1
|
Pierre F, Baillez A, Dewitte A, Rolandelli A, Sebbane F. Proteins of the SubB family provide multiple mechanisms of serum resistance in Yersinia pestis. Emerg Microbes Infect 2025; 14:2493926. [PMID: 40237516 PMCID: PMC12064104 DOI: 10.1080/22221751.2025.2493926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
The serum complement system is a cornerstone element of the innate immune response. Bacterial resistance to this system is a multifaceted process involving various proteins and molecular mechanisms. Here, we report several genes required for the growth of Yersinia pestis in serum. Among them, we found that ypo0337 encodes an outer-membrane-associated lectin that recruits factor H, C4BP and hemopexin, conferring resistance to the serum complement system. YPO0337 displays high sequence similarity with the SubB subunit of the AB5 toxin from Escherichia coli, as well as other SubB-like proteins, and subB from E. coli restores the ability of Y. pestis Δypo0337 mutant to resist to serum complement. Altogether, the data suggest that at least two members of the SubB protein family function as virulence factors, conferring resistance to serum complement through a unique mode of action.
Collapse
Affiliation(s)
- François Pierre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Alexandre Baillez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Amélie Dewitte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Agustin Rolandelli
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
2
|
Regulatory properties of vitronectin and its glycosylation in collagen fibril formation and collagen-degrading enzyme cathepsin K activity. Sci Rep 2021; 11:12023. [PMID: 34103584 PMCID: PMC8187593 DOI: 10.1038/s41598-021-91353-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Vitronectin (VN) is a glycoprotein found in extracellular matrix and blood. Collagen, a major extracellular matrix component in mammals, is degraded by cathepsin K (CatK), which is essential for bone resorption under acidic conditions. The relationship between VN and cathepsins has been unclear. We discovered that VN promoted collagen fibril formation and inhibited CatK activity, and observed its activation in vitro. VN accelerated collagen fibril formation at neutral pH. Collagen fibers formed with VN were in close contact with each other and appeared as scattered flat masses in scanning electron microscopy images. VN formed collagen fibers with high acid solubility and significantly inhibited CatK; the IC50 was 8.1–16.6 nM and competitive, almost the same as those of human and porcine VNs. VN inhibited the autoprocessing of inactive pro-CatK from active CatK. DeN-glycosylation of VN attenuated the inhibitory effects of CatK and its autoprocessing by VN, but had little effect on acid solubilization of collagen and VN degradation via CatK. CatK inhibition is an attractive treatment approach for osteoporosis and osteoarthritis. These findings suggest that glycosylated VN is a potential biological candidate for CatK inhibition and may help to understand the molecular mechanisms of tissue re-modeling.
Collapse
|
3
|
Lin Y, Zhu J, Pan L, Zhang J, Tan Z, Olivares J, Singal AG, Parikh ND, Lubman DM. A Panel of Glycopeptides as Candidate Biomarkers for Early Diagnosis of NASH Hepatocellular Carcinoma Using a Stepped HCD Method and PRM Evaluation. J Proteome Res 2021; 20:3278-3289. [PMID: 33929864 DOI: 10.1021/acs.jproteome.1c00175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Changes in N-glycosylation on specific peptide sites of serum proteins have been investigated as potential markers for diagnosis of nonalcoholic steatohepatitis (NASH)-related HCC. To accomplish this work, a novel workflow involving broad-scale marker discovery in serum followed by targeted marker evaluation of these glycopeptides were combined. The workflow involved an LC-Stepped HCD-DDA-MS/MS method coupled with offline peptide fractionation for large-scale identification of N-glycopeptides directly from pooled serum samples (each n = 10) as well as differential determination of N-glycosylation changes between disease states. We then evaluated several potentially diagnostic N-glycopeptides among 78 individual patient samples (40 cirrhosis, 28 early stage NASH HCC, and 10 late-stage NASH HCC) by LC-Stepped HCD-PRM-MS/MS to quantitatively analyze 65 targeted glycopeptides from 7 glycoproteins. Of these targets, we found site-specific N-glycopeptides n169GSLFAFR_HexNAc(4)Hex(5)NeuAc(2) and n242ISDGFDGIPDNVDAALALPAHSYSGR_HexNAc(5)Hex(6)Fuc(1)NeuAc(3) from VTNC were significantly increased comparing samples from patients with NASH cirrhosis and NASH HCC (p < 0.05). When combining results of these 2 glycopeptides with AFP, the ROC curve analysis demonstrated the AUC value increased to 0.834 (95% CI, 0.748-0.921) and 0.847 (95% CI, 0.766-0.932), respectively, as compared to that of AFP alone (AUC = 0.791, 95% CI, 0.690-0.892). These 2 glycopeptides may serve as potential biomarkers for early HCC diagnosis in patients with NASH related cirrhosis.
Collapse
Affiliation(s)
- Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Lingyun Pan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Zhijing Tan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Jocelyn Olivares
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Neehar D Parikh
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Date K, Suzuki R, Oda-Tamai S, Ogawa H. Vitronectins produced by human cirrhotic liver and CCl 4-treated rats differ in their glycosylation pattern and tissue remodeling activity. FEBS Open Bio 2019; 9:755-768. [PMID: 30984549 PMCID: PMC6443879 DOI: 10.1002/2211-5463.12616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 02/02/2023] Open
Abstract
Liver cirrhosis (LC) is a disease characterized by pathological accumulation and alteration of extracellular matrix (ECM) proteins; the interaction between two such proteins, collagen and vitronectin (VN), is considered to be the key to controlling ECM remodeling in liver cirrhosis. If it is possible to control the modification of oligosaccharides on VN, it may be possible to retard progression of liver cirrhosis. In this study, we examined the relationship between changes in VN glycosylation and activity related to the remodeling of hepatic tissue in human LC and a rat model of LC generated using carbon tetrachloride (CCl4). Plasma concentrations of VN in human LC declined to approximately two‐thirds that in normal plasma, but the ratio of active VN, which has collagen‐binding activities, increased 2.8 times in LC plasma. In contrast, purified LC‐VN exhibited similar binding activities toward type I, IV, and V collagens to those of normal VN. Lectin reactivities and carbohydrate analyses of LC‐VN revealed that branching, fucosylation, and sialylation of N‐glycans were higher than those of normal VN. On the other hand, the plasma level of rat CCl4‐VN increased and the ratio of active molecules to collagen in plasma decreased. Increased fucosylation of LC‐VN was not detected in carbohydrates of CCl4‐VN. The changes in rat VN due to CCl4 treatment did not correspond to the changes in plasma levels of human VN caused by LC, the ratio of active molecules, or carbohydrate composition, thereby indicating that CCl4‐treated rats are not an appropriate model for studying VNs in human LC. Glycosidase treatment of VNs supported the hypothesis that the collagen‐binding activity of VN is modulated by alterations of glycosylation during LC, which may contribute to (a) the matrix incorporation of VN and (b) tissue fibrosis.
Collapse
Affiliation(s)
- Kimie Date
- Human Life Innovation Institute Ochanomizu University Tokyo Japan
| | - Risa Suzuki
- Graduate School of Humanities and Sciences Ochanomizu University Tokyo Japan
| | - Sachie Oda-Tamai
- Department of Biochemistry St Marianna University School of Medicine Kawasaki Japan
| | - Haruko Ogawa
- Human Life Innovation Institute Ochanomizu University Tokyo Japan.,Graduate School of Humanities and Sciences Ochanomizu University Tokyo Japan
| |
Collapse
|
5
|
Benachour H, Leroy-Dudal J, Agniel R, Wilson J, Briand M, Carreiras F, Gallet O. Vitronectin (Vn) glycosylation patterned by lectin affinity assays-A potent glycoproteomic tool to discriminate plasma Vn from cancer ascites Vn. J Mol Recognit 2017; 31:e2690. [PMID: 29205553 DOI: 10.1002/jmr.2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/10/2022]
Abstract
Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one-third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA-I, PHA-E, PHA-L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest.
Collapse
Affiliation(s)
- H Benachour
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - J Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - R Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - J Wilson
- RayBiotech, Inc., Norcross, GA, USA
| | - M Briand
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA axis "Biology and Innovative Therapeutics for Ovarian Cancers"), Caen, France.,UNICANCER, Comprehensive Cancer Center François Baclesse, CRB Biological Resources Centre « OvaRessources », Caen, France
| | - F Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - O Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| |
Collapse
|
6
|
Haworth JA, Jenkinson HF, Petersen HJ, Back CR, Brittan JL, Kerrigan SW, Nobbs AH. Concerted functions of Streptococcus gordonii surface proteins PadA and Hsa mediate activation of human platelets and interactions with extracellular matrix. Cell Microbiol 2017; 19:e12667. [PMID: 27616700 PMCID: PMC5574023 DOI: 10.1111/cmi.12667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
A range of Streptococcus bacteria are able to interact with blood platelets to form a thrombus (clot). Streptococcus gordonii is ubiquitous within the human oral cavity and amongst the common pathogens isolated from subjects with infective endocarditis. Two cell surface proteins, Hsa and Platelet adherence protein A (PadA), in S. gordonii mediate adherence and activation of platelets. In this study, we demonstrate that PadA binds activated platelets and that an NGR (Asparagine-Glycine-Arginine) motif within a 657 amino acid residue N-terminal fragment of PadA is responsible for this, together with two other integrin-like recognition motifs RGT and AGD. PadA also acts in concert with Hsa to mediate binding of S. gordonii to cellular fibronectin and vitronectin, and to promote formation of biofilms. Evidence is presented that PadA and Hsa are each reliant on the other's active presentation on the bacterial cell surface, suggesting cooperativity in functions impacting both colonization and pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jane L. Brittan
- School of Oral and Dental SciencesUniversity of BristolBristolUK
| | - Steve W. Kerrigan
- Cardiovascular Infection GroupRoyal College of Surgeons in IrelandDublin 2Ireland
| | - Angela H. Nobbs
- School of Oral and Dental SciencesUniversity of BristolBristolUK
| |
Collapse
|
7
|
Miyamoto S, Ruhaak LR, Stroble C, Salemi MR, Phinney B, Lebrilla CB, Leiserowitz GS. Glycoproteomic Analysis of Malignant Ovarian Cancer Ascites Fluid Identifies Unusual Glycopeptides. J Proteome Res 2016; 15:3358-76. [PMID: 27500424 DOI: 10.1021/acs.jproteome.6b00548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ovarian cancer is a major cause of cancer mortality among women, largely due to late diagnosis of advanced metastatic disease. More extensive molecular analysis of metastatic ovarian cancer is needed to identify post-translational modifications of proteins, especially glycosylation that is particularly associated with metastatic disease to better understand the metastatic process and identify potential therapeutic targets. Glycoproteins in ascites fluid were enriched by affinity binding to lectins (ConA or WGA) and other affinity matrices. Separate glycomic, proteomic, and glycopeptide analyses were performed. Relative abundances of different N-glycan groups and proteins were identified from ascites fluids and a serum control. Levels of biomarkers CA125, MUC1, and fibronectin were also monitored in OC ascites samples by Western blot analysis. N-Glycan analysis of ascites fluids showed the presence of large, highly fucosylated and sialylated complex and hybrid glycans, some of which were not observed in normal serum. OC ascites glycoproteins, haptoglobin, fibronectin, lumican, fibulin, hemopexin, ceruloplasmin, alpha-1-antitrypsin, and alpha-1-antichymotrypsin were more abundant in OC ascites or not present in serum control samples. Further glycopeptide analysis of OC ascites identified N- and O-glycans in clusterin, hemopexin, and fibulin glycopeptides, some of which are unusual and may be important in OC metastasis.
Collapse
Affiliation(s)
- Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, UC Davis School of Medicine , Sacramento, California 95817, United States
| | - L Renee Ruhaak
- Department of Chemistry, UC Davis , Davis, California 95616, United States
| | - Carol Stroble
- Division of Hematology and Oncology, Department of Internal Medicine, UC Davis School of Medicine , Sacramento, California 95817, United States
| | - Michelle R Salemi
- Proteomic Core, Genome Center, UC Davis , Davis, California 95616, United States
| | - Brett Phinney
- Proteomic Core, Genome Center, UC Davis , Davis, California 95616, United States
| | - Carlito B Lebrilla
- Department of Chemistry, UC Davis , Davis, California 95616, United States
| | - Gary S Leiserowitz
- Division of Gynecologic Oncology, UC Davis Medical Center , Sacramento, California 95817, United States
| |
Collapse
|
8
|
Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J 2015; 33:309-43. [PMID: 26555091 PMCID: PMC4891372 DOI: 10.1007/s10719-015-9626-2] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
Abstract
Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level.
Collapse
Affiliation(s)
- Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Karli R Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Guinevere S M Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
In-depth analysis of site-specific N-glycosylation in vitronectin from human plasma by tandem mass spectrometry with immunoprecipitation. Anal Bioanal Chem 2014; 406:7999-8011. [PMID: 25374123 DOI: 10.1007/s00216-014-8226-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
10
|
Lee HJ, Cha HJ, Lim JS, Lee SH, Song SY, Kim H, Hancock WS, Yoo JS, Paik YK. Abundance-ratio-based semiquantitative analysis of site-specific N-linked glycopeptides present in the plasma of hepatocellular carcinoma patients. J Proteome Res 2014; 13:2328-38. [PMID: 24628331 DOI: 10.1021/pr4011519] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aberrant structures of site-specific N-linked glycans are closely associated with the tumorigenesis of hepatocellular carcinoma (HCC), one of the most common fatal cancers worldwide. Vitronectin (VTN) is considered a candidate glycobiomarker of HCC. In this study, we describe a reliable and simple quantification strategy based on abundance ratios of site-specific N-linked glycopeptides of VTN to screen for potential biomarkers. A total of 14 unique N-linked glycans corresponding to 27 unique N-linked glycopeptides were characterized at three N-linked sites (Asn-86, -169, and -242) present in VTN. These glycans could be good candidate markers for HCC. Among these glycans, the abundance ratio of two representative glycoforms (fucosyl vs non-fucosyl) was significantly increased in HCC plasma relative to normal plasma. This strategy was also successfully applied to another potential HCC biomarker, haptoglobin. Furthermore, we demonstrate that our approach employing tandem mass tag (TMT) and target N-linked glycopeptides of VTN is a useful tool for quantifying specific glycans in HCC plasma relative to normal plasma. Our strategy represents a simple and potentially useful screening platform for the discovery of cancer-specific glycobiomarkers.
Collapse
Affiliation(s)
- Hyoung-Joo Lee
- Yonsei Proteome Research Center and Department of Integrated OMICS for Biomedical Science, and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University , Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Malagolini N, Catera M, Osorio H, Reis CA, Chiricolo M, Dall'Olio F. Apoptotic cells selectively uptake minor glycoforms of vitronectin from serum. Apoptosis 2014; 18:373-84. [PMID: 23381642 DOI: 10.1007/s10495-013-0812-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apoptosis profoundly alters the carbohydrate layer coating the membrane of eukaryotic cells. Previously we showed that apoptotic cells became reactive with the α2,6-sialyl-specific lectin from Sambucus nigra agglutinin (SNA), regardless of their histological origin and the nature of the apoptotic stimulus. Here we reveal the basis of the phenomenon by showing that in apoptotic cancer cell lines SNA reactivity was mainly associated with a 67 kDa glycoprotein which we identified by MALDI-TOF/TOF and immunoblot analysis as bovine vitronectin (bVN). bVN was neither present in non-apoptotic cells, nor in cells induced to apoptosis in serum-free medium, indicating that its uptake from the cell culture serum occurred only during apoptosis. The bVN molecules associated with apoptotic cancer cell lines represented minor isoforms, lacking the carboxyterminal sequence and paradoxically containing a few α2,6-linked sialic acid residues. Despite their poor α2,6-sialylation, these bVN molecules were sufficient to turn apoptotic cells to SNA reactivity, which is a late apoptotic event occurring in cells positive to both annexin-V and propidium iodide. Unlike in cancer cell lines, the major bVN form taken up by apoptotic neutrophils and mononuclear cells was a 80 kDa form. In apoptotic SW948 cells we also detected the α2,6-sialylated forms of the stress-70 mitochondrial precursor (mortalin) and of tubulin-β2C. These data indicate that the acquisition of vitronectin isoforms from the environment is a general, although cell specific phenomenon, potentially playing an important role in post-apoptotic events and that the α2,6-sialylation of intracellular proteins is a new kind of posttranslational modification associated with apoptosis.
Collapse
Affiliation(s)
- Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Hua S, Hu CY, Kim BJ, Totten SM, Oh MJ, Yun N, Nwosu CC, Yoo JS, Lebrilla CB, An HJ. Glyco-Analytical Multispecific Proteolysis (Glyco-AMP): A Simple Method for Detailed and Quantitative Glycoproteomic Characterization. J Proteome Res 2013; 12:4414-23. [DOI: 10.1021/pr400442y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Serenus Hua
- Asia Glycomics Reference Site, Daejeon 305-764, South Korea
- Cancer
Research Institute, Chungnam National University, Daejeon 305-764, South Korea
| | - Chloe Y. Hu
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | - Bum Jin Kim
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Sarah M. Totten
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | - Myung Jin Oh
- Asia Glycomics Reference Site, Daejeon 305-764, South Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Nayoung Yun
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Charles C. Nwosu
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | - Jong Shin Yoo
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
- Division
of Mass Spectrometry Research, Korea Basic Science Institute, Ochang 363-883, South Korea
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | - Hyun Joo An
- Asia Glycomics Reference Site, Daejeon 305-764, South Korea
- Cancer
Research Institute, Chungnam National University, Daejeon 305-764, South Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| |
Collapse
|
13
|
Gomes C, Almeida A, Ferreira JA, Silva L, Santos-Sousa H, Pinto-de-Sousa J, Santos LL, Amado F, Schwientek T, Levery SB, Mandel U, Clausen H, David L, Reis CA, Osório H. Glycoproteomic analysis of serum from patients with gastric precancerous lesions. J Proteome Res 2013; 12:1454-66. [PMID: 23312025 DOI: 10.1021/pr301112x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gastric cancer is preceded by a carcinogenesis pathway that includes gastritis caused by Helicobacter pylori infection, chronic atrophic gastritis that may progress to intestinal metaplasia (IM), dysplasia, and ultimately gastric carcinoma of the more common intestinal subtype. The identification of glycosylation changes in circulating serum proteins in patients with precursor lesions of gastric cancer is of high interest and represents a source of putative new biomarkers for early diagnosis and intervention. This study applies a glycoproteomic approach to identify altered glycoproteins expressing the simple mucin-type carbohydrate antigens T and STn in the serum of patients with gastritis, IM (complete and incomplete subtypes), and control healthy individuals. The immunohistochemistry analysis of the gastric mucosa of these patients showed expression of T and STn antigens in gastric lesions, with STn being expressed only in IM. The serum glycoproteomic analysis using 2D-gel electrophoresis, Western blot, and MALDI-TOF/TOF mass spectrometry led to the identification of circulating proteins carrying these altered glycans. One of the glycoproteins identified was plasminogen, a protein that has been reported to play a role in H. pylori chronic infection of the gastric mucosa and is involved in extracellular matrix modeling and degradation. Plasminogen was further characterized and showed to carry STn antigens in patients with gastritis and IM. These results provide evidence of serum proteins displaying abnormal O-glycosylation in patients with precursor lesions of gastric carcinoma and include a panel of putative targets for the non-invasive clinical diagnosis of individuals with gastritis and IM.
Collapse
Affiliation(s)
- Catarina Gomes
- Institute of Molecular Pathology and Immunology University of Porto, IPATIMUP, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee JY, Kim JY, Park GW, Cheon MH, Kwon KH, Ahn YH, Moon MH, Lee HJ, Paik YK, Yoo JS. Targeted mass spectrometric approach for biomarker discovery and validation with nonglycosylated tryptic peptides from N-linked glycoproteins in human plasma. Mol Cell Proteomics 2011; 10:M111.009290. [PMID: 21940909 DOI: 10.1074/mcp.m111.009290] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A simple mass spectrometric approach for the discovery and validation of biomarkers in human plasma was developed by targeting nonglycosylated tryptic peptides adjacent to glycosylation sites in an N-linked glycoprotein, one of the most important biomarkers for early detection, prognoses, and disease therapies. The discovery and validation of novel biomarkers requires complex sample pretreatment steps, such as depletion of highly abundant proteins, enrichment of desired proteins, or the development of new antibodies. The current study exploited the steric hindrance of glycan units in N-linked glycoproteins, which significantly affects the efficiency of proteolytic digestion if an enzymatically active amino acid is adjacent to the N-linked glycosylation site. Proteolytic digestion then results in quantitatively different peptide products in accordance with the degree of glycosylation. The effect of glycan steric hindrance on tryptic digestion was first demonstrated using alpha-1-acid glycoprotein (AGP) as a model compound versus deglycosylated alpha-1-acid glycoprotein. Second, nonglycosylated tryptic peptide biomarkers, which generally show much higher sensitivity in mass spectrometric analyses than their glycosylated counterparts, were quantified in human hepatocellular carcinoma plasma using a label-free method with no need for N-linked glycoprotein enrichment. Finally, the method was validated using a multiple reaction monitoring analysis, demonstrating that the newly discovered nonglycosylated tryptic peptide targets were present at different levels in normal and hepatocellular carcinoma plasmas. The area under the receiver operating characteristic curve generated through analyses of nonglycosylated tryptic peptide from vitronectin precursor protein was 0.978, the highest observed in a group of patients with hepatocellular carcinoma. This work provides a targeted means of discovering and validating nonglycosylated tryptic peptides as biomarkers in human plasma, without the need for complex enrichment processes or expensive antibody preparations.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-Myun, Cheongwon-Gun, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sano K, Miyamoto Y, Kawasaki N, Hashii N, Itoh S, Murase M, Date K, Yokoyama M, Sato C, Kitajima K, Ogawa H. Survival signals of hepatic stellate cells in liver regeneration are regulated by glycosylation changes in rat vitronectin, especially decreased sialylation. J Biol Chem 2010; 285:17301-9. [PMID: 20335177 DOI: 10.1074/jbc.m109.077016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular matrix (ECM) molecules play important roles in many biological and pathological processes. During tissue remodeling, the ECM molecules that are glycosylated are different from those of normal tissue owing to changes in the expression of many proteins that are responsible for glycan synthesis. Vitronectin (VN) is a major ECM molecule that recognizes integrin on hepatic stellate cells (HSCs). The present study attempted to elucidate how changes in VN glycans modulate the survival of HSCs, which play a critical role in liver regeneration. Plasma VN was purified from partially hepatectomized (PH) and sham-operated (SH) rats at 24 h after operation and non-operated (NO) rats. Adhesion of rat HSCs (rHSCs), together with phosphorylation of focal adhesion kinase, in PH-VN was decreased to one-half of that in NO- or SH-VN. Spreading of rHSCs on desialylated NO-VN was decreased to one-half of that of control VN, indicating the importance of sialylation of VN for activation of HSCs. Liquid chromatography/multiple-stage mass spectrometry analysis of Glu-C glycopeptides of each VN determined the site-specific glycosylation. In addition to the major biantennary complex-type N-glycans, hybrid-type N-glycans were site-specifically present at Asn(167). Highly sialylated O-glycans were found to be present in the Thr(110)-Thr(124) region. In PH-VN, the disialyl O-glycans and complex-type N-glycans were decreased while core-fucosylated N-glycans were increased. In addition, immunodetection after two-dimensional PAGE indicated the presence of hyper- and hyposialylated molecules in each VN and showed that hypersialylation was markedly attenuated in PH-VN. This study proposes that the alteration of VN glycosylation modulates the substrate adhesion to rat HSCs, which is responsible for matrix restructuring.
Collapse
Affiliation(s)
- Kotone Sano
- Graduate School of Humanities and Sciences and The Glycoscience Institute, Ochanomizu University, Tokyo 112-8610, Ochanomizu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sano K. How Glycosylation of Vitronectin Modulates the Tissue Remodeling during Liver Regeneration. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Lee HJ, Na K, Choi EY, Kim KS, Kim H, Paik YK. Simple Method for Quantitative Analysis of N-Linked Glycoproteins in Hepatocellular Carcinoma Specimens. J Proteome Res 2009; 9:308-18. [DOI: 10.1021/pr900649b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hyoung-Joo Lee
- Department of Biochemistry and Biomedical Sciences, College of Life Sciences and Biotechnology, World Class University Program, Yonsei Proteome Research Center and Biomedical Proteome Research Center, Department of Surgery, and Department of Pathology, College of Medicine, Yonsei University, Seoul 120-749, Korea
| | - Keun Na
- Department of Biochemistry and Biomedical Sciences, College of Life Sciences and Biotechnology, World Class University Program, Yonsei Proteome Research Center and Biomedical Proteome Research Center, Department of Surgery, and Department of Pathology, College of Medicine, Yonsei University, Seoul 120-749, Korea
| | - Eun-Young Choi
- Department of Biochemistry and Biomedical Sciences, College of Life Sciences and Biotechnology, World Class University Program, Yonsei Proteome Research Center and Biomedical Proteome Research Center, Department of Surgery, and Department of Pathology, College of Medicine, Yonsei University, Seoul 120-749, Korea
| | - Kyung Sik Kim
- Department of Biochemistry and Biomedical Sciences, College of Life Sciences and Biotechnology, World Class University Program, Yonsei Proteome Research Center and Biomedical Proteome Research Center, Department of Surgery, and Department of Pathology, College of Medicine, Yonsei University, Seoul 120-749, Korea
| | - Hoguen Kim
- Department of Biochemistry and Biomedical Sciences, College of Life Sciences and Biotechnology, World Class University Program, Yonsei Proteome Research Center and Biomedical Proteome Research Center, Department of Surgery, and Department of Pathology, College of Medicine, Yonsei University, Seoul 120-749, Korea
| | - Young-Ki Paik
- Department of Biochemistry and Biomedical Sciences, College of Life Sciences and Biotechnology, World Class University Program, Yonsei Proteome Research Center and Biomedical Proteome Research Center, Department of Surgery, and Department of Pathology, College of Medicine, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
18
|
Gheysen K, Mihai C, Conrath K, Martins JC. Rapid identification of common hexapyranose monosaccharide units by a simple TOCSY matching approach. Chemistry 2008; 14:8869-8878. [PMID: 18729117 DOI: 10.1002/chem.200801081] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Solution NMR spectroscopy is a well established technique for non-destructive characterization of the structures and conformations of complex oligo- and polysaccharides. One of the key experiments involves the use of 2D TOCSY to collect the 1H spins into groups that can be associated with the individual saccharide units that are present in the molecule under study. It is well known that the magnetization transfer rate through the 1H spin system during the TOCSY spin lock period is sensitive to the intervening 3J(H,H) scalar couplings, and therefore also to the saccharide stereochemistry. Here, we have investigated the potential to extract information on the stereochemistry of hexapyranose monosaccharide units directly from TOCSY spectra. Through a systematic experimental investigation of the magnetization transfer initiated from the anomeric 1H resonance in D-glucose, D-galactose and D-mannose it is shown that a 100 ms spin lock time provides optimal spectroscopic discrimination between these three commonly occurring building blocks. A simple matching scheme is proposed as a new tool for rapid attribution of the TOCSY traces originating from the anomeric 1H resonances towards the underlying monosaccharide type. The scheme appears robust with regard to structural variations and fairly tolerant to incidental overlap. Its application provides useful guidance during the subsequent NMR assignment process, as demonstrated with the PS7F polysaccharide from Streptococcus pneumonia. In addition, we show that our scheme affords a clear-cut distinction between the alpha- and beta-epimers of D-mannose-type units, which can be difficult to discriminate by NMR analysis. Application to the N-glycan 100.2 demonstrates the potential and wide applicability of this new discrimination approach.
Collapse
Affiliation(s)
- Katelijne Gheysen
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Universiteit Gent, Krijgslaan 281, S4, 9000 Gent, Belgium
| | | | | | | |
Collapse
|
19
|
D'souza Y, Jones CJP, Bonshek R. Glycoproteins of drusen and drusen-like lesions. J Mol Histol 2007; 39:77-86. [PMID: 17846903 DOI: 10.1007/s10735-007-9130-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 08/08/2007] [Indexed: 11/30/2022]
Abstract
Drusen are a marker of age-related macular degeneration (AMD). Lesions similar to drusen, both in histology and their clinical appearance, are also seen in choroidal tumours, chronic inflammatory and degenerative conditions of the eye, and in mesangiocapillary glomerulonephritis type II (MCGN-II). This study aims to compare the saccharide composition of these drusen-like lesions in the various ocular pathological groups and in MCGN-II. Formalin fixed and paraffin wax embedded tissue from 21 eyes was studied. The histological diagnoses included AMD, retinal detachment, phthisis bulbi following failed retinal detachment surgery, malignant melanoma, long-standing uveitis, glaucoma and MCGN II. Glycosylation was examined using a panel of twenty biotinylated lectins and an avidin-peroxidase DAB-cobalt revealing system, with and without neuraminidase pre-treatment. High mannose, bi/tri-nonbisected and bisected complex N-glycan, N-acetyl glucosaminyl, galactosyl and sialyl residues were found to be expressed by drusen, while treatment with neuraminidase exposed subterminal N-acetyl galactosamine and galactosyl residues. Similar binding patterns were found in the various pathological groups studied. As there was no significant difference in the lectin-binding pattern in drusen in different pathologies, a common pathogenesis or at least a final common pathway for the elaboration of carbohydrate components of drusen is suggested.
Collapse
Affiliation(s)
- Yvonne D'souza
- Academic Unit, Manchester Royal Eye Hospital, Oxford Road, Manchester, M13 9WH, UK
| | | | | |
Collapse
|
20
|
Ueda H, Kojima K, Saitoh T, Ogawa H. Interaction of a lectin from Psathyrella velutina mushroom with N-acetylneuraminic acid. FEBS Lett 1999; 448:75-80. [PMID: 10217413 DOI: 10.1016/s0014-5793(99)00334-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A lectin from the fruiting body of Psathyrella velutina has been used as a specific probe for non-reducing terminal N-acetylglucosamine residues. We reveal in this report that P. velutina lectin recognizes a non-reducing terminal N-acetylneuraminic acid residue in glycoproteins and oligosaccharides. Binding of biotinyl P. velutina lectin to N-acetylneuraminic acid residues was prevented by desialylation of glycoconjugates and was distinguished from the binding to N-acetylglucosamine. Sialooligosaccharides were retarded or bound and eluted with N-acetylglucosamine on a P. velutina lectin column, being differentiated from each other and also from the oligosaccharides with non-reducing terminal N-acetylglucosamine which bound more strongly to the column.
Collapse
Affiliation(s)
- H Ueda
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
Preissner KT, Seiffert D. Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb Res 1998; 89:1-21. [PMID: 9610756 DOI: 10.1016/s0049-3848(97)00298-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- K T Preissner
- Haemostasis Research Unit, Kerckhoff-Klinik, Bad Nauheim, Germany
| | | |
Collapse
|
22
|
Wiese TJ, Dunlap JA, Yorek MA. Effect of L-fucose and D-glucose concentration on L-fucoprotein metabolism in human Hep G2 cells and changes in fucosyltransferase and alpha-L-fucosidase activity in liver of diabetic rats. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1335:61-72. [PMID: 9133643 DOI: 10.1016/s0304-4165(96)00123-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
L-Fucose is a monosaccharide that is present at low concentrations in serum and is a normal constituent of glycoproteins. In some pathological conditions, such as cancer, rheumatoid arthritis, and diabetes, there is an abnormal fucosylation of acute phase serum proteins. Because most serum proteins are produced in the liver, we have examined L-fucose accumulation, metabolism, and secretion of L-fucose-containing proteins in human Hep G2 liver cells. Accumulation of L-fucose by Hep G2 cells approached 3.5 nmol/mg protein after a 48 h incubation. This accumulation appears similar to accumulation in other cells, which we have shown occurs via a specific transport protein. Exogenous L-fucose was incorporated into protein in both O- and N-linked glycosidic linkages. After a 48 h incubation, 61% of the accumulated L-fucose was incorporated into protein and secreted into the medium, whereas 39% of the L-fucose remaining in the cells was incorporated into integral membrane proteins. Utilizing reverse-phase high-performance liquid chromatographic separation of L-[5,6-(3)H]fucose-containing proteins and detection by scintillation counting, we determined that two major fucoproteins and numerous minor fucoproteins were produced and secreted by normal Hep G2 cells. This elution profile was unchanged when glucose-conditioned cells were examined. By size-separating secreted proteins by nondenaturing HPLC we determined that the size of the two major fucoproteins were approximately 60 and approximately 100 kDa. In these studies we also examined the effect of diabetes on hepatic fucosyltransferase and serum alpha-L-fucosidase activity and found that the activity of these enzymes is increased by 40 and 100%, respectively in diabetic rats.
Collapse
Affiliation(s)
- T J Wiese
- Department of Internal Medicine, Veterans Affairs Medical Center, University of Iowa, Iowa City 52246, USA
| | | | | |
Collapse
|
23
|
Clemetson KJ. Blood glycoproteins⁎*~~~~This chapter is dedicated to Prof. R.U. Lemieux who played a major role in awakening a whole generation to the importance of carbohydrate structure in biology. GLYCOPROTEINS II 1997. [DOI: 10.1016/s0167-7306(08)60622-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|