1
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|
2
|
Williams JP, Headrick JP. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:71-9. [PMID: 8764892 DOI: 10.1016/0005-2728(96)00036-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Free cytosolic concentrations of ATP, PCr, ADP and 5'-AMP, and the cytosolic [ATP]/[ADP].[Pi] ratio, were determined in isolated and in situ rat hearts using 31P-NMR spectroscopy. Total tissue metabolite concentrations were determined by HPLC analysis of freeze-clamped, perchloric acid-extracted tissue. In in situ myocardium the PCr/ATP ratio was 2.7 +/- 0.2 determined from 31P-NMR data (using either PCr/beta-NTP or PCr/gamma-NTP), and 1.9 +/- 0.1 (P < 0.01) determined from total tissue concentrations. 31P-NMR-determined and total tissue [PCr] were in excellent agreement (49.6 +/- 8.4 and 49.5 +/- 1.0 mumol.g-1 dry wt, respectively), whereas 31P-NMR-determined [ATP] (18.6 +/- 3.2 mumol.g-1 dry wt) was only 71% of the total tissue concentration (26.1 +/- 1.7 mumol.g-1 dry wt, P < 0.01). Isolation and Langendorff perfusion of rat hearts with glucose as substrate reduced total tissue [ATP] and [PCr] and the 31P-NMR-determined PCr/ATP ratio fell to 1.5 +/- 0.1. This value agreed well with the total tissue ratio of 1.4 +/- 0.1, and there was excellent agreement between 31P-NMR-determined and total tissue [PCr] and [ATP] values in the perfused heart. Addition of pyruvate to perfusate increased the 31P-NMR-determined PCr/ATP ratio to 1.7 +/- 0.1 due to elevated [PCr], and there remained excellent agreement between NMR-determined and total tissue [PCr] and [ATP] values. Free cytosolic [ADP] (from the creatine kinase equilibrium) was 5% of total tissue ADP, and free cytosolic [5'-AMP] (from the adenylate kinase equilibrium) ranged from 0.2-0.3% of total tissue 5'-AMP. Bioenergetic state, indexed by [ATP]/[ADP].[Pi], was much lower in isolated perfused hearts (30 mM-1) vs. in situ myocardium (approximately 150 mM-1). In summary, we observe a substantial disproportionality between total tissue PCr/ATP and 31P-NMR-determined PCr/ATP in highly energised in situ myocardium but not in isolated perfused hearts. This appears due to an NMR invisible ATP compartment approximating 29% of total tissue ATP in situ. Additionally, more than 95% of ADP and more than 99% of 5'-AMP exist in bound forms in perfused and in situ myocardium. The physiological significance of these observations is unclear. However, substantial differences between 31P-NMR visible and total tissue [ATP] introduces significant errors in conventional estimation of free cytosolic [ADP], [5'-AMP] and [ATP]/[ADP].[Pi] from in vivo 31P-NMR data.
Collapse
Affiliation(s)
- J P Williams
- Department of Physiology and Pharmacology, School of Molecular Sciences, James Cook University of North Queensland, Townsville, Australia
| | | |
Collapse
|
3
|
Armiger LC, Headrick JP, Jordan LR, Willis RJ. Bound inorganic phosphate and early contractile failure in global ischaemia. Basic Res Cardiol 1995; 90:482-8. [PMID: 8773193 DOI: 10.1007/bf00788541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inorganic phosphate (Pi) accumulates extremely rapidly in ischaemic heart muscle and intracellular binding of this metabolite may account for the precipitous loss of function seen at the onset of severe ischaemia. We have used 31P-NMR spectroscopy to measure the free cytosolic [Pi] and chemical assay techniques to measure total tissue Pi at 0, 1, 2, 3, 4, 5, and 12 min of complete global ischaemia in the isolated isovolumic rat heart. At zero time, the Pi assayed chemically was 30.77 +/- 5.52 mumol/g dry wt (mean +/- SD, n = 7) whilst Pi assayed by NMR was 3.39 +/- 1.21 mumol/g dry wt (n = 15). Thus, 27.38 mumol/g dry wt of Pi was bound at a cytosolic [Pi] of 0.82 mM. After 12 min of ischaemia, 49.88 mumol/g dry wt of Pi was bound at a cytosolic [Pi] of 4.11 mM. When all data were fitted, using a non-linear, least squares fit (p < 0.05), to the binding isotherm: Bound Pi = Bmax'. [Pi]/Kd'+[Pi], the apparent binding parameters Kd' and Bmax' were estimated to be 1.1 +/- 0.6 mM and 64.0 +/- 10.2 mumol/g dry wt respectively. During the first minute of global ischaemia when the rate-pressure product had decreased by 79% of its pre-ischaemic value, bound Pi had increased by 58% and free cytosolic [Pi] by 162%. When functional and metabolite changes were expressed as a fraction of the total change which occurred during the 12-min ischaemic period, bound Pi had the profile most similar to the rate-pressure product. Both the amount of bound Pi and free cytosolic [Pi] correlated with loss of contractile function as the ischaemic period progressed. The results show that during ischaemia, Pi is bound progressively as free cytosolic [Pi] is increased as the result of high energy phosphate hydrolysis. While these results are consistent with the possibility that Pi binding may contribute to ischaemic contractile failure, no molecular explanation for the possible effect of bound Pi on contraction has been proposed.
Collapse
Affiliation(s)
- L C Armiger
- Department of Pathology, University of Auckland, New Zeland
| | | | | | | |
Collapse
|
4
|
Saks VA, Khuchua ZA, Vasilyeva EV, Kuznetsov AV. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis. Mol Cell Biochem 1994; 133-134:155-92. [PMID: 7808453 DOI: 10.1007/bf01267954] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The published experimental data and existing concepts of cellular regulation of respiration are analyzed. Conventional, simplified considerations of regulatory mechanism by cytoplasmic ADP according to Michaelis-Menten kinetics or by derived parameters such as phosphate potential etc. do not explain relationships between oxygen consumption, workload and metabolic state of the cell. On the other hand, there are abundant data in literature showing microheterogeneity of cytoplasmic space in muscle cells, in particular with respect to ATP (and ADP) due to the structural organization of cell interior, existence of multienzyme complexes and structured water phase. Also very recent experimental data show that the intracellular diffusion of ADP is retarded in cardiomyocytes because of very low permeability of the mitochondrial outer membrane for adenine nucleotides in vivo. Most probably, permeability of the outer mitochondrial membrane porin channels is controlled in the cells in vivo by some intracellular factors which may be connected to cytoskeleton and lost during mitochondrial isolation. All these numerous data show convincingly that cellular metabolism cannot be understood if cell interior is considered as homogenous solution, and it is necessary to use the theories of organized metabolic systems and substrate-product channelling in multienzyme systems to understand metabolic regulation of respiration. One of these systems is the creatine kinase system, which channels high energy phosphates from mitochondria to sites of energy utilization. It is proposed that in muscle cells feed-back signal between contraction and mitochondrial respiration may be conducted by metabolic wave (propagation of oscillations of local concentration of ADP and creatine) through cytoplasmic equilibrium creatine and adenylate kinases and is amplified by coupled creatine kinase reaction in mitochondria. Mitochondrial creatine kinase has experimentally been shown to be a powerful amplifier of regulatory action of weak ADP fluxes due to its coupling to adenine nucleotide translocase. This phenomenon is also carefully analyzed.
Collapse
Affiliation(s)
- V A Saks
- Group of Bioenergetics, Cardiology Research Center, Moscow, Russia
| | | | | | | |
Collapse
|
5
|
Herijgers P, Overloop K, Toshima Y, Van Hecke P, Vanstapel F, Mubagwa K, Flameng W. Ischaemic ATP degradation studied by HPLC and 31P-NMR spectroscopy: do the two techniques observe the same ATP pools? Basic Res Cardiol 1994; 89:50-60. [PMID: 8010935 DOI: 10.1007/bf00788677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
31P-NMR spectroscopy has become the major tool for studying myocardial high energy phosphates. Conflicting results concerning NMR visibility of ATP in ischaemic myocardium were reported. A detailed study was undertaken to resolve this controversy. After cardioplegic arrest, canine hearts were excised and preserved for 24 h at 1 degree C (group 1) or for 6h at 23 degrees C (group 2). ATP breakdown was followed by 31P-NMR spectroscopy in a transmural piece of the anterior wall introduced in the NMR magnet, and by HPLC analysis using serial transmural biopsies from the rest of the anterior wall. At both temperatures, identical relative ATP decay curves were obtained, whether measured by NMR or by HPLC. Absolute quantification of ATP was carried out after varying periods of ischaemia at 1 degree C. The NMR-measured ATP concentration was 106 +/- 8% of the ATP concentration determined by HPLC. From our experiments, we conclude that ATP visibility for 31P-NMR spectroscopy is complete and constant during prolonged periods of hypothermic ischaemia in canine hearts.
Collapse
Affiliation(s)
- P Herijgers
- Biomedical NMR Unit, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
6
|
Campos R, Maureira F, Garrido A, Valenzuela A. Different glutathione redox status and lipid peroxidation in the cortex and the medulla of the rat kidney subjected to ischemia-reperfusion stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 105:157-63. [PMID: 8504639 DOI: 10.1016/0305-0491(93)90183-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When the rat kidney is subjected to ischemia and reperfusion, changes in glutathione content and in lipid peroxidation are produced in the cortex and in the medulla. The cortex shows a decrease in the glutathione content and a higher sensitivity to development of lipid peroxidation, the medulla being less affected. Reperfusion restores the glutathione concentration of the cortex during the first hours of reflow. The lipid peroxidation observed in the cortex and the medulla during reperfusion is higher than in ischemia. The protective role of glutathione and the response of the cortex and the medulla to ischemia-reperfusion injury are discussed.
Collapse
Affiliation(s)
- R Campos
- Unidad de Bioquimica Farmacológica y Lípidos, Universidad de Chile, Santiago
| | | | | | | |
Collapse
|
7
|
Tatsumi T, Kako KJ. Effects of hydrogen peroxide on mitochondrial enzyme function studied in situ in rat heart myocytes. Basic Res Cardiol 1993; 88:199-211. [PMID: 8216172 DOI: 10.1007/bf00794993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our previous work indicated that energy transduction, as measured by myocyte respiration, was inhibited by hydrogen peroxide, but the mitochondrial membrane potential was relatively unaffected. Therefore, we determined in the present study the critical steps in mitochondrial energy transduction by measuring the sensitivity to hydrogen peroxide of NADH-CoQ reductase, ATP synthase, and adenine nucleotide translocase in situ in myocytes. Adult rat heart cells were isolated using collagenase and incubated in the presence of 0.1-10 mM hydrogen peroxide for 30 min. Activities of NADH-CoQ reductase and oligomycin-sensitive ATP synthase were assayed enzymatically with sonicated myocytes, and adenine nucleotide translocase activities were determined by atractyloside-inhibitable [14C]ADP uptake of myocytes, permeabilized by saponin. The NADH-CoQ reductase and ATP synthase activities were inhibited to 77% and 67% of control, respectively, following an exposure to 10 mM hydrogen peroxide for 30 min. The adenine nucleotide translocase activities were inhibited in a concentration- and time-dependent manner and by 10 mM hydrogen peroxide to 44% of control. The dose-response relationship indicated that the translocase was the most susceptible to hydrogen peroxide among the three enzymes studied. Combined treatment of myocytes with 3-amino-1,2,4-triazole, 1,3-bis(2-chloroethyl)-1-nitrosourea and diethyl maleate (to inactivate catalase, to inhibit glutathione reductase activity, and to deplete glutathione, respectively) enhanced the sensitivity of translocase to hydrogen peroxide, supporting the view that the cellular defense mechanism is a significant factor in determining the toxicity of hydrogen peroxide. The results indicate that hydrogen peroxide can cause dysfunction in mitochondrial energy transduction, principally as the result of inhibition of adenine nucleotide translocase.
Collapse
Affiliation(s)
- T Tatsumi
- Department of Physiology, Faculty of Medicine, University of Ottawa, Canada
| | | |
Collapse
|
8
|
Mowbray J, Patel B. The control of cellular adenine nucleotides: the discovery and metabolism of an oligomeric derivative of ATP and phosphoglyceric acid in mitochondrial intermembrane space. ADVANCES IN ENZYME REGULATION 1993; 33:221-34. [PMID: 8395136 DOI: 10.1016/0065-2571(93)90020-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The observation of large systematic variations in the purine nucleotides in perfused rat hearts inexplicable by known metabolic transformations led us to propose the existence of some unknown major form of nucleotide. Radiolabelling studies located a rapidly metabolized TCA/methanol-insoluble species in heart, kidney and liver which selective digestion and chromatography allied to 31P-nmr and mass spectrometry suggested to be a tetraphosphate derivative of adenosine and phosphoglyceric acid of the form p3Gri1p[pp5'p3Gri1p]npp5'A, oligo-phosphoglyceroyl-ATP. Partial chemical synthesis has confirmed this basic structure. We have shown that substantial amounts of oPG-ATP are located in liver mitochondrial intermembrane space tightly bound to a specific 3' phosphodiesterase which releases the monomer p3Gri1ppp5'A. Here we show that oPG-ATP is remarkably stabilized by Mg2+ ions and describe the 300-fold purification of the stable substrate-free form of the 3' phosphodiesterase; it has an apparent M(r) = 165k with possibly up to 4 subunits of M(r) = 42.5k, 41.9k, 40.5k and 38.9k. The potential function of oPG-ATP is briefly discussed.
Collapse
Affiliation(s)
- J Mowbray
- Department of Biochemistry and Molecular Biology, University College London, U.K
| | | |
Collapse
|
9
|
Pawelczyk T, Olson MS. Regulation of pyruvate dehydrogenase kinase activity from pig kidney cortex. Biochem J 1992; 288 ( Pt 2):369-73. [PMID: 1463442 PMCID: PMC1132021 DOI: 10.1042/bj2880369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The activity of pyruvate dehydrogenase (PDH) kinase in the purified PDH complex from pig kidney is sensitive to changes in ionic strength. The enzyme has optimum activity within a small range of ionic strength (0.03-0.05 M). An increase in ionic strength from 0.04 M to 0.2 M lowers the activity of PDH kinase by 32% and decreases the Km for ATP from 25 microM to 10 microM. At constant ionic strength (0.15 M) the enzyme has optimum activity over a broad pH range (7.2-8.0). The PDH kinase is stimulated 2.2-fold by 20 mM-K+, whereas Na+ even at high concentration (80 mM) has no effect on the enzyme activity. The stimulation of PDH kinase by K+ is not dependent on pH and ionic strength. PDH kinase is inhibited by HPO4(2-) in the presence of K+, whereas HPO4(2-) has no effect on the activity of this enzyme in the absence of K+. HPO4(2-) at concentrations of 2 and 10 mM inhibits PDH kinase by 28% and 55% respectively. The magnitude of this inhibition is not dependent on the ATP/ADP ratio. Inhibition by HPO4(2-) in the concentration range 0-10 mM is non-competitive with respect to ATP, and becomes mixed-type at concentrations over 10 mM. The Ki for HPO4(2-) is 10 mM. When HPO4(2-) is replaced by SO4(2-), the same effects on the activity of PDH kinase are observed. PDH kinase is also inhibited by Cl-. In the presence of 80 mM-Cl- the PDH kinase is inhibited by 40%. The inhibition by Cl- is not dependent on K+. In conclusion, we postulate that changes in phosphate concentrations may play a significant role in the regulation of PDH kinase activity in vivo.
Collapse
Affiliation(s)
- T Pawelczyk
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
10
|
Abstract
31P-nuclear magnetic resonance (31P-NMR) spectroscopy is widely used to monitor sequential changes in the nucleoside triphosphate (NTP) pool in intact tissues. Recently, the validity of this technique to quantitate incremental changes in ATP in heart has been challenged. Accordingly, we compared NTP measured by 31P-NMR and by chemical techniques in isolated isovolumic rat hearts at 16 and 56 min of oxygenated perfusion and in hearts subjected to 28 min of hypoxia, with or without 28 min of reoxygenation, and 12 or 28 min of ischemia, with or without 28 min of reperfusion. NTP content was calculated from 31P-NMR spectra using an external standard. At the end of each protocol the heart was freeze-clamped, and NTP and ATP contents were determined by chemical assay. After 16 min of normoxic perfusion the values for NTP and ATP contents measured by both methods in the same hearts were indistinguishable. Results from all seven experimental conditions show no significant difference between methods (P = 0.262). Thus both methods detect the same incremental change in NTP and ATP.
Collapse
Affiliation(s)
- M I Bak
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|