermophile Thermotoga maritima. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 188:195-201. [PMID: 2318202 DOI: 10.1111/j.1432-1033.1990.tb15388.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lactate dehydrogenase was isolated from the extreme thermophilic eubacterium Thermotoga maritima. The enzyme is stereospecific for L(+)-lactate. It represents a homotetramer of 144 kDa molecular mass, with a sedimentation coefficient of s20,w approximately 7 S. Under physiological temperature conditions, the enzyme shows high catalytic efficiency with a broad pH optimum at pH 7.0 +/- 1.0, and long-term stability up to 80 degrees C. The coenzyme, NAD+, and the effector fructose 1,6-bisphosphate [Fru(1,6)P2] increase the thermal stability: at 90 degrees C (pH 6.0), the liganded enzyme exhibits a half-life of thermal inactivation of 150 min. The enhanced rigidity of the enzyme at ambient temperature is reflected by an anomalously high stability toward guanidine denaturation: the midpoint of the equilibrium transition being 1.6 M guanidine hydrochloride. Under optimum conditions of the enzyme assay, the Michaelis constants (Km) for NADH, NAD+, pyruvate and L(+)-lactate at 55 degrees C, and in the absence of Fru(1,6)P2, are 0.03 mM, 0.09 mM, 3.7 mM and 410 mM, respectively; Fru(1,6)P2 as a positive effector shifts the Km values for pyruvate and L(+)-lactate to 0.06 mM and 25 mM, respectively. The Km values for the coenzyme are not affected. Neither Mn2+ nor other divalent cations have any activating effect. In contrast to lactate dehydrogenases from eukaryotes, the N-terminus of the enzyme from Th. maritima is not acetylated. Comparison of the 30 N-terminal amino acid residues with lactate dehydrogenase from Thermus aquaticus shows a high degree of similarity. This also holds if the two lactate dehydrogenases are compared with the glyceraldehyde-3-phosphate dehydrogenases from the same organisms.
Collapse
Affiliation(s)
- A Wrba
- Institut für Biophysik, Universität Regensburg, Federal Republic of Germany
| | | | | | | |
Collapse
|