1
|
Wittwer J, Bradley D. Clusterin and Its Role in Insulin Resistance and the Cardiometabolic Syndrome. Front Immunol 2021; 12:612496. [PMID: 33717095 PMCID: PMC7946829 DOI: 10.3389/fimmu.2021.612496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The cardiometabolic syndrome involves a clustering of metabolic and cardiovascular factors which increase the risk of patients developing both Type 2 Diabetes Mellitus and cardio/cerebrovascular disease. Although the mechanistic underpinnings of this link remain uncertain, key factors include insulin resistance, excess visceral adiposity, atherogenic dyslipidemia, and endothelial dysfunction. Of these, a state of resistance to insulin action in overweight/obese patients appears to be central to the pathophysiologic process. Given the increasing prevalence of obesity-related Type 2 Diabetes, coupled with the fact that cardiovascular disease is the number one cause of mortality in this patient population, a more thorough understanding of the cardiometabolic syndrome and potential options to mitigate its risk is imperative. Inherent in the pathogenesis of insulin resistance is an underlying state of chronic inflammation, at least partly in response to excess adiposity. Within obese adipose tissue, an immunomodulatory shift occurs, involving a preponderance of pro-inflammatory immune cells and cytokines/adipokines, along with antigen presentation by adipocytes. Therefore, various adipokines differentially expressed by obese adipocytes may have a significant effect on cardiometabolism. Clusterin is a molecular chaperone that is widely produced by many tissues throughout the body, but is also preferentially overexpressed by obese compared lean adipocytes and relates strongly to multiple components of the cardiometabolic syndrome. Herein, we summarize the known and potential roles of circulating and adipocyte-specific clusterin in cardiometabolism and discuss potential further investigations to determine if clusterin is a viable target to attenuate both metabolic and cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer Wittwer
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University, Columbus, OH, United States
| | - David Bradley
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
3
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Vanhooren V, Navarrete Santos A, Voutetakis K, Petropoulos I, Libert C, Simm A, Gonos ES, Friguet B. Protein modification and maintenance systems as biomarkers of ageing. Mech Ageing Dev 2015; 151:71-84. [PMID: 25846863 DOI: 10.1016/j.mad.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/22/2022]
|
5
|
Bonacini M, Coletta M, Ramazzina I, Naponelli V, Modernelli A, Davalli P, Bettuzzi S, Rizzi F. Distinct promoters, subjected to epigenetic regulation, drive the expression of two clusterin mRNAs in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:44-54. [PMID: 25464035 DOI: 10.1016/j.bbagrm.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/24/2014] [Accepted: 11/03/2014] [Indexed: 01/13/2023]
Abstract
The human clusterin (CLU) gene codes for several mRNAs characterized by different sequences at their 5' end. We investigated the expression of two CLU mRNAs, called CLU 1 and CLU 2, in immortalized (PNT1a) and tumorigenic (PC3 and DU145) prostate epithelial cells, as well as in normal fetal fibroblasts (WI38) following the administration of the epigenetic drugs 5-aza-2'-deoxycytidine (AZDC) and trichostatin A (TSA) given either as single or combined treatment (AZDC-TSA). Our experimental evidences show that: a) CLU 1 is the most abundant transcript variant. b) CLU 2 is expressed at a low level in normal fibroblasts and virtually absent in prostate cancer cells. c) CLU 1, and to a greater extent CLU 2 expression, increased by AZDC-TSA treatment in prostate cancer cells. d) Both CLU 1 and CLU 2 encode for secreted CLU. e) P2, a novel promoter that overlaps the CLU 2 Transcription Start Site (TSS), drives CLU 2 expression. f) A CpG island, methylated in prostate cancer cells and not in normal fibroblasts, is responsible for long-term heritable regulation of CLU 1 expression. g) ChIP assay of histone tail modifications at CLU promoters (P1 and P2) shows that treatment of prostate cancer cells with AZDC-TSA causes enrichment of Histone3(Lys9)acetylated (H3K9ac) and reduction of Histone3(Lys27)trimethylated (H3K27me3), inducing active transcription of both CLU variants. In conclusion, we show for the first time that the expression of CLU 2 mRNA is driven by a novel promoter, P2, whose activity responds to epigenetic drugs treatment through changes in histone modifications.
Collapse
Affiliation(s)
- Martina Bonacini
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy
| | - Mariangela Coletta
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy
| | - Ileana Ramazzina
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Valeria Naponelli
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Alice Modernelli
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy
| | - Pierpaola Davalli
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Saverio Bettuzzi
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy.
| | - Federica Rizzi
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
6
|
Park S, Mathis KW, Lee IK. The physiological roles of apolipoprotein J/clusterin in metabolic and cardiovascular diseases. Rev Endocr Metab Disord 2014; 15:45-53. [PMID: 24097125 DOI: 10.1007/s11154-013-9275-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several isoforms of apolipoprotein J/clusterin (CLU) are encoded from a single gene located on chromosome 8 in humans. These isoforms are ubiquitously expressed in the tissues, and have been implicated in aging, neurodegenerative disorders, cancer progression, and metabolic/cardiovascular diseases including dyslipidemia, diabetes, atherosclerosis and myocardial infarction. The conventional secreted form of CLU (sCLU) is thought to be a component of high density lipoprotein-cholesterol. sCLU functions as a chaperone for misfolded proteins and it is thought to promote survival by reducing oxidative stress. Nuclear CLU, a truncated CLU formed by alternative splicing, is responsible for promoting apoptosis via a Bax-dependent pathway. There are putative regulatory sites in the promoter regions of CLU, which are occupied by transcription factors such as transforming growth factor (TGF)-β inhibitory element, activator protein-1, CLU-specific elements, and carbohydrate response element. However, the molecular mechanisms underlying the distinct roles of CLU in a variety of conditions remain unclear. Although the function of CLU in cancer or neurological disease has been studied intensively for three decades, physiological roles of CLU seem unexplored in the cardiovascular system and metabolic diseases. In this review, we will discuss general characteristics and regulations of CLU based on previous literature and assess the recent findings associated with its physiological roles in different tissues including the vasculature, heart, liver, kidney, adipose tissue, and brain.
Collapse
Affiliation(s)
- S Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | | | | |
Collapse
|
7
|
Kwon HS, Kim TB, Lee YS, Jeong SH, Bae YJ, Moon KA, Bang BR, Moon HB, Cho YS. Clusterin expression level correlates with increased oxidative stress in asthmatics. Ann Allergy Asthma Immunol 2014; 112:217-21. [PMID: 24428970 DOI: 10.1016/j.anai.2013.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidative stress is thought to play a role in the pathogenesis of asthma. Clusterin is a sensitive cellular biosensor of oxidative stress and has antioxidant properties. The function and expression of clusterin in patients with asthma have not been fully investigated. OBJECTIVE To investigate whether the expression of clusterin in patients with asthma is regulated by increased oxidative burden and whether clusterin expression could be used to assess the response to inhaled corticosteroids. METHODS Clusterin levels in serum, induced sputum, and peripheral blood mononuclear cells of patients with asthma were measured by enzyme-linked immunosorbent assay and western blotting and compared with pulmonary function and levels of expression of hyperoxidized peroxiredoxins. Serum concentrations of clusterin in treatment-naive patients were compared before and after inhaled corticosteroid use. RESULTS Serum clusterin concentration was significantly elevated in patients with severe asthma and was inversely correlated with pulmonary function. The expression of hyperoxidized peroxiredoxins was greatly increased in peripheral blood mononuclear cells of patients with asthma and was strongly correlated with clusterin expression. Serum clusterin concentrations in treatment-naive patients with asthma were decreased significantly after initial treatment with inhaled corticosteroids. CONCLUSION Clusterin may be a biomarker of asthma severity and the burden of oxidative stress in patients with asthma. Moreover, clusterin may be useful for the prompt assessment of airway inflammation.
Collapse
Affiliation(s)
- Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Su Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Hwan Jeong
- Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun-Jeong Bae
- Asan Medical Center, Health Screening and Promotion Center, Seoul, Republic of Korea
| | - Keun-Ai Moon
- Asan Institute of Life Science, Seoul, Republic of Korea
| | - Bo-Ram Bang
- Asan Institute of Life Science, Seoul, Republic of Korea
| | - Hee-Bom Moon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Trougakos IP. The molecular chaperone apolipoprotein J/clusterin as a sensor of oxidative stress: implications in therapeutic approaches - a mini-review. Gerontology 2013; 59:514-23. [PMID: 23689375 DOI: 10.1159/000351207] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/03/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Organisms are constantly exposed to physiological and environmental stresses and therefore require an efficient surveillance of genome and proteome quality in order to prevent disruption of homeostasis. Central to the intra- and extracellular proteome surveillance system are the molecular chaperones that contribute to both proteome maintenance and clearance. The conventional protein product of the apolipoprotein J/clusterin (CLU) gene is a heterodimeric secreted glycoprotein (also termed as sCLU) with a ubiquitous expression in human tissues. CLU exerts a small heat shock protein-like stress-induced chaperone activity and has been functionally implicated in numerous physiological processes as well as in ageing and most age-related diseases including tumorigenesis, neurodegeneration, and cardiovascular and metabolic syndromes. OBJECTIVE The CLU gene is differentially regulated by a wide variety of stimuli due to the combined presence of many distinct regulatory elements in its promoter that make it an extremely sensitive cellular biosensor of environmental and/or oxidative stress. Downstream to CLU gene induction, the CLU protein seems to actively intervene in pathological states of increased oxidative injury due to its chaperone-related property to inhibit protein aggregation and precipitation (a main feature of oxidant injury), as well as due to its reported distribution in both extra- and, most likely, intracellular compartments. CONCLUSION On the basis of these findings, CLU has emerged as a unique regulator of cellular proteostasis. Nevertheless, it seemingly exerts a dual function in pathology. For instance, in normal cells and during early phases of carcinogenesis, CLU may inhibit tumor progression as it contributes to suppression of proteotoxic stress. In advanced neoplasia, however, it may offer a significant survival advantage in the tumor by suppressing many therapeutic stressors and enhancing metastasis. This review will critically present a synopsis of recent novel findings that relate to the function of this amazing molecule and support the notion that CLU is a biosensor of oxidative injury; a common link between ageing and all pathologies where CLU has been implicated. Potential future perspectives, implications and opportunities for translational research and the development of new therapies will be discussed.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| |
Collapse
|
9
|
Abstract
Clusterin, also known as apolipoprotein J, is a ubiquitous multifunctional glycoprotein. Following its identification in 1983, clusterin was found to be clearly increased in Alzheimer's disease (AD). Later research demonstrated that clusterin could bind amyloid-beta (Abeta) peptides and prevent fibril formation, a hallmark of AD pathology. In addition to preventing excessive inflammation, intracellular clusterin was found to reduce apoptosis and oxidative stress. Although early studies were inconclusive, two recent large-scale genome-wide association studies (GWAS) independently identified variants within the clusterin gene as risk factors for developing AD. This review focuses on the characteristics of clusterin and possible mechanisms of its relationship to AD.
Collapse
Affiliation(s)
- Zhong-Chen Wu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
10
|
Chapter 9: Oxidative stress in malignant progression: The role of Clusterin, a sensitive cellular biosensor of free radicals. Adv Cancer Res 2010; 104:171-210. [PMID: 19878777 DOI: 10.1016/s0065-230x(09)04009-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clusterin/Apolipoprotein J (CLU) gene is expressed in most human tissues and encodes for two protein isoforms; a conventional heterodimeric secreted glycoprotein and a truncated nuclear form. CLU has been functionally implicated in several physiological processes as well as in many pathological conditions including ageing, diabetes, atherosclerosis, degenerative diseases, and tumorigenesis. A major link of all these, otherwise unrelated, diseases is that they are characterized by increased oxidative injury due to impaired balance between production and disposal of reactive oxygen or nitrogen species. Besides the aforementioned diseases, CLU gene is differentially regulated by a wide variety of stimuli which may also promote the production of reactive species including cytokines, interleukins, growth factors, heat shock, radiation, oxidants, and chemotherapeutic drugs. Although at low concentration reactive species may contribute to normal cell signaling and homeostasis, at increased amounts they promote genomic instability, chronic inflammation, lipid oxidation, and amorphous aggregation of target proteins predisposing thus cells for carcinogenesis or other age-related disorders. CLU seems to intervene to these processes due to its small heat-shock protein-like chaperone activity being demonstrated by its property to inhibit protein aggregation and precipitation, a main feature of oxidant injury. The combined presence of many potential regulatory elements in the CLU gene promoter, including a Heat-Shock Transcription Factor-1 and an Activator Protein-1 element, indicates that CLU gene is an extremely sensitive cellular biosensor of even minute alterations in the cellular oxidative load. This review focuses on CLU regulation by oxidative injury that is the common molecular link of most, if not all, pathological conditions where CLU has been functionally implicated.
Collapse
|
11
|
Rizzi F, Coletta M, Bettuzzi S. Chapter 2: Clusterin (CLU): From one gene and two transcripts to many proteins. Adv Cancer Res 2010; 104:9-23. [PMID: 19878770 DOI: 10.1016/s0065-230x(09)04002-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clusterin (CLU) has kept many researchers engaged for a long time since its first discovery and characterization in the attempt to unravel its biological role in mammals. Although there is a general consensus on the fact that CLU is supposed to play important roles in nearly all fundamental biological phenomena and in many human diseases including cancer, after about 10 years of work CLU has been defined as an "enigmatic" protein. This sense of frustration among the researchers is originated by the fact that, despite considerable scientific production concerning CLU, there is still a lack of basic information about the complex regulation of its expression. The CLU gene is a single 9-exon gene expressed at very different levels in almost all major tissues in mammals. The gene produces at least three protein forms with different subcellular localization and diverse biological functions. The molecular mechanism of production of these protein forms remains unclear. The best known is the glycosylated mature form of CLU (sCLU), secreted with very big quantitative differences at different body sites. Hormones and growth factors are the most important regulators of CLU gene expression. Before 2006, it was believed that a unique transcript of about 1.9 kb was originated by transcription of the CLU gene. Now we know that alternative transcriptional initiation, possibly driven by two distinct promoters, may produce at least two distinct CLU mRNA isoforms differing in their unique first exon, named Isoform 1 and Isoform 2. A third transcript, named Isoform 11036, has been recently found as one of the most probable mRNA variants. Approaches like cloning, expression, and functional characterization of the different CLU protein products have generated a critical mass of information teaching us an important lesson about CLU gene expression regulation. Nevertheless, further studies are necessary to better understand the tissue-specific regulation of CLU expression and to identify the specific signals triggering the expression of different/alternative transcript isoforms and protein forms in different cell types at appropriate time.
Collapse
Affiliation(s)
- Federica Rizzi
- Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Biochimica Clinica e Biochimica dell'Esercizio Fisico, Parma, Italy
| | | | | |
Collapse
|
12
|
Abstract
Clusterin/Apolipoprotein J (ApoJ) is a heterodimeric highly conserved secreted glycoprotein being expressed in a wide variety of tissues and found in all human fluids. Despite being cloned since 1989, no genuine function has been attributed to ApoJ so far. The protein has been reportedly implicated in several diverse physiological processes such as sperm maturation, lipid transportation, complement inhibition, tissue remodeling, membrane recycling, cell-cell and cell-substratum interactions, stabilization of stressed proteins in a folding-competent state and promotion or inhibition of apoptosis. ApoJ gene is differentially regulated by cytokines, growth factors and stress-inducing agents, while another defining prominent and intriguing ApoJ feature is its upregulation in many severe physiological disturbances states and in several neurodegenerative conditions mostly related to advanced aging. Moreover, ApoJ accumulates during the viable growth arrested cellular state of senescence, that is thought to contribute to aging and to tumorigenesis suppression; paradoxically ApoJ is also upregulated in several cases of in vivo cancer progression and tumor formation. This review focuses on the reported data related to ApoJ cell-type and signal specific regulation, function and site of action in normal and cancer cells. We discuss the role of ApoJ during cellular senescence and tumorigenesis, especially under the light of the recently demonstrated various ApoJ intracellular protein forms and their interaction with molecules involved in signal transduction and DNA repair, raising the possibility that its overexpression during cellular senescence might cause a predisposition to cancer.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular & Cellular Aging, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas Constantinou Avenue, Athens 11635, Greece
| | | |
Collapse
|
13
|
Abstract
Transforming growth factor beta (TGFbeta) induces the expression of a wide variety of genes in many cell types. Our previous studies have shown that TGFbeta stimulates both clusterin mRNA and protein levels, and induces its accumulation in the nucleus of CCL64 cells. To further investigate the molecular mechanism of clusterin mRNA induction by TGFbeta, we created a 1.3-kilobase rat clusterin promoter/luciferase reporter construct. We demonstrate that TGFbeta enhances luciferase activity 2.5-6-fold in transient transfection assays of epithelial, endothelial, and fibroblast cell lines. Deletional analysis reveals that an AP-1-binding site (5'-TGAGTCA) in the minimal promoter region is necessary for initiating transactivation by TGFbeta. A single T to G base mutation in the AP-1 site (5'-TGAGGCA) abolishes TGFbeta-induced clusterin promoter transactivation. In transcription factor decoy experiments, 23-mer oligonucleotides of wild type AP-1 reduce TGFbeta induction of clusterin mRNA levels and promoter transactivation, while an oligonucleotide containing the mutated AP-1 site has no effect. Two specific protein kinase C inhibitors, GF109203X and calphostin C, block TGFbeta-induced clusterin mRNA levels and promoter transactivation. Together these results indicate that TGFbeta regulates clusterin gene expression through an AP-1 site and its cognate transcription factor AP-1, and requires the involvement of protein kinase C.
Collapse
Affiliation(s)
- G Jin
- Department of Cell Biology (NC-1), Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
14
|
Reddy KB, Jin G, Karode MC, Harmony JA, Howe PH. Transforming growth factor beta (TGF beta)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 1996; 35:6157-63. [PMID: 8634259 DOI: 10.1021/bi952981b] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Apolipoprotein J (apoJ)/clusterin was first identified as an 80 kDa secretory glycoprotein present in most body fluids. It has been implicated in a variety of physiological processes including cellular differentiation and apoptosis. We demonstrate here that in addition to the well characterized secreted form of the protein, there exists an intracellular, nuclear form of apoJ. This intracellular form of the protein is induced to accumulate in the nucleus of two epithelial cell lines (HepG2 and CCL64) in response to treatment with transforming growth factor beta (TGF beta). We demonstrate in vitro that apoJ protein can be translated from two in-frame ATG sites. Initiation from the first ATG encodes for the secretory form of apoJ and initiation from the second ATG, located 33 amino acids downstream of the first and lacking the hydrophobic signal sequence, encodes for a truncated apoJ protein. This shorter form of apoJ is not recognized by microsomes and therefore not glycosylated, and we postulate that it is retained intracellularly and targeted to the nucleus due to the presence of an SV40-like nuclear localization sequence (NLS). This mechanism of nuclear targeting of apoJ occurs in cells since the protein isolated from nuclei of TGF beta-treated cells and the in vitro-translated truncated form are identical by V8 protease analysis. These results suggest that the diverse physiological responses attributed to apoJ may be elicited through a common molecular mechanism involving a previously uncharacterized intracellular form of the protein.
Collapse
Affiliation(s)
- K B Reddy
- Department of Cell Biology, Cleveland Clinic Research Institute, Ohio 44195-5245, USA
| | | | | | | | | |
Collapse
|
15
|
Guénal I, Mignotte B. Studies of specific gene induction during apoptosis of cell lines conditionally immortalized by SV40. FEBS Lett 1995; 374:384-6. [PMID: 7589576 DOI: 10.1016/0014-5793(95)01157-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inactivation of SV40 large T antigen in cells immortalized with conditional mutants leads to activation of p53 and apoptosis. We have analysed during this process the expression of genes induced by p53 or differentially expressed during apoptosis in other systems. We find an early induction of Waf1/Cip1. We also observe clusterin is induced during the process and displays a high level of expression in non-apoptotic cells, suggesting a protective role for clusterin. Other genes associated with thymocyte and lymphocyte apoptosis are not induced, showing that the pattern of gene induction is specific to the system studied.
Collapse
Affiliation(s)
- I Guénal
- Centre de Génétique Moléculaire, UPR2420 du CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|