1
|
López MF, Dahl M, Escobar FV, Bonomi HR, Kraskov A, Michael N, Mroginski MA, Scheerer P, Hildebrandt P. Photoinduced reaction mechanisms in prototypical and bathy phytochromes. Phys Chem Chem Phys 2022; 24:11967-11978. [PMID: 35527718 DOI: 10.1039/d2cp00020b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytochromes, found in plants, fungi, and bacteria, exploit light as a source of information to control physiological processes via photoswitching between two states of different physiological activity, i.e. a red-absorbing Pr and a far-red-absorbing Pfr state. Depending on the relative stability in the dark, bacterial phytochromes are divided into prototypical and bathy phytochromes, where the stable state is Pr and Pfr, respectively. In this work we studied representatives of these groups (prototypical Agp1 and bathy Agp2 from Agrobacterium fabrum) together with the bathy-like phytochrome XccBphP from Xanthomonas campestris by resonance Raman and IR difference spectroscopy. In all three phytochromes, the photoinduced conversions display the same mechanistic pattern as reflected by the chromophore structures in the various intermediate states. We also observed in each case the secondary structure transition of the tongue, which is presumably crucial for the function of phytochrome. The three phytochromes differ in details of the chromophore conformation in the various intermediates and the energetic barrier of their respective decay reactions. The specific protein environment in the chromophore pocket, which is most likely the origin for these small differences, also controls the proton transfer processes concomitant to the photoconversions. These proton translocations, which are tightly coupled to the structural transition of the tongue, presumably proceed via the same mechanism along the Pr → Pfr conversion whereas the reverse Pfr → Pr photoconversion includes different proton transfer pathways. Finally, classification of phytochromes in prototypical and bathy (or bathy-like) phytochromes is discussed in terms of molecular structure and mechanistic properties.
Collapse
Affiliation(s)
- María Fernández López
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Margarethe Dahl
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Francisco Velázquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Hernán Ruy Bonomi
- Leloir Institute Foundation, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Anastasia Kraskov
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
2
|
Kraskov A, Buhrke D, Scheerer P, Shaef I, Sanchez JC, Carrillo M, Noda M, Feliz D, Stojković EA, Hildebrandt P. On the Role of the Conserved Histidine at the Chromophore Isomerization Site in Phytochromes. J Phys Chem B 2021; 125:13696-13709. [PMID: 34843240 DOI: 10.1021/acs.jpcb.1c08245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are sensory photoreceptors that use light to drive protein structural changes, which in turn trigger physiological reaction cascades. The process starts with a double-bond photoisomerization of the linear methine-bridged tetrapyrrole chromophore in the photosensory core module. The molecular mechanism of the photoconversion depends on the structural and electrostatic properties of the chromophore environment, which are highly conserved in related phytochromes. However, the specific role of individual amino acids is yet not clear. A histidine in the vicinity of the isomerization site is highly conserved and almost invariant among all phytochromes. The present study aimed at analyzing its role by taking advantage of a myxobacterial phytochrome SaBphP1 from Stigmatella aurantiaca, where this histidine is naturally substituted with a threonine (Thr289), and comparing it to its normal, His-containing counterpart from the same organism SaBphP2 (His275). We have carried out a detailed resonance Raman and IR spectroscopic investigation of the wild-type proteins and their respective His- or Thr-substituted variants (SaBphP1-T289H and SaBphP2-H275T) using the well-characterized prototypical phytochrome Agp1 from Agrobacterium fabrum as a reference. The overall mechanism of the photoconversion is insensitive toward the His substitution. However, the chromophore geometry at the isomerization site appears to be affected, with a slightly stronger twist of ring D in the presence of Thr, which is sufficient to cause different light absorption properties in SaBphP1 and SaBphP2. Furthermore, the presence of His allows for multiple hydrogen-bonding interactions with the ring D carbonyl which may be the origin for the geometric differences of the C-D methine bridge compared to the Thr-containing variants. Other structural and mechanistic differences are independent of the presence of His. The most striking finding is the protonation of the ring C propionate in the Pfr states of SaBphP2, which is common among bathy phytochromes but so far has not been reported in prototypical phytochromes.
Collapse
Affiliation(s)
- Anastasia Kraskov
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - David Buhrke
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Charité─Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Ida Shaef
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Juan C Sanchez
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Melissa Carrillo
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Moraima Noda
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
3
|
Ruf J, Hamm P, Buhrke D. Needles in a haystack: H-bonding in an optogenetic protein observed with isotope labeling and 2D-IR spectroscopy. Phys Chem Chem Phys 2021; 23:10267-10273. [PMID: 33899887 PMCID: PMC8099029 DOI: 10.1039/d1cp00996f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Recently, re-purposing of cyanobacterial photoreceptors as optogentic actuators enabled light-regulated protein expression in different host systems. These new bi-stable optogenetic tools enable interesting new applications, but their light-driven working mechanism remains largely elusive on a molecular level. Here, we study the optogenetic cyanobacteriochrome Am1-c0023g2 with isotope labeling and two dimensional infrared (2D-IR) spectroscopy. Isotope labeling allows us to isolate two site-specific carbonyl marker modes from the overwhelming mid-IR signal of the peptide backbone vibrations. Unlike conventional difference-FTIR spectroscopy, 2D-IR is sensitive to homogeneous and inhomogeneous broadening mechanisms of these two vibrational probes in the different photostates of the protein. We analyse the 2D-IR line shapes in the context of available structural models and find that they reflect the hydrogen-bonding environment of these two marker groups.
Collapse
Affiliation(s)
- Jeannette Ruf
- Department of Chemistry, University of Zürich, Zürich, Switzerland.
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland.
| | - David Buhrke
- Department of Chemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Kim Y, Xu QZ, Zhao KH, Gärtner W, Matysik J, Song C. Lyophilization Reveals a Multitude of Structural Conformations in the Chromophore of a Cph2-like Phytochrome. J Phys Chem B 2020; 124:7115-7127. [PMID: 32693592 DOI: 10.1021/acs.jpcb.0c03431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria sense and respond to various colors of light employing a large number of bilin-based phytochrome-like photoreceptors. All2699 from Nostoc 7120 has three consecutive GAF domains with GAF1 and GAF3 binding a phycocyanobilin chromophore. GAF1, even when expressed independently, can be photoconverted between red-absorbing Pr and far-red-absorbing Pfr states, while the nonphotosensory GAF2 domain is structurally and functionally homologous to the PHY domains in canonical and Cph2-like phytochromes. Here, we characterize possible bilin chromophore conformers using solid-state NMR spectroscopy on the two lyophilized All2699 samples (GAF1-only and GAF1-PHY constructs). On the basis of complete 1H, 13C, and 15N assignments for the chromophore obtained on the two Pr lyophilizates, multiple static conformations of the chromophore in both cases are identified. Moreover, most atoms of the chromophore in the bidomain sample show only subtle changes in the mean chemical shifts relative to those in frozen solution (FS), indicating an optimized interaction of the GAF2 domain with the GAF1-bound chromophore. Our results confirm the conservation of key chromophore-protein interactions and the photoreversibility in both All2699 lyophilizates, offering the possibility to investigate conformational distributions of the heterogeneous chromophore and its functional consequences in phytochromes and other bilin-dependent photoreceptors intractable by the solid-state NMR technique as FSs.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Qian-Zhao Xu
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Yang Y, Linke M, von Haimberger T, Matute R, González L, Schmieder P, Heyne K. Active and silent chromophore isoforms for phytochrome Pr photoisomerization: An alternative evolutionary strategy to optimize photoreaction quantum yields. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2014; 1:014701. [PMID: 26798771 PMCID: PMC4711594 DOI: 10.1063/1.4865233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/11/2014] [Indexed: 05/12/2023]
Abstract
Photoisomerization of a protein bound chromophore is the basis of light sensing of many photoreceptors. We tracked Z-to-E photoisomerization of Cph1 phytochrome chromophore PCB in the Pr form in real-time. Two different phycocyanobilin (PCB) ground state geometries with different ring D orientations have been identified. The pre-twisted and hydrogen bonded PCB(a) geometry exhibits a time constant of 30 ps and a quantum yield of photoproduct formation of 29%, about six times slower and ten times higher than that for the non-hydrogen bonded PCB(b) geometry. This new mechanism of pre-twisting the chromophore by protein-cofactor interaction optimizes yields of slow photoreactions and provides a scaffold for photoreceptor engineering.
Collapse
Affiliation(s)
| | - Martin Linke
- Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | | | - Ricardo Matute
- Department of Chemistry and Biochemistry, UCLA , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
| | - Leticia González
- Universität Wien, Institut für Theoretische Chemie , Währinger Str. 17, A-1090 Wien
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Rössle Str. 10, 13125 Berlin, Germany
| | | |
Collapse
|
6
|
Yang Y, Linke M, von Haimberger T, Hahn J, Matute R, González L, Schmieder P, Heyne K. Real-Time Tracking of Phytochrome’s Orientational Changes During Pr Photoisomerization. J Am Chem Soc 2012; 134:1408-11. [DOI: 10.1021/ja209413d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yang Yang
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, 14195
Berlin, Germany
- Center for Supramolecular Interactions, Takustr. 3, 14195 Berlin, Germany
| | - Martin Linke
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, 14195
Berlin, Germany
| | | | - Janina Hahn
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle
Str. 10, 13125 Berlin, Germany
| | - Ricardo Matute
- Institut für Physikalische
Chemie, Friedrich-Schiller Universität Jena, Helmholtzweg 4, 07743 Jena, Germany
- Departamento de Quimica, Universidad de Chile, Facultad de Ciencias, Casilla
653, Santiago, Chile
| | - Leticia González
- Institut für Physikalische
Chemie, Friedrich-Schiller Universität Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle
Str. 10, 13125 Berlin, Germany
| | - Karsten Heyne
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, 14195
Berlin, Germany
- Center for Supramolecular Interactions, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
7
|
FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations. Biophys J 2008; 95:1256-67. [PMID: 18390618 DOI: 10.1529/biophysj.108.131441] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fourier transform infrared spectroscopy was used to analyze the chromophore structure in the parent states Pr and Pfr of plant phytochrome phyA and the respective photoproducts lumi-R and lumi-F. The spectra were obtained from phyA adducts assembled with either uniformly or selectively isotope-labeled phytochromobilin and phycocyanobilin. The interpretation of the experimental spectra is based on the spectra of chromophore models calculated by density functional theory. Global (13)C-labeling of the tetrapyrrole allows for the discrimination between chromophore and protein bands in the Fourier transform infrared difference spectra. All infrared difference spectra display a prominent difference band attributable to a stretching mode with large contributions from the methine bridge between the inner pyrrole rings (B-C stretching). Due to mode coupling, frequencies and isotopic shifts of this mode suggest that the Pr chromophore may adopt a distorted ZZZssa or ZZZasa geometry with a twisted A-B methine bridge. The transition to lumi-R is associated with only minor changes of the amide I bands indicating limited protein structural changes during the isomerization site of the C-D methine bridge. Major protein structural changes occur upon the transition to Pfr in which the chromophore adopts a ZZEssa or ZZEasa-like state. In addition, specific interactions with the protein alter the structure of the B-C methine bridge as concluded from the substantial downshift of the respective stretching mode. These interactions are removed during the photoreaction to lumi-F (ZZE-->ZZZ), which involves only small protein structural changes.
Collapse
|
8
|
van Thor JJ, Fisher N, Rich PR. Assignments of the Pfr-Pr FTIR difference spectrum of cyanobacterial phytochrome Cph1 using 15N and 13C isotopically labeled phycocyanobilin chromophore. J Phys Chem B 2007; 109:20597-604. [PMID: 16853666 DOI: 10.1021/jp052323t] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible red and far-red light-induced transitions of cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 were investigated by Fourier transform infrared (FTIR) difference spectroscopy. High-quality light-induced Pfr-Pr difference FTIR spectra were recorded for the 58 kDa N-terminal domain of Cph1 by repetitive photochemical cycling and signal averaging. The Pfr-Pr difference spectra in H(2)O and D(2)O were very similar to those previously reported for full-length 85 kDa Cph1.(1) Published assignments were extended by analysis of the effects of (13)C and (15)N isotope substitutions at selected sites in the phycocyanobilin chromophore and by (15)N global labeling of the protein. The Pfr-Pr difference spectra were dominated by an amide I peak/trough at 1653 cm(-1)(+)/1631 cm(-1)(-) and a smaller amide II band at 1554 cm(-1). Labeling effects allowed specific chromophore assignments for the C(1)=O (1736 cm(-1)(-)/1724 cm(-1)(+)) and C(19)=O (1704 cm(-1)(-)) carbonyl vibrations, C=C vibrations at 1589 cm(-1)(+), and bands at 1537(-), 1512(+), 1491(-), 1163(+), 1151(-), 1134(+), 1109(-), and 1072(-) cm(-1) that must involve chromophore C-N bonds. A variety of additional changes were insensitive to isotope labeling of the chromophore. Effects of (15)N labeling of the protein were used to tentatively assign some of these to specific amino acid changes. Those insensitive to (15)N labeling included a protonated aspartic or glutamic acid at 1734 cm(-1)(-)/1722 cm(-1)(+) and a cysteine at 2575 cm(-1)(+)/2557 cm(-1)(-). Bands sensitive to (15)N protein labeling at 1487 cm(-1)(+)/1502 cm(-1)(-) might arise from trytophan and bands at 1261 cm(-1)(+)/1244 cm(-1)(-) and 1107 cm(-1)(-)/1095 cm(-1)(+) might arise from a histidine environment or protonation change. These assignments are discussed in light of the 15Z-E photoisomerization model of phototransformation and the associated protein conformational changes.
Collapse
Affiliation(s)
- Jasper J van Thor
- Laboratory of Molecular Biophysics, Rex Richards Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | | | | |
Collapse
|
9
|
Foerstendorf H, Lamparter T, Hughes J, Gärtner W, Siebert F. The Photoreactions of Recombinant Phytochrome from the Cyanobacterium Synechocystis: A Low-Temperature UV-Vis and FT-IR Spectroscopic Study. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710655tporpf2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
van Thor JJ, Ronayne KL, Towrie M. Formation of the Early Photoproduct Lumi-R of Cyanobacterial Phytochrome Cph1 Observed by Ultrafast Mid-Infrared Spectroscopy. J Am Chem Soc 2006; 129:126-32. [PMID: 17199291 DOI: 10.1021/ja0660709] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photoreactions of the Pr ground state of cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 have been investigated by picosecond time-resolved mid-infrared spectroscopy at ambient temperature. With femtosecond excitation of the Pr state at 640 nm, the photoisomerized Lumi-R product state is generated with kinetics and associated difference spectra indicative of vibrational cooling with tau(1) = 3 ps time constant and excited state decay with tau(1) = 3 ps, tau(2) = 14 ps, and tau(3) = 134 ps time constants. The Lumi-R state is characterized by downshifted absorption of three C=C modes assigned to C(15)=C(16), C(4)=C(6), and a delocalized C=C mode, in addition to the downshifted C(19)=O mode. The Lumi-R minus Pr difference spectrum is indicative of global restructuring of the chromophore on the ultrafast timescale, which is discussed in light of C(15) Z/E photoisomerization in addition to changes near C(5), which could be low bond order torsional angle changes.
Collapse
Affiliation(s)
- Jasper J van Thor
- Laboratory of Molecular Biophysics, University of Oxford, Rex Richards Building, South Parks Road, Oxford OX1 3QU, UK.
| | | | | |
Collapse
|
11
|
Borucki B. Proton transfer in the photoreceptors phytochrome and photoactive yellow protein. Photochem Photobiol Sci 2006; 5:553-66. [PMID: 16761084 DOI: 10.1039/b603846h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Light-induced activation of the photoreceptors phytochrome and photoactive yellow protein (PYP) is accompanied by protonation changes of the respective chromophores and key residues in the protein moiety. For both systems, proton exchange with the external medium could be observed with pH electrode measurements and with UV-visible absorption spectroscopy using appropriate pH indicator dyes. From these signals, the stoichiometry of proton release and uptake, respectively, was determined by different calibration procedures which will be presented and discussed. Kinetic information on these processes is only available from time-resolved measurements with pH indicator dyes. Vibrational spectroscopy methods such as Fourier transform infrared spectroscopy and resonance Raman scattering provided information on the protonation state of individual functional groups suggesting that internal proton transfer processes are involved as well. Deuterium kinetic isotope effects that occurred in the Pr --> Pfr phototransformation of the bacteriophytochromes Cph1 and Agp1 were consistent with proton transfer reactions as rate-limiting steps. In contrast, the apparent rate constants in the photocycle of PYP exhibited only small kinetic isotope effects that could not be interpreted conclusively. Possible mechanisms of proton transfer in the activation of phytochrome and PYP will be discussed.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
12
|
|
13
|
Foerstendorf H, Benda C, Gärtner W, Storf M, Scheer H, Siebert F. FTIR studies of phytochrome photoreactions reveal the C=O bands of the chromophore: consequences for its protonation states, conformation, and protein interaction. Biochemistry 2001; 40:14952-9. [PMID: 11732915 DOI: 10.1021/bi0156916] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular changes of phytochrome during red --> far-red and reverse photoreactions have been monitored by static infrared difference spectroscopy using the recombinant 65 kDa N-terminal fragment assembled with a chromophore chemically modified at ring D or with a chromophore isotopically labeled with (18)O at the carbonyl group of ring A. This allows the identification of the C=O stretching vibrations of rings D and A. We exclude the formation of an iminoether in Pfr. The positions of both these modes show that the chromophore always remains protonated. The upshift of the C=O stretch of ring D in the first photoproducts is explained by a twisted methine bridge connecting rings C and D. The changes in the vibrational pattern during the red --> far-red conversion show that the backreaction is not just the reversal of the forward reaction. The infrared difference spectra of the fragment deviate very little from those of the full-length protein. The differences which are related to the lack of the C-terminal half of the protein constituting the signaling domain are possibly important for the understanding of the signaling mechanism.
Collapse
Affiliation(s)
- H Foerstendorf
- Sektion Biophysik, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität, Albertstrasse 23, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Foerstendorf H, Lamparter T, Hughes J, Gärtner W, Siebert F. The photoreactions of recombinant phytochrome from the cyanobacterium Synechocystis: a low-temperature UV-Vis and FT-IR spectroscopic study. Photochem Photobiol 2000; 71:655-61. [PMID: 10818798 DOI: 10.1562/0031-8655(2000)071<0655:tporpf>2.0.co;2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interconvertible photoreactions of recombinant phytochrome from Synechocystis reconstituted with phycocyanobilin were investigated by light-induced optical and Fourier-transform infrared (FT-IR) difference spectroscopy at low temperatures for the first time. The photochemistry was found to be deferred below -100 degrees C for the transformation of red-absorbing form of phytochrome (Pr)-->far-red-absorbing form of phytochrome (Pfr), and no formation of an intermediate similar to the photoproduct of phytochrome A obtained at -140 degrees C (lumi-R) was observed. Two intermediates could be stabilized below -40 degrees C and between -40 and -20 degrees C, and were denoted as meta-Ra and meta-Rc, respectively. Above -20 degrees C Pfr was obtained. In the reverse reaction two intermediates could be stabilized below -60 degrees C (lumi-F) and between -60 and -40 degrees C (meta-F). The FT-IR difference spectra of the late Pr-->Pfr photoreaction show great similarities to the spectra obtained from oat phytochrome A suggesting similar conformation of the chromophore and interactions with its protein environment, whereas deviations in the spectra of meta-Ra were observed. A large band around 1700 cm-1 in the difference spectra between the intermediates and Pr which is tentatively assigned to the C19=O group of the prosthetic group indicates the Z,E isomerization around the C15=C16-methine bridge of the chromophore during the formation of meta-Ra. In the difference spectra of the parent states only small differences are observed in this region suggesting that the frequency of the carbonyl group is similar in Pr and Pfr. Since the FT-IR difference spectra between lumi-F and Pfr show great similarities to the spectra of the parent states, it is assumed that during the formation of lumi-F the chromophore largely returns into the primary Pr conformation. The FT-IR spectra recorded in a medium of 2H2O generally show a downshift of the significant bands due to the isotope effect. The appearance of a characteristic band around 935 cm-1 in all 2H2O spectra suggests an assignment to an N-2H bending vibration of the chromophore.
Collapse
Affiliation(s)
- H Foerstendorf
- Institut für Biophysik und Strahlenbiologie, Albert-Ludwigs Universität, Freiburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Andel F, Murphy JT, Haas JA, McDowell MT, van der Hoef I, Lugtenburg J, Lagarias JC, Mathies RA. Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues. Biochemistry 2000; 39:2667-76. [PMID: 10704217 DOI: 10.1021/bi991688z] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resonance Raman spectra of native and recombinant analogues of oat phytochrome have been obtained and analyzed in conjunction with normal mode calculations. On the basis of frequency shifts observed upon methine bridge deuteration and vinyl and C(15)-methine bridge saturation of the chromophore, intense Raman lines at 805 and 814 cm(-)(1) in P(r) and P(fr), respectively, are assigned as C(15)-hydrogen out-of-plane (HOOP) wags, lines at 665 cm(-)(1) in P(r) and at 672 and 654 cm(-)(1) in P(fr) are assigned as coupled C=C and C-C torsions and in-plane ring twisting modes, and modes at approximately 1300 cm(-)(1) in P(r) are coupled N-H and C-H rocking modes. The empirical assignments and normal mode calculations support proposals that the chromophore structures in P(r) and P(fr) are C(15)-Z,syn and C(15)-E,anti, respectively. The intensities of the C(15)-hydrogen out-of-plane, C=C and C-C torsional, and in-plane ring modes in both P(r) and P(fr) suggest that the initial photochemistry involves simultaneous bond rotations at the C(15)-methine bridge coupled to C(15)-H wagging and D-ring rotation. The strong nonbonded interactions of the C- and D-ring methyl groups in the C(15)-E,anti P(fr) chromophore structure indicated by the intense 814 cm(-1) C(15) HOOP mode suggest that the excited state of P(fr) and its photoproduct states are strongly coupled.
Collapse
Affiliation(s)
- F Andel
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bischoff M, Hermann G, Rentsch S, Strehlow D, Winter S, Chosrowjan H. Excited-State Processes in Phycocyanobilin Studied by Femtosecond Spectroscopy. J Phys Chem B 2000. [DOI: 10.1021/jp992083f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark Bischoff
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Gudrun Hermann
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Sabine Rentsch
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Dietmar Strehlow
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Stefan Winter
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Haik Chosrowjan
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| |
Collapse
|
17
|
Rentsch S, Hermann G, Bischoff M, Strehlow D, Rentsch M. Femtosecond Spectroscopic Studies on the Red Light-Absorbing Form of Oat Phytochrome and 2,3-Dihydrobiliverdin. Photochem Photobiol 1997. [DOI: 10.1111/j.1751-1097.1997.tb03193.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Sühnel J, Hermann G, Dornberger U, Fritzsche H. Computer analysis of phytochrome sequences and reevaluation of the phytochrome secondary structure by Fourier transform infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:253-67. [PMID: 9252112 DOI: 10.1016/s0167-4838(97)00050-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A repertoire of various methods of computer sequence analysis was applied to phytochromes in order to gain new insights into their structure and function. A statistical analysis of 23 complete phytochrome sequences revealed regions of non-random amino acid composition, which are supposed to be of particular structural or functional importance. All phytochromes other than phyD and phyE from Arabidopsis have at least one such region at the N-terminus between residues 2 and 35. A sequence similarity search of current databases indicated striking homologies between all phytochromes and a hypothetical 84.2-kDa protein from the cyanobacterium Synechocystis. Furthermore, scanning the phytochrome sequences for the occurrence of patterns defined in the PROSITE database detected the signature of the WD repeats of the beta-transducin family within the functionally important 623-779 region (sequence numbering of phyA from Avena) in a number of phytochromes. A multiple sequence alignment performed with 23 complete phytochrome sequences is made available via the IMB Jena World-Wide Web server (http://www.imb-jena.de/PHYTO.html). It can be used as a working tool for future theoretical and experimental studies. Based on the multiple alignment striking sequence differences between phytochromes A and B were detected directly at the N-terminal end, where all phytochromes B have an additional stretch of 15-42 amino acids. There is also a variety of positions with totally conserved but different amino acids in phytochromes A and B. Most of these changes are found in the sequence segment 150-200. It is, therefore, suggested that this region might be of importance in determining the photosensory specificity of the two phytochromes. The secondary structure prediction based on the multiple alignment resulted in a small but significant beta-sheet content. This finding is confirmed by a reevaluation of the secondary structure using FTIR spectroscopy.
Collapse
Affiliation(s)
- J Sühnel
- Institute of Molecular Biotechnology, Jena, Germany
| | | | | | | |
Collapse
|
19
|
Matysik J, Hildebrandt P, Smit K, Mark F, Gärtner W, Braslavsky SE, Schaffner K, Schrader B. Raman spectroscopic analysis of isomers of biliverdin dimethyl ester. J Pharm Biomed Anal 1997; 15:1319-24. [PMID: 9226559 DOI: 10.1016/s0731-7085(96)01964-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The constitutional isomers of biliverdin dimethyl ester, IX alpha and XIII alpha, were studied by resonance Raman spectroscopy. The far-reaching spectral similarities suggest that despite the different substitution patterns, the compositions of the normal modes are closely related. This conclusion does not hold only for the parent state (ZZZ, sss configuration) but also for the configurational isomers which were obtained upon double-bond photoisomerization. Based on a comparison of the resonance Raman spectra, a EZZ configuration is proposed for one of the two photoisomers of biliverdin dimethyl ester IX alpha, while a ZZE, ssa configuration has been assigned previously to the second isomer.
Collapse
Affiliation(s)
- J Matysik
- Max-Planck-Institut für Strahlenchemie, Mülheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen E, Lapko VN, Song PS, Kliger DS. Dynamics of the N-terminal alpha-helix unfolding in the photoreversion reaction of phytochrome A. Biochemistry 1997; 36:4903-8. [PMID: 9125511 DOI: 10.1021/bi9627065] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Time-resolved circular dichroism spectroscopy in the far-UV spectral region was used to examine the intermediates of the phytochrome photoreversion reaction (Pfr --> Pr). Three intermediates, lumi-F (tau = 320 ns), meta-Fa (tau = 265 micros) and meta-Fb (tau = 5.5 ms), have been identified in a simple sequential kinetic photoreversion mechanism by absorption spectroscopy [Linschitz, H., Kasche, V., Butler, W. L., & Siegelman, H. W. (1966) J. Biol. Chem. 241, 3395-3403; Pratt, L. H., & Butler, W. L. (1968) Photochem. Photobiol. 8, 477-485; Burke, M., Pratt, D. C., & Moscowitz, A. (1972) Biochemistry 11, 4025-4031; Spruit, C. J. P., Kendrick, R. E., & Cooke, R. J. (1975) Planta (Berlin) 127, 121-132; Eilfeld, P., & Rüdiger, W. (1985) Z. Naturforsch. 40c, 109-114; Chen, E., Lapko, V. N., Lewis, J. W., Song, P.-S., & Kliger, D. S. (1996) Biochemistry 35, 843-850]. In order to correlate the unfolding of the N-terminal alpha-helical segment with one or more of the intermediate species, time-resolved methods were coupled with the structurally sensitive probe of CD in the far-UV spectral region. Analysis of the TRCD data associates the decrease in alpha-helical content that occurs upon formation of Pr with decay of the meta-Fa intermediate. This unfolding process occurs with a time constant of 310 +/- 125 micros, which is consistent with the 265-micros lifetime for meta-Fa.
Collapse
Affiliation(s)
- E Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | | | | | |
Collapse
|
21
|
Manabe K, Nakazawa M. The structure and function of phytochrome A: the roles of the entire molecule and of its various parts. JOURNAL OF PLANT RESEARCH 1997; 110:109-122. [PMID: 27520051 DOI: 10.1007/bf02506850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/1996] [Revised: 12/14/1996] [Indexed: 06/06/2023]
Abstract
Phytochrome A is readily cleavable by proteolytic agents to yield an amino-terminal fragment of 66 kilodalton (kDa), which consists of residues 1 to approximately 600, and a dimer of the carboxy-terminal 55-kDa fragment, from residue 600 or so to the carboxyl terminus. The former domain, carrying the tetrapyrrole chromophore, has been studied extensively because of its photoactivity, while less attention has been paid to the non-chromophoric portion until quite recently. However, the evidence gathered to date suggests that this domain is also of great improtance. We present here a review of the structure and the biochemical and physiological functions of the two domains, of parts of these domains, and of the cooperation between them.
Collapse
Affiliation(s)
- K Manabe
- Biological Materials, Faculty of Science, Yokohama City University, Seto 22-2, Kanazawa-ku, 236, Yokohama, Japan
| | - M Nakazawa
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka-ku, 244, Yokohama, Japan
| |
Collapse
|
22
|
Foerstendorf H, Mummert E, Schäfer E, Scheer H, Siebert F. Fourier-transform infrared spectroscopy of phytochrome: difference spectra of the intermediates of the photoreactions. Biochemistry 1996; 35:10793-9. [PMID: 8718870 DOI: 10.1021/bi960960r] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The photocycle of 124 kDa phytochrome A from Avena sativa was studied by Fourier-transform infrared spectroscopy at low temperatures. Difference spectra between the parent state Pr and the intermediates of the Pr-->Pfr pathway, i.e. lumi-R, meta-Ra, and meta-Rc, and between Pfr and the intermediates of the Pfr-->Pr pathway, lumi-F and meta-F, were obtained in 1H2O and 2H2O for the first time. Each spectrum shows characteristic spectral features which allow a clear distinction between the different intermediates. A general feature is that greater changes occur with increasing temperature, i.e. at the later steps of the photoreactions. Nevertheless, the changes in the spectral regions of the protein (amide I and amide II) were found to be surprisingly small, excluding larger conformational changes of the protein. All spectra of the intermediates are characterized by a strong negative band around 1700 cm-1. This band is tentatively assigned to the C = O stretch of ring D of the chromophore. Since it is not observed in the difference spectra between the parent states, it is concluded that ring D is located in a similar molecular environment in Pr and Pfr. In the photoproducts lumi-R and lumi-F, this band undergoes an upshift to 1720 cm-1. The high frequencies suggest that the chromophore is protonated in these intermediates as well as in Pr and Pfr.
Collapse
Affiliation(s)
- H Foerstendorf
- Institut für Biophysik und Strahlenbiologie, Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
23
|
Sineshchekov VA. Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOENERGETICS 1995; 1228:125-164. [DOI: https:/doi.org/10.1016/0005-2728(94)00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
|
24
|
Zhao KH, Haessner R, Cmiel E, Scheer H. Type I reversible photochemistry of phycoerythrocyanin involves Z/E-isomerization of α-84 phycoviolobilin chromophore. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00181-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00173-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Affiliation(s)
- F Siebert
- Institute of Biophysics and Radiation Biology, University of Freiburg, Germany
| |
Collapse
|
27
|
Szalontai B, Gombos Z, Csizmadia V, Bagyinka C, Lutz M. Structure and interactions of phycocyanobilin chromophores in phycocyanin and allophycocyanin from an analysis of their resonance raman spectra. Biochemistry 1994; 33:11823-32. [PMID: 7918400 DOI: 10.1021/bi00205a019] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Raman spectra of phycocyanobilin, phycocyanin, and allophycocyanin were obtained at resonance with their visible and near-UV transitions. These spectra were empirically assigned with the help of 14N- and 15N-isotopic substitutions and comparisons with resonance Raman spectra of phycoerythrin. These results confirm the previously suggested assignment of a conformation-sensitive band around 1239-1246 cm-1 to a mode involving nu CmH and nu CN coordinates. Computer-assisted decomposition of the complex, conformation-sensitive 1580-1670-cm-1 region yielded five components that we labeled I-V. The previously described spectral changes observed upon monomerization and denaturation in resonance Raman spectra of phycocyanin and allophycocyanin essentially arise from changes in the relative intensities of these components. Component I (around 1649-1651 cm-1) and component III (1621-1624 cm-1) originate predominantly from nu C=C at C15 of the chromophore. Their relative intensity ratio reflects the relative amounts of C15-Z-anti and C15-Z-syn methine bridge conformations, respectively. Component II (1633-1638 cm-1) is ascribed to a nu C=C mode of pyrrole rings; it is not sensitive to the chromophore conformation. Component IV is also conformation-insensitive and originates from nu C=N and nu C=C coordinates, most likely from ring C. Component V (1591-1594 cm-1) involves a nu C=N coordinate in ring D, coupled to a nu C=C coordinate of the C15 methine bridge. The implications of the present assignments on those of resonance Raman active modes of phytochrome are discussed. A consistent set of correlations between chromophore conformations and resonance Raman data is obtained for both phycobiliproteins and phytochrome.
Collapse
Affiliation(s)
- B Szalontai
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
28
|
TOYAMA AKIRA, NAKAZAWA MIKI, MANABE KATSUSHI, TAKEUCHI HIDEO, HARADA ISSEI. ULTRAVIOLET RESONANCE RAMAN SPECTRA OF PHYTOCHROME: A COMPARISON OF THE ENVIRONMENTS OF TRYPTOPHAN SIDE CHAINS BETWEEN RED LIGHT-ABSORBING AND FAR-RED LIGHT-ABSORBING FORMS. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb02307.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Scharnagl C, Fischer SF. REVERSIBLE PHOTOCHEMISTRY IN THE α-SUBUNIT OF PHYCOERYTHROCYANIN: CHARACTERIZATION OF CHROMOPHORE AND PROTEIN BY MOLECULAR DYNAMICS AND QUANTUM CHEMICAL CALCULATIONS. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb02256.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Abstract
The photoconversion of Pr to Pfr has been investigated by a large number of investigators. We have previously demonstrated that Z, E isomerization of the tetrapyrrole chromophore is involved in the photoconversion. It is the best candidate for the primary photoreaction. Conformation and configuration of the Pr chromophore will be compared with that of chromophores in phycocyanin. The crystal structure of phycocyanin had been elucidated by x-ray analysis. Proton transfer and/or Z, E isomerization of the tetrapyrrole are probably involved in different steps of the photoconversion in phytochrome and in photoreversible phycobiliproteins. Fluorescence decay kinetics of irradiated Pr and intermediate formation show heterogeneity. Possible reasons for this heterogeneity will be discussed.
Collapse
Affiliation(s)
- W Rüdiger
- Botanisches Institut, Universität München, Germany
| |
Collapse
|
31
|
Mizutani Y, Tokutomi S, Aoyagi K, Horitsu K, Kitagawa T. Resonance Raman study on intact pea phytochrome and its model compounds: evidence for proton migration during the phototransformation. Biochemistry 1991; 30:10693-700. [PMID: 1657153 DOI: 10.1021/bi00108a013] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Resonance Raman (RR) scattering from intact pea phytochrome was observed in resonance with the blue band at ambient temperature. The relative populations of the red-light-absorbing form (Pr) and far-red-light-absorbing form (Pfr) under laser illumination were estimated from the absorption spectra. The most prominent RR band of Pr obtained by 364-nm excitation under 740-nm pumping exhibited a frequency shift between H2O and D2O solutions, but that of Pfr obtained by 407-nm excitation under 633-nm pumping did not, indicating a distinct difference in a protonation state of their chromophores. Since the protonation level of a whole molecule of intact phytochrome remains unchanged between Pr and Pfr, this observation indicates migration of a proton from the chromophore of Pr to the protein moiety of Pfr. As model compounds, octaethylbiliverdin (OEBV-h3), its deuterated and 15N derivatives, and their protonated forms were also studied with both RR and 1H and 15N NMR spectroscopies. The RR spectrum of the protonated form, for which the protonation site was determined to be C-ring pyrrole nitrogen by NMR, displayed a deuteration shift corresponding to that of Pr, suggesting a similar protonated structure for the pyrrolic rings of Pr. The RR spectral difference between OEBV-h3 and OEBV-d3 and that between H2O and D2O solutions of Pfr suggested that the N-H protons of the A-, B-, and D-rings of intact phytochrome are replaced with deuterons in D2O. A role of the 7-kDa segment of phytochrome is discussed on the basis of RR spectral differences between the intact and large phytochromes.
Collapse
Affiliation(s)
- Y Mizutani
- Institute for Molecular Science, Okazaki National Research Institutes, Japan
| | | | | | | | | |
Collapse
|
32
|
|