1
|
Abstract
A variant originated from Oldenlandia affinis asparaginyl ligase, OaAEP1-C247A, has emerged as an ideal tool for protein labeling. However, its preparation was laborious and time-consuming. It is recombinantly produced as a zymogen, requiring acid activation and four chromatographic steps; despite these extensive steps, the catalytically active enzyme exhibited only moderate purity. Here, we report a novel preparation protocol, in which the cap and catalytically active core domains are produced as separate entities. The active enzyme can be obtained in two chromatographic steps, immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC), with no acid activation required, thereby shortening the purification procedure from at least 2 days to less than 6 h. In addition to the original C247A mutation which enhanced reaction with various amino nucleophiles, an extra D29E mutation was introduced to prevent self-cleavage, which led to noticeable improvements in homogeneity and activity of the enzyme. Indeed, the resulting "split AEP" (i.e., core domain of OaAEP1-D29E/C247A) exhibited improved catalytic efficiency constant (kcat/KM) that was found to be ∼3-fold higher than that of the original acid-activated counterpart (OaAEP1-C247A). Furthermore, we described a protein labeling protocol that couples the enzymatic reaction with an irreversible chemical transformation, thereby enabling high conversion of labeled protein with a lowered amount of reagent. Precisely, an alternative Asn-Cys-Leu (NCL) recognition sequence was used for substrate recognition. As the byproduct contains an N-terminal cysteine, it can be transformed into an inert 1,2 aminothiol motif by reacting with formylphenyl boronic acid (FPBA). Finally, the opportunities and challenges associated with the use of asparaginyl ligase are discussed.
Collapse
Affiliation(s)
- Muge Ma
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Simon T M Tang
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Matthew T Dickerson
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom.
| |
Collapse
|
2
|
Adelakun N, Parrish J, Chu N. Analyzing protein posttranslational modifications using enzyme-catalyzed expressed protein ligation. Methods Enzymol 2023; 682:319-350. [PMID: 36948706 DOI: 10.1016/bs.mie.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expressed protein ligation (EPL) allows for the attachment of a synthetic peptide into the N- or C-terminus of a recombinant protein fragment to generate a site-specifically modified protein with substantial yields for biochemical and biophysical studies. In this method, multiple posttranslational modifications (PTMs) can be incorporated into a synthetic peptide containing an N-terminal Cysteine, which selectively reacts with a protein C-terminal thioester to afford an amide bond formation. However, the requirement of a Cysteine at the ligation site can limit EPL's potential applications. Here, we describe a method called enzyme-catalyzed EPL, which uses subtiligase to ligate protein thioesters with Cysteine-free peptides. The procedure includes generating protein C-terminal thioester and peptide, performing the enzymatic EPL reaction, and purifying the protein ligation product. We exemplify this method by generating phospholipid phosphatase PTEN with site-specific phosphorylations installed onto its C-terminal tail for biochemical assays.
Collapse
Affiliation(s)
- Niyi Adelakun
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jordan Parrish
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nam Chu
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
3
|
Butts M, Nam Chu. Utilizing a Baculovirus/Insect Cell Expression System and Expressed Protein Ligation (EPL) for Protein Semisynthesis. Curr Protoc 2022; 2:e348. [PMID: 35044726 PMCID: PMC8855479 DOI: 10.1002/cpz1.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein semisynthesis has been used for the chemoselective linking of synthetic peptides and recombinant protein fragments to generate complete native proteins in good yield. The ability to site-selectively incorporate multiple post-translational chemical modifications (PTMs) into proteins via this approach shows great potential for enhancing understanding of the molecular basis of protein function and regulation. Protein semisynthesis, however, often requires high expression efficiency of the recombinant protein fragments (i.e., high expression yield and ability to preserve protein biological functions), which can be hard to achieve for some human enzymes when using bacterial expression systems. Here, we describe how to use a baculovirus/insect cell expression system and a protein semisynthesis strategy known as expressed protein ligation (EPL) to produce workable levels of proteins of interest containing site-specific chemical modifications. The protocol provides detailed guidance for generating protein C-terminal thioesters for use with the EPL reaction, performing the EPL reaction, and purifying the protein ligation product. We exemplify the protocols by generating protein kinase Akt1 with site-specific phosphorylations installed into its C-terminal tail, for kinetic kinase assays. We hope these methods will help increase the use of protein semisynthesis for elucidating the post-translational regulation of human enzymes involved in cell signaling. © 2022 Wiley Periodicals LLC Basic Protocol 1: Generation of the N-terminal protein of interest (POI) fragment containing a C-terminal thioester moiety Basic Protocol 2: Expressed protein ligation (EPL) of the protein thioester with a synthetic peptide and purification of the protein ligation product Basic Protocol 3: Semisynthesis and biochemical analysis of site-specifically phosphorylated Akt1.
Collapse
Affiliation(s)
- Marie Butts
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University; Columbus, OH 43210, USA
| | - Nam Chu
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University; Columbus, OH 43210, USA,Corresponding author:
| |
Collapse
|
4
|
Spiller S, Wippold T, Bellmann-Sickert K, Franz S, Saalbach A, Anderegg U, Beck-Sickinger AG. Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model. Pharmaceutics 2021; 13:pharmaceutics13101597. [PMID: 34683890 PMCID: PMC8539926 DOI: 10.3390/pharmaceutics13101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells. CXCL12 variants with either non-releasable or protease-mediated-release properties were designed and compared. Whereas CXCL12 was stabilized at the N-terminus for protease resistance, a C-terminal linker was designed that allowed for specific cleavage-mediated release by matrix metalloproteinase 9 and 2, since both enzymes are frequently found in wound fluid. These surface adhesive CXCL12 derivatives were produced by expressed protein ligation. Functionality of the modified chemokines was assessed by inositol phosphate accumulation and cell migration assays. Increased migration of keratinocytes and primary mesenchymal stem cells was demonstrated. Immobilization and release were studied for bioresorbable PCL-co-LC scaffolds, and accelerated wound closure was demonstrated in an ex vivo wound healing assay on porcine skin grafts. After 24 h, a significantly improved CXCL12-specific growth stimulation of the epithelial tips was already observed. The presented data display a successful application of protein-coated biomaterials for skin regeneration.
Collapse
Affiliation(s)
- Sabrina Spiller
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
| | - Tom Wippold
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Anja Saalbach
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Ulf Anderegg
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
- Correspondence: (U.A.); (A.G.B.-S.); Tel.: +49-341-972-5881 (U.A.); +49-341-973-6900 (A.G.B.-S.); Fax: +49-341-972-5878 (U.A.); +49-341-973-6909 (A.G.B.-S.)
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
- Correspondence: (U.A.); (A.G.B.-S.); Tel.: +49-341-972-5881 (U.A.); +49-341-973-6900 (A.G.B.-S.); Fax: +49-341-972-5878 (U.A.); +49-341-973-6909 (A.G.B.-S.)
| |
Collapse
|
5
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Spiller S, Panitz N, Limasale YDP, Atallah PM, Schirmer L, Bellmann-Sickert K, Blaszkiewicz J, Koehling S, Freudenberg U, Rademann J, Werner C, Beck-Sickinger AG. Modulation of Human CXCL12 Binding Properties to Glycosaminoglycans To Enhance Chemotactic Gradients. ACS Biomater Sci Eng 2019; 5:5128-5138. [DOI: 10.1021/acsbiomaterials.9b01139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sabrina Spiller
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Nydia Panitz
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Passant Morsi Atallah
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Kathrin Bellmann-Sickert
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Joanna Blaszkiewicz
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Sebastian Koehling
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Annette G. Beck-Sickinger
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Shemsi AM, Khanday FA, Qurashi A, Khalil A, Guerriero G, Siddiqui KS. Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol Adv 2019; 37:357-381. [DOI: 10.1016/j.biotechadv.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/13/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023]
|
8
|
Goulatis LI, Ramanathan R, Shusta EV. Impacts of the -1 Amino Acid on Yeast Production of Protein-Intein Fusions. Biotechnol Prog 2018; 35:e2736. [PMID: 30341810 DOI: 10.1002/btpr.2736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/15/2023]
Abstract
Expressing antibodies as fusions to the non-self-cleaving Mxe GyrA intein allows for site-specific chemical functionalization via expressed protein ligation. It is highly desirable to maximize the yield of functionalizable protein; and previously an evolved intein, 202-08, was identified that could increase protein fusion production in yeast. Given that the -1 amino acid residue upstream of inteins can affect cleavage efficiency, we examined the effects of amino acid variability at this position on 202-08 intein cleavage efficiency and secretion yield. Varying the -1 residue resulted in a wide range of cleavage behaviors with some amino acids yielding substantial autocleaved product that could not be functionalized. Autocleavage was noticeably higher with the 202-08 intein compared with the wild-type Mxe GyrA intein and resulted directly from the catalytic activity of the intein. Refeeding of production cultures with nitrogen base and casamino acids reduced, but did not eliminate autocleavage, while increasing protein-intein production up to seven-fold. Importantly, two amino acids, Gly and Ala, at the -1 position resulted in good cleavage efficiency with no undesirable autocleavage, and can be used in concert with refeeding strategies to increase total functionalizable protein yield for multiple protein fusion partners. Taken together, we describe an optimized yeast expression platform for protein-intein fusions. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2736, 2019.
Collapse
Affiliation(s)
- Loukas I Goulatis
- Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706
| | - Rasika Ramanathan
- Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706
| | - Eric V Shusta
- Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
9
|
Gupta S, Tycko R. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:103-114. [PMID: 29464399 PMCID: PMC5832360 DOI: 10.1007/s10858-017-0162-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15N,13C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.
Collapse
Affiliation(s)
- Sebanti Gupta
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
- National Institutes of Health, Building 5, Room 409, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
10
|
Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0343-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Zernia S, Ott F, Bellmann-Sickert K, Frank R, Klenner M, Jahnke HG, Prager A, Abel B, Robitzki A, Beck-Sickinger AG. Peptide-Mediated Specific Immobilization of Catalytically Active Cytochrome P450 BM3 Variant. Bioconjug Chem 2016; 27:1090-7. [DOI: 10.1021/acs.bioconjchem.6b00074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah Zernia
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Florian Ott
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | | | - Ronny Frank
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Marcus Klenner
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Andrea Prager
- Leibniz-Institute of Surface Modification (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institute of Surface Modification (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Robitzki
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | | |
Collapse
|
12
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
13
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
14
|
Mitchell SF, Lorsch JR. Protein Affinity Purification using Intein/Chitin Binding Protein Tags. Methods Enzymol 2015; 559:111-25. [PMID: 26096506 DOI: 10.1016/bs.mie.2014.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Isolation of highly purified recombinant protein is essential for a wide range of biochemical and biophysical assays. Affinity purification in which a tag is fused to the desired protein and then specifically bound to an affinity column is a widely used method for obtaining protein of high purity. Many of these methods have the drawbacks of either leaving the recombinant tag attached to the protein or requiring the addition of a protease which then must be removed by further chromatographic steps. The fusion of a self-cleaving intein sequence followed by a chitin-binding domain (CBD) allows for one-step chromatographic purification of an untagged protein through the thiol-catalyzed cleavage of the intein sequence from the desired protein. The affinity purification is highly specific and can yield pure protein without any undesired N- or C-terminal extensions. This protocol is based on the IMPACT™-System (intein mediated purification with an affinity chitin-binding tag) marketed by New England Biolabs.
Collapse
Affiliation(s)
- Sarah F Mitchell
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda, MD, USA.
| |
Collapse
|
15
|
Beck-Sickinger AG, Panitz N. Semi-synthesis of chemokines. Curr Opin Chem Biol 2014; 22:100-7. [DOI: 10.1016/j.cbpa.2014.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 01/04/2023]
|
16
|
Lian Q, Cao H, Wang F. The Cost-Efficiency Realization in the Escherichia coli-Based Cell-Free Protein Synthesis Systems. Appl Biochem Biotechnol 2014; 174:2351-67. [DOI: 10.1007/s12010-014-1143-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/06/2014] [Indexed: 01/08/2023]
|
17
|
Abstract
Expressed protein ligation (EPL) combines two methods to ligate a synthetic peptide to a recombinant protein. Native chemical ligation (NCL) is a process in which two synthesized peptides are ligated by reaction of a C-terminal thioester on one peptide with an N-terminal cysteine residue of another protein. The chemistry of inteins, self-excising protein fragments that ligate the surrounding protein back together, creates isolatable intermediates with the two chemical groups necessary for NCL, a C-terminal thioester and an N-terminal cysteine residue. This technique allows for the incorporation of synthetic amino acids, radiolabeled amino acids, and fluorescent moieties at specific locations in a protein. It has the advantage of allowing attachment of such synthetic peptides to the termini of a recombinant protein, allowing for the synthesis of large proteins with modified amino acids. This technique utilizes the IMPACT(TM)-System created by New England Biolabs, who provide a variety of vectors in which the multicloning site is directly upstream of an intein sequence fused to a chitin-binding domain (CBD). The CBD binds tightly and specifically to chitin beads, allowing for an efficient one-step purification. This step can be used to obtain highly purified proteins (see Protein Affinity Purification using Intein/Chitin Binding Protein Tags). After purification of the recombinant protein, cleavage from the intein is achieved through the addition of a reactive thiol compound, usually sodium 2-mercaptoethanesulfonate (MESNA) (see also Proteolytic affinity tag cleavage). This reaction creates a protein with a C-terminal thioester that can then react with a peptide containing an N-terminal cysteine residue, ligating the two proteins via a peptide bond.
Collapse
|
18
|
Basu A, Mishra B, Dey S, Leong SSJ. Intein based bioprocess for production of a synthetic antimicrobial peptide: an alternative route to solid phase peptide synthesis. RSC Adv 2014. [DOI: 10.1039/c4ra04056b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intein based bioprocessing strategy for producing antimicrobial peptide candidate was found to be more sustainable compared to solid phase peptide synthesis strategy (SPPS).
Collapse
Affiliation(s)
- Anindya Basu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- , Singapore
| | - Biswajit Mishra
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- , Singapore
| | - Sharmistha Dey
- Department of Biophysics
- All India Institute of Medical Sciences
- New Delhi, India
| | - Susanna Su Jan Leong
- Singapore Institute of Technology
- , Singapore
- Department of Biochemistry
- Yong Loo Lin School of Medicine
- National University of Singapore
| |
Collapse
|
19
|
Wallat JD, Rose KA, Pokorski JK. Proteins as substrates for controlled radical polymerization. Polym Chem 2014. [DOI: 10.1039/c3py01193c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Qi Y, Chilkoti A. Growing polymers from peptides and proteins: a biomedical perspective. Polym Chem 2014. [DOI: 10.1039/c3py01089a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Stuhr-Hansen N, Wilbek TS, Strømgaard K. Preparation of Peptide Thioesters through Fmoc-Based Solid-Phase Peptide Synthesis by Using Amino Thioesters. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Hellstrand E, Kukora S, Shuman CF, Steenbergen S, Thulin E, Kohli A, Krouse B, Linse S, Åkerfeldt KS. Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal inter-domain electrostatic repulsion. FEBS J 2013; 280:2675-87. [DOI: 10.1111/febs.12269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Erik Hellstrand
- Biophysical Chemistry, Chemical Centre; Lund University; Sweden
| | | | | | | | - Eva Thulin
- Biochemistry and Structural Biology, Chemical Centre; Lund University; Sweden
| | - Anita Kohli
- Department of Chemistry; Haverford College; PA; USA
| | - Beth Krouse
- Department of Chemistry; Haverford College; PA; USA
| | - Sara Linse
- Biochemistry and Structural Biology, Chemical Centre; Lund University; Sweden
| | | |
Collapse
|
23
|
Béhar G, Bellinzoni M, Maillasson M, Paillard-Laurance L, Alzari PM, He X, Mouratou B, Pecorari F. Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: characterization of anti-immunoglobulin G Affitins. Protein Eng Des Sel 2013; 26:267-75. [PMID: 23315487 DOI: 10.1093/protein/gzs106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Engineered protein scaffolds have received considerable attention as alternatives to antibodies in both basic and applied research, as they can offer superior biophysical properties often associated with a simpler molecular organization. Sac7d has been demonstrated as an effective scaffold for molecular recognition. Here, we used the initial L1 'flat surface' library constructed by randomization of 14 residues, to identify ligands specific for human immunoglobulin G. To challenge the plasticity of the Sac7d protein scaffold, we designed the alternative L2 'flat surface & loops' library whereof only 10 residues are randomized. Representative binders (Affitins) of the two libraries exhibited affinities in the low nanomolar range and were able to recognize different epitopes within human immunoglobulin G. These Affitins were stable up to pH 12 while largely conserving other favorable properties of Sac7d protein, such as high expression yields in Escherichia coli, solubility, thermal stability up to 80.7°C, and acidic stability (pH 0). In agreement with our library designs, mutagenesis study revealed two distinct binding areas, one including loops. Together, our results indicate that the Sac7d scaffold tolerates alternative library designs, which further expands the diversity of Affitins and may provide a general way to create tailored affinity tools for demanding applications.
Collapse
Affiliation(s)
- Ghislaine Béhar
- Université de Nantes, UMR CNRS 6204, Ingénierie de la reconnaissance, F-44322 Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Baumann L, Steinhagen M, Beck-Sickinger AG. Preparation of C-terminally modified chemokines by expressed protein ligation. Methods Mol Biol 2013; 1047:103-118. [PMID: 23943481 DOI: 10.1007/978-1-62703-544-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to link structural features on a molecular level to the function of chemokines, site-specific modification strategies are strongly required. These can be used to incorporate fluorescent dyes and/or physical probes to allow investigations in a wide range of biological and physical techniques, e.g., nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, fluorescence resonance energy transfer (FRET), or fluorescence correlation spectroscopy (FCS). Only a limited number of functional groups within the 20 canonical amino acids allow ligation strategies that can be helpful to introduce novel functionalities, which in turn expand the scope of chemoselective and orthogonal reactivity of (semi)synthetic chemokines. In the present chapter we mainly focus on the fabulous history of native chemical ligation (NCL) and provide a general protocol for the preparation of C-terminally modified SDF-1α including tips and tricks for practical work. We believe that this protocol can be easily adapted to other chemokines and many proteins in general.
Collapse
Affiliation(s)
- Lars Baumann
- Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
25
|
Barraud P, Allain FHT. Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. JOURNAL OF BIOMOLECULAR NMR 2013; 55:119-38. [PMID: 23247503 DOI: 10.1007/s10858-012-9696-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/11/2012] [Indexed: 05/21/2023]
Abstract
Human hnRNP A1 is a multi-functional protein involved in many aspects of nucleic-acid processing such as alternative splicing, micro-RNA biogenesis, nucleo-cytoplasmic mRNA transport and telomere biogenesis and maintenance. The N-terminal region of hnRNP A1, also named unwinding protein 1 (UP1), is composed of two closely related RNA recognition motifs (RRM), and is followed by a C-terminal glycine rich region. Although crystal structures of UP1 revealed inter-domain interactions between RRM1 and RRM2 in both the free and bound form of UP1, these interactions have never been established in solution. Moreover, the relative orientation of hnRNP A1 RRMs is different in the free and bound crystal structures of UP1, raising the question of the biological significance of this domain movement. In the present study, we have used NMR spectroscopy in combination with segmental isotope labeling techniques to carefully analyze the inter-RRM contacts present in solution and subsequently determine the structure of UP1 in solution. Our data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein. This strongly supports the idea that the two RRMs of hnRNP A1 have a single defined relative orientation which is the conformation previously observed in the bound form and now observed in solution using NMR. It is likely that the conformation in the crystal structure of the free form is a less stable form induced by crystal contacts. Importantly, the relative orientation of the RRMs in proteins containing multiple-RRMs strongly influences the RNA binding topologies that are practically accessible to these proteins. Indeed, RRM domains are asymmetric binding platforms contacting single-stranded nucleic acids in a single defined orientation. Therefore, the path of the nucleic acid molecule on the multiple RRM domains is strongly dependent on whether the RRMs are interacting with each other. The different nucleic acid recognition modes by multiple-RRM domains are briefly reviewed and analyzed on the basis of the current structural information.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | |
Collapse
|
26
|
Bielski R, Witczak Z. Strategies for Coupling Molecular Units if Subsequent Decoupling Is Required. Chem Rev 2012; 113:2205-43. [DOI: 10.1021/cr200338q] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Roman Bielski
- Value Recovery, Inc., 510 Heron Drive, Suite 301, Bridgeport, New Jersey
08014, United States
| | - Zbigniew Witczak
- Department
of Pharmaceutical
Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, Pennsylvania 18766, United States
| |
Collapse
|
27
|
Hemantha HP, Narendra N, Sureshbabu VV. Total chemical synthesis of polypeptides and proteins: chemistry of ligation techniques and beyond. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Abstract
The main benefit of natural peptides, peptide analogs and newly designed peptides as therapeutics, lies in their high selectivity and affinity, which are frequently in the nanomolar range. New drugs targeting protein–protein interactions often require larger interaction sites than small molecules can offer. Thus, many peptidic drugs are already applied in therapy at the current state. The next generation of peptide-based therapeutic agents is currently on its way from basic research to clinical studies and eventually to the pharmaceutical market. Development of more robust and long-lasting drugs owing to well-known and new stabilization strategies is yielding novel and continuously improving peptide drugs. The introduction of smart linkers that exhibit stability towards blood plasma but intracellular lability will lead to target-oriented activity, which might successfully decrease side effects. In this review, peptidic therapeutics on the market, in clinical studies and some of those in basic research are characterized. Stabilization strategies and intelligent linkers are discussed with respect to their use in peptide drug therapy.
Collapse
|
29
|
Gao XC, Zhou CJ, Zhou ZR, Wu M, Cao CY, Hu HY. The C-terminal helices of heat shock protein 70 are essential for J-domain binding and ATPase activation. J Biol Chem 2012; 287:6044-52. [PMID: 22219199 DOI: 10.1074/jbc.m111.294728] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The J-domain co-chaperones work together with the heat shock protein 70 (HSP70) chaperone to regulate many cellular events, but the mechanism underlying the J-domain-mediated HSP70 function remains elusive. We studied the interaction between human-inducible HSP70 and Homo sapiens J-domain protein (HSJ1a), a J domain and UIM motif-containing co-chaperone. The J domain of HSJ1a shares a conserved structure with other J domains from both eukaryotic and prokaryotic species, and it mediates the interaction with and the ATPase cycle of HSP70. Our in vitro study corroborates that the N terminus of HSP70 including the ATPase domain and the substrate-binding β-subdomain is not sufficient to bind with the J domain of HSJ1a. The C-terminal helical α-subdomain of HSP70, which was considered to function as a lid of the substrate-binding domain, is crucial for binding with the J domain of HSJ1a and stimulating the ATPase activity of HSP70. These fluctuating helices are likely to contribute to a proper conformation of HSP70 for J-domain binding other than directly bind with the J domain. Our findings provide an alternative mechanism of allosteric activation for functional regulation of HSP70 by its J-domain co-chaperones.
Collapse
Affiliation(s)
- Xue-Chao Gao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
30
|
Monbaliu JCM, Katritzky AR. Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun (Camb) 2012; 48:11601-22. [DOI: 10.1039/c2cc34434c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Schuler B, Müller-Späth S, Soranno A, Nettels D. Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol Biol 2012; 896:21-45. [PMID: 22821515 DOI: 10.1007/978-1-4614-3704-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by a large degree of conformational heterogeneity. In such cases, classical experimental methods often yield only mean values, averaged over the entire ensemble of molecules. The microscopic distributions of conformations, trajectories, or sequences of events often remain unknown, and with them the underlying molecular mechanisms. Signal averaging can be avoided by observing individual molecules. A particularly versatile method is highly sensitive fluorescence detection. In combination with Förster resonance energy transfer (FRET), distances and conformational dynamics can be investigated in single molecules. This chapter introduces the practical aspects of applying confocal single-molecule FRET experiments to the study of IDPs.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
32
|
Abstract
Nuclear Magnetic Resonance (NMR) techniques are widely used in the drug discovery process. The primary feature exploited in these investigations is the large difference in mass between drugs and receptors (usually proteins) and the effect this has on the rotational or translational correlation times for drugs bound to their targets. Many NMR parameters, such as the diffusion coefficient, spin diffusion, nuclear Overhauser enhancement, and transverse and longitudinal relaxation times, are strong functions of either the overall tumbling or translation of molecules in solution. This has led to the development of a wide variety of NMR techniques applicable to the elucidation of protein and nucleic acid structure in solution, the screening of drug candidates for binding to a target of choice, and the study of the conformational changes which occur in a target upon drug binding. High-throughput screening by NMR methods has recently received a boost from the introduction of sophisticated computational techniques for reducing the time needed for the acquisition of the primary NMR data for multidimensional studies.
Collapse
Affiliation(s)
- Laurel O Sillerud
- Department of Biochemistry and Molecular Biology, UNM HDC, University of New Mexico, Albuquerque, NM, USA.
| | | |
Collapse
|
33
|
Qu Z, Muthukrishnan S, Urlam MK, Haller CA, Jordan SW, Kumar VA, Marzec UM, Elkasabi Y, Lahann J, Hanson SR, Chaikof EL. A biologically active surface enzyme assembly that attenuates thrombus formation. ADVANCED FUNCTIONAL MATERIALS 2011; 21:4736-4743. [PMID: 23532366 PMCID: PMC3606904 DOI: 10.1002/adfm.201101687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Activation of hemostatic pathways by blood-contacting materials remains a major hurdle in the development of clinically durable artificial organs and implantable devices. We postulate that surface-induced thrombosis may be attenuated by the reconstitution onto blood contacting surfaces of bioactive enzymes that regulate the production of thrombin, a central mediator of both clotting and platelet activation cascades. Thrombomodulin (TM), a transmembrane protein expressed by endothelial cells, is an established negative regulator of thrombin generation in the circulatory system. Traditional techniques to covalently immobilize enzymes on solid supports may modify residues contained within or near the catalytic site, thus reducing the bioactivity of surface enzyme assemblies. In this report, we present a molecular engineering and bioorthogonal chemistry approach to site-specifically immobilize a biologically active recombinant human TM fragment onto the luminal surface of small diameter prosthetic vascular grafts. Bioactivity and biostability of TM modified grafts is confirmed in vitro and the capacity of modified grafts to reduce platelet activation is demonstrated using a non-human primate model. These studies indicate that molecularly engineered interfaces that display TM actively limit surface-induced thrombus formation.
Collapse
Affiliation(s)
- Zheng Qu
- Departments of Biomedical Engineering and Surgery, Georgia Institute of Technology and Emory University Atlanta, GA 30322 (USA)
| | - Sharmila Muthukrishnan
- Departments of Biomedical Engineering and Surgery, Georgia Institute of Technology and Emory University Atlanta, GA 30322 (USA)
| | - Murali K. Urlam
- Departments of Biomedical Engineering and Surgery, Georgia Institute of Technology and Emory University Atlanta, GA 30322 (USA)
| | - Carolyn A. Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired Engineering of Harvard University Boston, MA 02115 (USA)
| | - Sumanas W. Jordan
- Departments of Biomedical Engineering and Surgery, Georgia Institute of Technology and Emory University Atlanta, GA 30322 (USA)
| | - Vivek A. Kumar
- Departments of Biomedical Engineering and Surgery, Georgia Institute of Technology and Emory University Atlanta, GA 30322 (USA)
| | - Ulla M. Marzec
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 (USA)
| | - Yaseen Elkasabi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Joerg Lahann
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Stephen R. Hanson
- Oregon National Primate Research Center, Oregon Health and Science University Beaverton, OR 97006 (USA)
| | - Elliot L. Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired Engineering of Harvard University Boston, MA 02115 (USA)
| |
Collapse
|
34
|
Pichert A, Samsonov SA, Theisgen S, Thomas L, Baumann L, Schiller J, Beck-Sickinger AG, Huster D, Pisabarro MT. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Glycobiology 2011; 22:134-45. [PMID: 21873605 PMCID: PMC3230280 DOI: 10.1093/glycob/cwr120] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG–protein systems.
Collapse
Affiliation(s)
- Annelie Pichert
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bellmann-Sickert K, Baumann L, Beck-Sickinger AG. Selective labelling of stromal cell-derived factor 1α with carboxyfluorescein to study receptor internalisation. J Pept Sci 2011; 16:568-74. [PMID: 20862724 DOI: 10.1002/psc.1228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SDF1α plays an important role in the regeneration of injured tissue after ischemia or stroke by inducing the migration of progenitor cells. In order to study the function of this therapeutically relevant chemokine site-specific protein labelling is of great interest. However, modification of SDF1α is complicated because of its complex tertiary structure. Here, we describe the first site-specific fluorescent modification of SDF1α by EPL. We recombinantly expressed SDF1α (1-49) by intein-mediated protein expression. The C-terminal peptide SDF1α (50-68) was synthesised by SPPS and selectively labelled with carboxyfluorescein at Lys(56). In a cell migration assay, M-[K(56)(CF)]SDF1α showed a clear potency to induce chemotaxis of human T-cell leukaemia cells. Microscopic analysis on HEK293 cells transfected with the CXCR4 revealed specific binding of the fluorescent ligand. Furthermore, receptor-induced internalisation of the ligand could be visualised. These results show that site-specific modification of SDF1α yields in a biologically functional molecule that allows the characterisation of CXCR4 production of cells on a molecular level.
Collapse
|
36
|
Schilling CI, Jung N, Biskup M, Schepers U, Bräse S. Bioconjugation via azide–Staudinger ligation: an overview. Chem Soc Rev 2011; 40:4840-71. [DOI: 10.1039/c0cs00123f] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Byun E, Kim J, Kang SM, Lee H, Bang D, Lee H. Surface PEGylation via Native Chemical Ligation. Bioconjug Chem 2010; 22:4-8. [DOI: 10.1021/bc100285p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eunkyoung Byun
- Department of Chemistry, KAIST Institute for BioCentury and NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea, and Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120-749, Korea
| | - Jangbae Kim
- Department of Chemistry, KAIST Institute for BioCentury and NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea, and Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120-749, Korea
| | - Sung Min Kang
- Department of Chemistry, KAIST Institute for BioCentury and NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea, and Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120-749, Korea
| | - Hyukjin Lee
- Department of Chemistry, KAIST Institute for BioCentury and NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea, and Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120-749, Korea
| | - Duhee Bang
- Department of Chemistry, KAIST Institute for BioCentury and NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea, and Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120-749, Korea
| | - Haeshin Lee
- Department of Chemistry, KAIST Institute for BioCentury and NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea, and Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120-749, Korea
| |
Collapse
|
38
|
Buchinger E, Aachmann FL, Aranko AS, Valla S, Skjåk-Braek G, Iwaï H, Wimmer R. Use of protein trans-splicing to produce active and segmentally (2)H, (15)N labeled mannuronan C5-epimerase AlgE4. Protein Sci 2010; 19:1534-43. [PMID: 20552686 DOI: 10.1002/pro.432] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alginate epimerases are large multidomain proteins capable of epimerising C5 on beta-D-mannuronic acid (M) turning it into alpha-L-guluronic acid (G) in a polymeric alginate. Azotobacter vinelandii secretes a family of seven epimerases, each of which is capable of producing alginates with characteristic G distribution patterns. All seven epimerases consist of two types of modules, denoted A and R, in varying numbers. Attempts to study these enzymes with solution-state NMR are hampered by their size-the smallest epimerase, AlgE4, consisting of one A- and one R-module, is 58 kDa, resulting in heavy signal overlap impairing the interpretation of NMR spectra. Thus we obtained segmentally (2)H, (15)N labeled AlgE4 isotopomeres (A-[(2)H, (15)N]-R and [(2)H, (15)N]-A-R) by protein trans-splicing using the naturally split intein of Nostoc punctiforme. The NMR spectra of native AlgE4 and the ligated versions coincide well proving the conservation of protein structure. The activity of the ligated AlgE4 was verified by two different enzyme activity assays, demonstrating that ligated AlgE4 displays the same catalytic activity as wild-type AlgE4.
Collapse
Affiliation(s)
- Edith Buchinger
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg DK-9000, Denmark
| | | | | | | | | | | | | |
Collapse
|
39
|
Clark KM, Yu Y, Marshall NM, Sieracki NA, Nilges MJ, Blackburn NJ, van der Donk WA, Lu Y. Transforming a blue copper into a red copper protein: engineering cysteine and homocysteine into the axial position of azurin using site-directed mutagenesis and expressed protein ligation. J Am Chem Soc 2010; 132:10093-101. [PMID: 20608676 DOI: 10.1021/ja102632p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interactions of the axial ligand with its blue copper center are known to be important in tuning spectroscopic and redox properties of cupredoxins. While conversion of the blue copper center with a weak axial ligand to a green copper center containing a medium strength axial ligand has been demonstrated in cupredoxins, converting the blue copper center to a red copper center with a strong axial ligand has not been reported. Here we show that replacing Met121 in azurin from Pseudomonas aeruginosa with Cys caused an increased ratio (R(L)) of absorption at 447 nm over that at 621 nm. Whereas no axial Cu-S(Cys121) interaction in Met121Cys was detectable by extended X-ray absorption fine structure (EXAFS) spectroscopy at pH 5, similar to what was observed in native azurin with Met121 as the axial ligand, the Cu-S(Cys121) interaction at 2.74 A is clearly visible at higher pH. Despite the higher R(L) and stronger axial Cys121 interaction with Cu(II) ion, the Met121Cys variant remains largely a type 1 copper protein at low pH (with hyperfine coupling constant A( parallel) = 54 x 10(-4) cm(-1) at pH 4 and 5), or distorted type 1 or green copper protein at high pH (A(parallel) = 87 x 10(-4) cm(-1) at pH 8 and 9), attributable to the relatively long distance between the axial ligand and copper and the constraint placed by the protein scaffold. To shorten the distance between axial ligand and copper, we replaced Met121 with a nonproteinogenic amino acid homocysteine that contains an extra methylene group, resulting in a variant whose spectra (R(L)= 1.5, and A(parallel) = 180 x 10(-4) cm(-1)) and Cu-S(Cys) distance (2.22 A) are very similar to those of the red copper protein nitrosocyanin. Replacing Met121 with Cys or homocysteine resulted in lowering of the reduction potential from 222 mV in the native azurin to 95 +/- 3 mV for Met121Cys azurin and 113 +/- 6 mV for Met121Hcy azurin at pH 7. The results strongly support the "coupled distortion" model that helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of using unnatural amino acids to address critical chemical biological questions.
Collapse
Affiliation(s)
- Kevin M Clark
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Identification of a potential modification site in human stromal cell-derived factor-1. Biopolymers 2010; 94:771-8. [DOI: 10.1002/bip.21465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Madl T, Gabel F, Sattler M. NMR and small-angle scattering-based structural analysis of protein complexes in solution. J Struct Biol 2010; 173:472-82. [PMID: 21074620 DOI: 10.1016/j.jsb.2010.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 01/14/2023]
Abstract
Structural analysis of multi-domain protein complexes is a key challenge in current biology and a prerequisite for understanding the molecular basis of essential cellular processes. The use of solution techniques is important for characterizing the quaternary arrangements and dynamics of domains and subunits of these complexes. In this respect solution NMR is the only technique that allows atomic- or residue-resolution structure determination and investigation of dynamic properties of multi-domain proteins and their complexes. As experimental NMR data for large protein complexes are sparse, it is advantageous to combine these data with additional information from other solution techniques. Here, the utility and computational approaches of combining solution state NMR with small-angle X-ray and Neutron scattering (SAXS/SANS) experiments for structural analysis of large protein complexes is reviewed. Recent progress in experimental and computational approaches of combining NMR and SAS are discussed and illustrated with recent examples from the literature. The complementary aspects of combining NMR and SAS data for studying multi-domain proteins, i.e. where weakly interacting domains are connected by flexible linkers, are illustrated with the structural analysis of the tandem RNA recognition motif (RRM) domains (RRM1-RRM2) of the human splicing factor U2AF65 bound to a nine-uridine (U9) RNA oligonucleotide.
Collapse
Affiliation(s)
- Tobias Madl
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
42
|
Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci U S A 2010; 107:17563-8. [PMID: 20876143 DOI: 10.1073/pnas.1006340107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.
Collapse
|
43
|
Diezmann F, Eberhard H, Seitz O. Native chemical ligation in the synthesis of internally modified oligonucleotide-peptide conjugates. Biopolymers 2010; 94:397-404. [PMID: 20593471 DOI: 10.1002/bip.21440] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peptide-oligonucleotide conjugates have frequently been synthesized to improve cellular delivery of antisense or antigene compounds, to allow the immobilization of peptide and protein conjugates on DNA arrays, or to decorate nucleic acid architectures with peptide functions. In such applications, the site of conjugation is of little importance, and peptides have predominantly been appended to one of the terminal ends of the oligonucleotide by using an oxime-, thioether-, or disulfide-linkage or native chemical ligation. We, herein, demonstrate the first coupling of peptides to sequence internal sites. This attachment mode provides better control of the spatial arrangement of peptides presented by self-assembled nucleic acid scaffolds. Internal modification requires special phosphoramidite building blocks that can be used in automated DNA synthesis. For this purpose, Fmoc/StBu-protected cysteine was attached via an aminopropargyl linker to the C5-position of uridine. The rigid triple bond conferred a high reactivity in native chemical ligation reactions of 5-6mer peptide thioesters with up to 15 nucleotides long oligonucleotides. The desired peptide-oligonucleotide conjugates were obtained in high yields after purification. UV melt experiments revealed that the peptide modification does not hamper nucleic acid hybridization. This finding marked an important step in our research program devoted to studies of multivalent presentation of peptides via modular assembly of nucleic acid complexes.
Collapse
Affiliation(s)
- Franziska Diezmann
- Institute of Chemistry, Humboldt-University of Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
44
|
Semisynthesis of a Protein with Cholesterol at the C-Terminal, Targeted to the Cell Membrane of Live Cells. Protein J 2010; 29:493-500. [DOI: 10.1007/s10930-010-9278-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
46
|
Rohde H, Seitz O. Invited reviewligation-Desulfurization: A powerful combination in the synthesis of peptides and glycopeptides. Biopolymers 2010; 94:551-9. [DOI: 10.1002/bip.21442] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Skrisovska L, Schubert M, Allain FHT. Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. JOURNAL OF BIOMOLECULAR NMR 2010; 46:51-65. [PMID: 19690964 DOI: 10.1007/s10858-009-9362-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/17/2009] [Indexed: 05/19/2023]
Abstract
In the last 15 years substantial advances have been made to place isotope labels in native and glycosylated proteins for NMR studies and structure determination. Key developments include segmental isotope labeling using Native Chemical Ligation, Expressed Protein Ligation and Protein Trans-Splicing. These advances are pushing the size limit of NMR spectroscopy further making larger proteins accessible for this technique. It is just emerging that segmental isotope labeling can be used to define inter-domain interactions in NMR structure determination. Labeling of post-translational modified proteins like glycoproteins remains difficult but some promising developments were recently achieved. Key achievements are segmental and site-specific labeling schemes that improve resonance assignment and structure determination of the glycan moiety. We adjusted the focus of this perspective article to concentrate on the NMR applications based on recent developments rather than on labeling methods themselves to illustrate the considerable potential for biomolecular NMR.
Collapse
Affiliation(s)
- Lenka Skrisovska
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
48
|
Nara SJ, Valgimigli L, Pedulli GF, Pratt DA. Tyrosine Analogues for Probing Proton-Coupled Electron Transfer Processes in Peptides and Proteins. J Am Chem Soc 2009; 132:863-72. [DOI: 10.1021/ja907921w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susheel J. Nara
- Department of Chemistry, Queen’s University, 90 Bader Lane, Ontario K7L 3N6, Canada, and Dipartimento di Chimica Organica “A. Mangini” Via San Giacomo 11, Università di Bologna, 40126, Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry, Queen’s University, 90 Bader Lane, Ontario K7L 3N6, Canada, and Dipartimento di Chimica Organica “A. Mangini” Via San Giacomo 11, Università di Bologna, 40126, Bologna, Italy
| | - Gian Franco Pedulli
- Department of Chemistry, Queen’s University, 90 Bader Lane, Ontario K7L 3N6, Canada, and Dipartimento di Chimica Organica “A. Mangini” Via San Giacomo 11, Università di Bologna, 40126, Bologna, Italy
| | - Derek A. Pratt
- Department of Chemistry, Queen’s University, 90 Bader Lane, Ontario K7L 3N6, Canada, and Dipartimento di Chimica Organica “A. Mangini” Via San Giacomo 11, Università di Bologna, 40126, Bologna, Italy
| |
Collapse
|
49
|
Salwiczek M, Samsonov S, Vagt T, Nyakatura E, Fleige E, Numata J, Cölfen H, Pisabarro M, Koksch B. Position-Dependent Effects of Fluorinated Amino Acids on the Hydrophobic Core Formation of a Heterodimeric Coiled Coil. Chemistry 2009; 15:7628-36. [DOI: 10.1002/chem.200802136] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
|