1
|
Li ZJ, Yang DD, Wei ZY, Huang J, Chi YQ, Lu YX, Yin FW. Reduction of nicotine content in tobacco through microbial degradation: research progress and potential applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:144. [PMID: 39695820 DOI: 10.1186/s13068-024-02593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Originally native to South America, tobacco and is now distributed worldwide as a major cash crop. Nicotine is the main harmful component of tobacco leaves, cigarette smoke and tobacco waste, which severely affects not only the flavor of the tobacco leaf, but also causes great damage to human health. As the anti-smoking movement continued to grow since the 1950s, and consumers become more aware of their health and environmental protection, the world tobacco industry has been committed to research, develop and produce low nicotine cigarette products with relatively low risk to human health. Among various approaches, the use of microorganisms to reduce nicotine content and improve tobacco quality has become one of the most promising methods. Due to increasing interest in nicotine-degrading microorganisms (NDMs), this article reviews recent reports on NDMs, nicotine-degrading enzymes, regulation of nicotine-degrading bacterial consortia and optimization of fermentation conditions, aiming to provide updated references for the in-depth research and application of microorganisms for the degradation of nicotine.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, People's Republic of China
| | - Dong-Dong Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, People's Republic of China
| | - Zhi-Yun Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, People's Republic of China
| | - Jie Huang
- School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China
| | - Yi-Qian Chi
- School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China
| | - You-Xuan Lu
- School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China
| | - Feng-Wei Yin
- School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China.
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Schachinger F, Ma S, Ludwig R. Redox potential of FAD-dependent glucose dehydrogenase. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Mu Y, Chen Q, Parales RE, Lu Z, Hong Q, He J, Qiu J, Jiang J. Bacterial catabolism of nicotine: Catabolic strains, pathways and modules. ENVIRONMENTAL RESEARCH 2020; 183:109258. [PMID: 32311908 DOI: 10.1016/j.envres.2020.109258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Nicotine, the major alkaloid in tobacco, is a toxic, carcinogenic, and addictive compound. In recent years, nicotine catabolism in prokaryotes, including the catabolic pathways for its degradation and the catabolic genes that encode the enzymes of these pathways, have been systemically investigated. In this review, the three known pathways for nicotine catabolism in bacteria are summarized: the pyridine pathway, the pyrrolidine pathway, and a variation of the pyridine and pyrrolidine pathway (VPP pathway). The three nicotine catabolic pathways appear to have evolved separately in three distantly related lineages of bacteria. However, the general mechanism for the breakdown of the nicotine molecule in all three pathways is conserved and can be divided into six major enzymatic steps or catabolic modules that involve hydroxylation of the pyridine ring, dehydrogenation of the pyrrolidine ring, cleavage of the side chain, cleavage of the pyridine ring, dehydrogenation of the side chain, and deamination of pyridine ring-lysis products. In addition to summarizing our current understanding of nicotine degradation pathways, we identified several potential nicotine-degrading bacteria whose genome sequences are in public databases by comparing the sequences of conserved catabolic enzymes. Finally, several uncharacterized genes that are colocalized with nicotine degradation genes and are likely to be involved in nicotine catabolism, including regulatory genes, methyl-accepting chemotaxis protein genes, transporter genes, and cofactor genes are discussed. This review provides a comprehensive overview of the catabolism of nicotine in prokaryotes and highlights aspects of the process that still require additional research.
Collapse
Affiliation(s)
- Yang Mu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Qing Chen
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian He
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Guo X, Xie C, Wang L, Li Q, Wang Y. Biodegradation of persistent environmental pollutants by Arthrobacter sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8429-8443. [PMID: 30706270 DOI: 10.1007/s11356-019-04358-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/23/2019] [Indexed: 05/17/2023]
Abstract
Persistent environmental pollutants are a growing problem around the world. The effective control of the pollutants is of great significance for human health. Some microbes, especially Arthrobacter, can degrade pollutants into nontoxic substances in various ways. Here, we review the biological properties of Arthrobacter adapting to a variety of environmental stresses, including starvation, hypertonic and hypotonic condition, oxidative stress, heavy metal stress, and low-temperature stress. Furthermore, we categorized the Arthrobacter species that can degrade triazines, organophosphorus, alkaloids, benzene, and its derivatives. Metabolic pathways behind the various biodegradation processes are further discussed. This review will be a helpful reference for comprehensive utilization of Arthrobacter species to tackle environmental pollutants.
Collapse
Affiliation(s)
- Xiaohong Guo
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Chengyun Xie
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lijuan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Mihăşan M, Babii C, Aslebagh R, Channaveerappa D, Dupree EJ, Darie CC. Exploration of Nicotine Metabolism in Paenarthrobacter nicotinovorans pAO1 by Microbial Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:515-529. [DOI: 10.1007/978-3-030-15950-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
|
7
|
Proteomics based analysis of the nicotine catabolism in Paenarthrobacter nicotinovorans pAO1. Sci Rep 2018; 8:16239. [PMID: 30390017 PMCID: PMC6214936 DOI: 10.1038/s41598-018-34687-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Paenarthrobacter nicotinovorans is a nicotine-degrading microorganism that shows a promising biotechnological potential for the production of compounds with industrial and pharmaceutical importance. Its ability to use nicotine was linked to the presence of the catabolic megaplasmid pAO1. Although extensive work has been performed on the molecular biology of nicotine degradation in this bacterium, only half of the genes putatively involved have been experimentally linked to nicotine. In the current approach, we used nanoLC-MS/MS to identify a total of 801 proteins grouped in 511 non-redundant protein clusters when P. nicotinovorans was grown on citrate, nicotine and nicotine and citrate as the only carbon sources. The differences in protein abundance showed that deamination is preferred when citrate is present. Several putative genes from the pAO1 megaplasmid have been shown to have a nicotine-dependent expression, including a hypothetical polyketide cyclase. We hypothesize that the enzyme would hydrolyze the N1-C6 bond from the pyridine ring with the formation of α-keto- glutaramate. Two chromosomally-encoded proteins, a malate dehydrogenase, and a D-3-phosphoglycerate dehydrogenase were shown to be strongly up-regulated when nicotine was the sole carbon source and could be related to the production the α-keto-glutarate. The data have been deposited to the ProteomeXchange with identifier PXD008756.
Collapse
|
8
|
Fitzpatrick PF. The enzymes of microbial nicotine metabolism. Beilstein J Org Chem 2018; 14:2295-2307. [PMID: 30202483 PMCID: PMC6122326 DOI: 10.3762/bjoc.14.204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Because of nicotine's toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon-nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
9
|
Novel Metabolic Pathway for N-Methylpyrrolidone Degradation in Alicycliphilus sp. Strain BQ1. Appl Environ Microbiol 2017; 84:AEM.02136-17. [PMID: 29030443 DOI: 10.1128/aem.02136-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms underlying the biodegradation of N-methylpyrrolidone (NMP), a widely used industrial solvent that produces skin irritation in humans and is teratogenic in rats, are unknown. Alicycliphilus sp. strain BQ1 degrades NMP. By studying a transposon-tagged mutant unable to degrade NMP, we identified a six-gene cluster (nmpABCDEF) that is transcribed as a polycistronic mRNA and encodes enzymes involved in NMP biodegradation. nmpA and the transposon-affected gene nmpB encode an N-methylhydantoin amidohydrolase that transforms NMP to γ-N-methylaminobutyric acid; this is metabolized by an amino acid oxidase (NMPC), either by demethylation to produce γ-aminobutyric acid (GABA) or by deamination to produce succinate semialdehyde (SSA). If GABA is produced, the activity of a GABA aminotransferase (GABA-AT), not encoded in the nmp gene cluster, is needed to generate SSA. SSA is transformed by a succinate semialdehyde dehydrogenase (SSDH) (NMPF) to succinate, which enters the Krebs cycle. The abilities to consume NMP and to utilize it for growth were complemented in the transposon-tagged mutant by use of the nmpABCD genes. Similarly, Escherichia coli MG1655, which has two SSDHs but is unable to grow in NMP, acquired these abilities after functional complementation with these genes. In wild-type (wt) BQ1 cells growing in NMP, GABA was not detected, but SSA was present at double the amount found in cells growing in Luria-Bertani medium (LB), suggesting that GABA is not an intermediate in this pathway. Moreover, E. coli GABA-AT deletion mutants complemented with nmpABCD genes retained the ability to grow in NMP, supporting the possibility that γ-N-methylaminobutyric acid is deaminated to SSA instead of being demethylated to GABA.IMPORTANCEN-Methylpyrrolidone is a cyclic amide reported to be biodegradable. However, the metabolic pathway and enzymatic activities for degrading NMP are unknown. By developing molecular biology techniques for Alicycliphilus sp. strain BQ1, an environmental bacterium able to grow in NMP, we identified a six-gene cluster encoding enzymatic activities involved in NMP degradation. These findings set the basis for the study of new enzymatic activities and for the development of biotechnological processes with potential applications in bioremediation.
Collapse
|
10
|
Wang H, Zhi XY, Qiu J, Shi L, Lu Z. Characterization of a Novel Nicotine Degradation Gene Cluster ndp in Sphingomonas melonis TY and Its Evolutionary Analysis. Front Microbiol 2017; 8:337. [PMID: 28337179 PMCID: PMC5343071 DOI: 10.3389/fmicb.2017.00337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/17/2017] [Indexed: 11/13/2022] Open
Abstract
Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and energy through a variant of the pyridine and pyrrolidine pathways (VPP). A 31-kb novel nicotine-degrading gene cluster, ndp, in strain TY exhibited a different genetic organization with the vpp cluster in strains Ochrobactrum rhizosphaerae SJY1 and Agrobacterium tumefaciens S33. Genes in vpp were separated by a 20-kb interval sequence, while genes in ndp were localized together. Half of the homolog genes were in different locus in ndp and vpp. Moreover, there was a gene encoding putative transporter of nicotine or other critical metabolite in ndp. Among the putative nicotine-degrading related genes, the nicotine hydroxylase, 6-hydroxy-L-nicotine oxidase, 6-hydroxypseudooxynicotine oxidase, and 6-hydroxy-3-succinyl-pyridine monooxygenase responsible for catalyzing the transformation of nicotine to 2, 5-dihydropyridine in the initial four steps of the VPP were characterized. Hydroxylation at C6 of the pyridine ring and dehydrogenation at the C2–C3 bond of the pyrrolidine ring were the key common reactions in the VPP, pyrrolidine and pyridine pathways. Besides, VPP and pyrrolidine pathway shared the same latter part of metabolic pathway. After analysis of metabolic genes in the pyridine, pyrrolidine, and VPP pathways, we found that both the evolutionary features and metabolic mechanisms of the VPP were more similar to the pyrrolidine pathway. The linked ndpHFEG genes shared by the VPP and pyrrolidine pathways indicated that these two pathways might share the same origin, but variants were observed in some bacteria. And we speculated that the pyridine pathway was distributed in Gram-positive bacteria and the VPP and pyrrolidine pathways were distributed in Gram-negative bacteria by using comprehensive homologs searching and phylogenetic tree construction.
Collapse
Affiliation(s)
- Haixia Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University Kunming, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Longxiang Shi
- Institution of System Engineering, College of Computer Science and Technology, Zhejiang University Hangzhou, China
| | - Zhenmei Lu
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
11
|
Gurusamy R, Natarajan S. Current status on biochemistry and molecular biology of microbial degradation of nicotine. ScientificWorldJournal 2013; 2013:125385. [PMID: 24470788 PMCID: PMC3891541 DOI: 10.1155/2013/125385] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites.
Collapse
Affiliation(s)
- Raman Gurusamy
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sakthivel Natarajan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
12
|
Cloning of a novel nicotine oxidase gene from Pseudomonas sp. strain HZN6 whose product nonenantioselectively degrades nicotine to pseudooxynicotine. Appl Environ Microbiol 2013; 79:2164-71. [PMID: 23335761 DOI: 10.1128/aem.03824-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain HZN6 utilizes nicotine as its sole source of carbon, nitrogen, and energy. However, its catabolic mechanism has not been elucidated. In this study, self-formed adaptor PCR was performed to amplify the upstream sequence of the pseudooxynicotine amine oxidase gene. A 1,437-bp open reading frame (designated nox) was found to encode a nicotine oxidase (NOX) that shows 30% amino acid sequence identity with 6-hydroxy-l-nicotine oxidase from Arthrobacter nicotinovorans. The nox gene was cloned into a broad-host-range cloning vector and transferred into the non-nicotine-degrading bacteria Escherichia coli DH5α (DH-nox) and Pseudomonas putida KT2440 (KT-nox). The transconjugant KT-nox obtained nicotine degradation ability and yielded an equimolar amount of pseudooxynicotine, while DH-nox did not. Reverse transcription-PCR showed that the nox gene is expressed in both DH5α and KT2440, suggesting that additional factors required for nicotine degradation are present in a Pseudomonas strain(s), but not in E. coli. The mutant of strain HZN6 with nox disrupted lost the ability to degrade nicotine, but not pseudooxynicotine. These results suggested that the nox gene is responsible for the first step of nicotine degradation. The (RS)-nicotine degradation results showed that the two enantiomers were degraded at approximately the same rate, indicating that NOX does not show chiral selectivity. Site-directed mutagenesis revealed that both the conserved flavin adenine dinucleotide (FAD)-binding GXGXXG motif and His456 are essential for nicotine degradation activity.
Collapse
|
13
|
Functional identification of two novel genes from Pseudomonas sp. strain HZN6 involved in the catabolism of nicotine. Appl Environ Microbiol 2012; 78:2154-60. [PMID: 22267672 DOI: 10.1128/aem.07025-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nicotine is a natural alkaloid produced by tobacco plants, and the mechanisms of its catabolism by microorganisms are diverse. In the present study, we reported the mutation, cloning, and identification of two novel genes involved in nicotine degradation from the newly isolated Pseudomonas sp. strain HZN6. Transposon mutagenesis identified a HZN6 mutant in which the nicotine-degrading pathway was blocked at pseudooxynicotine. A 3,874-bp DNA fragment flanking the transposon insertion site was obtained through self-formed adaptor PCR. Two open reading frames (designated pao and sap) were analyzed, and the deduced amino acid sequences shared 29% identity with 6-hydroxy-l-nicotine oxidase from Arthrobacter nicotinovorans and 49% identity with an aldehyde dehydrogenase from Bartonella henselae. Both pao and sap were cloned and functionally expressed in recombinant Escherichia coli BL21. The pao gene encoded a novel pseudooxynicotine amine oxidase with noncovalently bound flavin adenine dinucleotide (FAD) and exhibited substrate specificity removing the methylamine from pseudooxynicotine with the formation of 3-succinoylsemialdehyde-pyridine and hydrogen dioxide. The sap gene encoded a NADP(+)-dependent 3-succinoylsemialdehyde-pyridine dehydrogenase that catalyzed the dehydrogenation of 3-succinoylsemialdehyde-pyridine to 3-succinoyl-pyridine. Genetic analyses indicated that the pao gene played an essential role in nicotine or pseudooxynicotine mineralization in strain HZN6, whereas the sap gene did not. This study provides novel insight into the nicotine-degrading mechanism at the genetic level in Pseudomonas spp.
Collapse
|
14
|
Heuts DPHM, Scrutton NS, McIntire WS, Fraaije MW. What's in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J 2009; 276:3405-27. [PMID: 19438712 DOI: 10.1111/j.1742-4658.2009.07053.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many enzymes use one or more cofactors, such as biotin, heme, or flavin. These cofactors may be bound to the enzyme in a noncovalent or covalent manner. Although most flavoproteins contain a noncovalently bound flavin cofactor (FMN or FAD), a large number have these cofactors covalently linked to the polypeptide chain. Most covalent flavin-protein linkages involve a single cofactor attachment via a histidyl, tyrosyl, cysteinyl or threonyl linkage. However, some flavoproteins contain a flavin that is tethered to two amino acids. In the last decade, many studies have focused on elucidating the mechanism(s) of covalent flavin incorporation (flavinylation) and the possible role(s) of covalent protein-flavin bonds. These endeavors have revealed that covalent flavinylation is a post-translational and self-catalytic process. This review presents an overview of the known types of covalent flavin bonds and the proposed mechanisms and roles of covalent flavinylation.
Collapse
Affiliation(s)
- Dominic P H M Heuts
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Uptake of l-nicotine and of 6-hydroxy-l-nicotine by Arthrobacter nicotinovorans and by Escherichia coli is mediated by facilitated diffusion and not by passive diffusion or active transport. Microbiology (Reading) 2009; 155:1866-1877. [DOI: 10.1099/mic.0.028688-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism by whichl-nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation byArthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1.l-[14C]Nicotine uptake assays withA. nicotinovoransshowed transport of nicotine across the cell membrane to be energy-independent and saturable with aKmof 6.2±0.1 μM and aVmaxof 0.70±0.08 μmol min−1(mg protein)−1. This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and anA. nicotinovoransstrain unable to degrade nicotine (pAO1−) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import ofl-[14C]nicotine took place.A. nicotinovoranspAO1−andEscherichia coliwere also unable to import 6-hydroxy-l-nicotine, but expression of the 6-hydroxy-l-nicotine oxidase gene allowed both bacteria to take up this compound.l-Nicotine uptake was inhibited byd-nicotine, 6-hydroxy-l-nicotine and 2-amino-l-nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood–brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.
Collapse
|
16
|
|
17
|
A novel gene, encoding 6-hydroxy-3-succinoylpyridine hydroxylase, involved in nicotine degradation by Pseudomonas putida strain S16. Appl Environ Microbiol 2008; 74:1567-74. [PMID: 18203859 DOI: 10.1128/aem.02529-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous research suggested that Pseudomonas spp. may attack the pyrrolidine ring of nicotine in a way similar to mammalian metabolism, resulting in the formation of pseudooxynicotine, the direct precursor of a potent tobacco-specific lung carcinogen. In addition, the subsequent intermediates, 6-hydroxy-3-succinoylpyridine (HSP) and 2,5-dihydroxypyridine (DHP) in the Pseudomonas nicotine degradation pathway are two important precursors for drug syntheses. However, there is little information on the molecular mechanism for nicotine degradation via the pyrrolidine pathway until now. In this study we cloned and sequenced a 4,879-bp gene cluster involved in nicotine degradation. Intermediates N-methylmyosmine, pseudooxynicotine, 3-succinoylpyridine, HSP, and DHP were identified from resting cell reactions of the transformant containing the gene cluster and shown to be identical to those of the pyrrolidine pathway reported in wild-type strain Pseudomonas putida S16. The gene for 6-hydroxy-3-succinoylpyridine hydroxylase (HSP hydroxylase) catalyzing HSP directly to DHP was cloned, sequenced, and expressed in Escherichia coli, and the purified HSP hydroxylase (38 kDa) is NADH dependent. DNA sequence analysis of this 936-bp fragment reveals that the deduced amino acid shows no similarity with any protein of known function.
Collapse
|
18
|
Two closely related pathways of nicotine catabolism in Arthrobacter nicotinovorans and Nocardioides sp. strain JS614. Arch Microbiol 2007; 189:511-7. [PMID: 18071673 DOI: 10.1007/s00203-007-0340-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 11/16/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
A virtually identical nicotine catabolic pathway including the heterotrimeric molybdenum enzyme nicotine and 6-hydroxy-pseudo-oxynicotine dehydrogenase, 6-hydroxy-L: -nicotine oxidase, 2,6-dihydroxy-pseudo-oxynicotine hydrolase, and 2,6-dihydroxypyridine hydroxylase have been identified in A. nicotinovorans and Nocardioides sp. JS614. Enzymes catalyzing the same reactions and similar protein antigens were detected in the extracts of the two microorganisms. Nicotine blue and methylamine, two end products of nicotine catabolism were detected in the growth medium of both bacterial species. Nicotine catabolic genes are clustered on pAO1 in A. nicotinovorans, but located chromosomally in Nocardioides sp. JS614.
Collapse
|
19
|
Ganas P, Mihasan M, Igloi GL, Brandsch R. A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. MICROBIOLOGY-SGM 2007; 153:1546-1555. [PMID: 17464069 DOI: 10.1099/mic.0.2006/004234-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genes nepAB of a small multidrug resistance (SMR) pump were identified as part of the pAO1-encoded nicotine regulon responsible for nicotine catabolism in Arthrobacter nicotinovorans. When [(14)C]nicotine was added to the growth medium the bacteria exported the (14)C-labelled end product of nicotine catabolism, methylamine. In the presence of the proton-motive force inhibitors 2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or the proton ionophore nigericin, export of methylamine was inhibited and radioactivity accumulated inside the bacteria. Efflux of [(14)C]nicotine-derived radioactivity from bacteria was also inhibited in a pmfR : cmx strain with downregulated nepAB expression. Because of low amine oxidase levels in the pmfR : cmx strain, gamma-N-methylaminobutyrate, the methylamine precursor, accumulated. Complementation of this strain with the nepAB genes, carried on a plasmid, restored the efflux of nicotine breakdown products. Both NepA and NepB were required for full export activity, indicating that they form a two-component efflux pump. NepAB may function as a metabolic valve by exporting methylamine, the end product of nicotine catabolism, and, in conditions under which it accumulates, the intermediate gamma-N-methylaminobutyrate.
Collapse
Affiliation(s)
- Petra Ganas
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Albrecht-Ludwigs University, Freiburg, Germany
| | - Marius Mihasan
- Department of Biochemistry, Alexandru-Ioan-Cuza University, Iasi, Romania
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Albrecht-Ludwigs University, Freiburg, Germany
| | - Gabor L Igloi
- Institute of Biology III, Albrecht-Ludwigs University, Freiburg, Germany
| | - Roderich Brandsch
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Albrecht-Ludwigs University, Freiburg, Germany
| |
Collapse
|
20
|
Mihasan M, Chiribau CB, Friedrich T, Artenie V, Brandsch R. An NAD(P)H-nicotine blue oxidoreductase is part of the nicotine regulon and may protect Arthrobacter nicotinovorans from oxidative stress during nicotine catabolism. Appl Environ Microbiol 2007; 73:2479-85. [PMID: 17293530 PMCID: PMC1855579 DOI: 10.1128/aem.02668-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An NAD(P)H-nicotine blue (quinone) oxidoreductase was discovered as a member of the nicotine catabolic pathway of Arthrobacter nicotinovorans. Transcriptional analysis and electromobility shift assays showed that the enzyme gene was expressed in a nicotine-dependent manner under the control of the transcriptional activator PmfR and thus was part of the nicotine regulon of A. nicotinovorans. The flavin mononucleotide-containing enzyme uses NADH and, with lower efficiency, NADPH to reduce, by a two-electron transfer, nicotine blue to the nicotine blue leuco form (hydroquinone). Besides nicotine blue, several other quinones were reduced by the enzyme. The NAD(P)H-nicotine blue oxidoreductase may prevent intracellular one-electron reductions of nicotine blue which may lead to semiquinone radicals and potentially toxic reactive oxygen species.
Collapse
Affiliation(s)
- Marius Mihasan
- Institute of Biochemistry and Molecular Biology, Hermann-Herder-Str 7, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Schleberger C, Sachelaru P, Brandsch R, Schulz GE. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation. J Mol Biol 2006; 367:409-18. [PMID: 17275835 DOI: 10.1016/j.jmb.2006.12.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/21/2006] [Accepted: 12/27/2006] [Indexed: 11/29/2022]
Abstract
The enzyme 2,6-dihydroxy-pseudo-oxynicotine hydrolase from the nicotine-degradation pathway of Arthrobacter nicotinovorans was crystallized and the structure was determined by an X-ray diffraction analysis at 2.1 A resolution. The enzyme belongs to the alpha/beta-hydrolase family as derived from the chain-fold and from the presence of a catalytic triad with its oxyanion hole at the common position. This relationship assigns a pocket lined by the catalytic triad as the active center. The asymmetric unit contains two C(2)-symmetric dimer molecules, each adopting a specific conformation. One dimer forms a more spacious active center pocket and the other a smaller one, suggesting an induced-fit. All of the currently established C-C bond cleaving alpha/beta-hydrolases are from bacterial meta-cleavage pathways for the degradation of aromatic compounds and cover their active center with a 40 residue lid placed between two adjacent strands of the beta-sheet. In contrast, the reported enzyme shields its active center with a 110 residue N-terminal domain, which is absent in the meta-cleavage hydrolases. Since neither the substrate nor an analogue could be bound in the crystals, the substrate was modeled into the active center using the oxyanion hole as a geometric constraint. The model was supported by enzymatic activity data of 11 point mutants and by the two dimer conformations suggesting an induced-fit. Moreover, the model assigned a major role for the large N-terminal domain that is specific to the reported enzyme. The proposal is consistent with the known data for the meta-cleavage hydrolases although it differs in that the reaction does not release alkenes but a hetero-aromatic compound in a retro-Friedel-Crafts acylation. Because the hydrolytic water molecule can be assigned to a geometrically suitable site that can be occupied in the presence of the substrate, the catalytic triad may not form a covalent acyl-enzyme intermediate but merely support a direct hydrolysis.
Collapse
Affiliation(s)
- Christian Schleberger
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, D-79104 Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
22
|
Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE, Wackett LP. Evolution of catabolic pathways: Genomic insights into microbial s-triazine metabolism. J Bacteriol 2006; 189:674-82. [PMID: 17114259 PMCID: PMC1797303 DOI: 10.1128/jb.01257-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- N Shapir
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sachelaru P, Schiltz E, Brandsch R. A functional mobA gene for molybdopterin cytosine dinucleotide cofactor biosynthesis is required for activity and holoenzyme assembly of the heterotrimeric nicotine dehydrogenases of Arthrobacter nicotinovorans. Appl Environ Microbiol 2006; 72:5126-31. [PMID: 16820521 PMCID: PMC1489357 DOI: 10.1128/aem.00437-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Arthrobacter nicotinovorans molybdenum enzymes hydroxylate the pyridine ring of nicotine. Molybdopterin cytosine dinucleotide (MCD) was determined to be a cofactor of these enzymes. A mobA gene responsible for the formation of MCD could be identified and its function shown to be required for assembly of the heterotrimeric molybdenum enzymes.
Collapse
Affiliation(s)
- Paula Sachelaru
- Institute for Biochemistry and Molecular Biology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany
| | | | | |
Collapse
|
24
|
Abstract
New enzymes of nicotine catabolism instrumental in the detoxification of the tobacco alkaloid by Arthrobacter nicotinovorans pAO1 have been identified and characterized. Nicotine breakdown leads to the formation of nicotine blue from the hydroxylated pyridine ring and of gamma-N-methylaminobutyrate (CH(3)-4-aminobutyrate) from the pyrrolidine ring of the molecule. Surprisingly, two alternative pathways for the final steps in the catabolism of CH(3)-4-aminobutyrate could be identified. CH(3)-4-aminobutyrate may be demethylated to gamma-N-aminobutyrate by the recently identified gamma-N-methylaminobutyrate oxidase. In an alternative pathway, an amine oxidase with noncovalently bound FAD and of novel substrate specificity removed methylamine from CH(3)-4-aminobutyrate with the formation of succinic semialdehyde. Succinic semialdehyde was converted to succinate by a NADP(+)-dependent succinic semialdehyde dehydrogenase. Succinate may enter the citric acid cycle completing the catabolism of the pyrrolidine moiety of nicotine. Expression of the genes of these enzymes was dependent on the presence of nicotine in the growth medium. Thus, two enzymes of the nicotine regulon, gamma-N-methylaminobutyrate oxidase and amine oxidase share the same substrate. The K(m) of 2.5 mM and k(cat) of 1230 s(-1) for amine oxidase vs. K(m) of 140 microM and k(cat) of 800 s(-1) for gamma-N-methylaminobutyrate oxidase, determined in vitro with the purified recombinant enzymes, may suggest that demethylation predominates over deamination of CH(3)-4-aminobutyrate. However, bacteria grown on [(14)C]nicotine secreted [(14)C]methylamine into the medium, indicating that the pathway to succinate is active in vivo.
Collapse
Affiliation(s)
- Calin-Bogdan Chiribau
- Institute of Biochemistry and Molecular Biology, Alberts-Ludwig University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Rohankhedkar MS, Mulrooney SB, Wedemeyer WJ, Hausinger RP. The AidB component of the Escherichia coli adaptive response to alkylating agents is a flavin-containing, DNA-binding protein. J Bacteriol 2006; 188:223-30. [PMID: 16352838 PMCID: PMC1317588 DOI: 10.1128/jb.188.1.223-230.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon exposure to alkylating agents, Escherichia coli increases expression of aidB along with three genes (ada, alkA, and alkB) that encode DNA repair proteins. In order to begin to identify the role of AidB in the cell, the protein was purified to homogeneity, shown to possess stoichiometric amounts of flavin adenine dinucleotide (FAD), and confirmed to have low levels of isovaleryl-coenzyme A (CoA) dehydrogenase activity. A homology model of an AidB homodimer was constructed based on the structure of a four-domain acyl-CoA oxidase. The predicted structure revealed a positively charged groove connecting the two active sites and a second canyon of positive charges in the C-terminal domain, both of which could potentially bind DNA. Three approaches were used to confirm that AidB binds to double-stranded DNA. On the basis of its ability to bind DNA and its possession of a redox-active flavin, AidB is predicted to catalyze the direct repair of alkylated DNA.
Collapse
Affiliation(s)
- Mukta S Rohankhedkar
- Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | | | | |
Collapse
|
26
|
Sandu C, Chiribau CB, Sachelaru P, Brandsch R. Plasmids for nicotine-dependent and -independent gene expression in Arthrobacter nicotinovorans and other arthrobacter species. Appl Environ Microbiol 2006; 71:8920-4. [PMID: 16332890 PMCID: PMC1317448 DOI: 10.1128/aem.71.12.8920-8924.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first inducible Arthrobacter overexpression system, based on the promoter/operator and the repressor of the 6-D-hydroxynicotine oxidase gene of Arthrobacter nicotinovorans, is described here. Nicotine-dependent overproduction and affinity purification of recombinant proteins are presented. The system will allow the production of complex enzymes and genetic complementation studies in Arthrobacter species.
Collapse
Affiliation(s)
- Cristinel Sandu
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Hermann Herder Str. 7, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
27
|
Brandsch R. Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 2005; 69:493-8. [PMID: 16333621 DOI: 10.1007/s00253-005-0226-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 10/14/2005] [Accepted: 10/17/2005] [Indexed: 11/24/2022]
Abstract
Several bacterial species are adapted to nicotine, the main alkaloid produced by the tobacco plant, as growth substrate. A general outline of nicotine catabolism by these bacteria is presented, followed by an emphasis on new insights based on molecular biology and biochemical work obtained with the catabolic plasmid pAO1 of Arthrobacter nicotinovorans. Its 165-kb sequence revealed the genetic structure of nicotine catabolism and allowed the assignment of new enzyme activities to specific gene products, which extends the known biochemical steps of this pathway. Potential implications of the progress in our understanding of bacterial breakdown of nicotine for biotechnological applications are discussed.
Collapse
Affiliation(s)
- Roderich Brandsch
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Str. 7, 79104, Freiburg, Germany.
| |
Collapse
|
28
|
Sachelaru P, Schiltz E, Igloi GL, Brandsch R. An alpha/beta-fold C--C bond hydrolase is involved in a central step of nicotine catabolism by Arthrobacter nicotinovorans. J Bacteriol 2005; 187:8516-9. [PMID: 16321959 PMCID: PMC1317030 DOI: 10.1128/jb.187.24.8516-8519.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/22/2005] [Indexed: 11/20/2022] Open
Abstract
The enzyme catalyzing the hydrolytic cleavage of 2,6-dihydroxypseudooxynicotine to 2,6-dihydroxypyridine and gamma-N-methylaminobutyrate was found to be encoded on pAO1 of Arthrobacter nicotinovorans. The new enzyme answers an old question about nicotine catabolism and may be the first C--C bond hydrolase that is involved in the biodegradation of a heterocyclic compound.
Collapse
Affiliation(s)
- Paula Sachelaru
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
29
|
Chiribau CB, Sandu C, Igloi GL, Brandsch R. Characterization of PmfR, the transcriptional activator of the pAO1-borne purU-mabO-folD operon of Arthrobacter nicotinovorans. J Bacteriol 2005; 187:3062-70. [PMID: 15838033 PMCID: PMC1082840 DOI: 10.1128/jb.187.9.3062-3070.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nicotine catabolism by Arthrobacter nicotinovorans is linked to the presence of the megaplasmid pAO1. Genes involved in this catabolic pathway are arranged on the plasmid into gene modules according to function. During nicotine degradation gamma-N-methylaminobutyrate is formed from the pyrrolidine ring of nicotine. Analysis of the pAO1 open reading frames (ORF) resulted in identification of the gene encoding a demethylating gamma-N-methylaminobutyrate oxidase (mabO). This gene was shown to form an operon with purU- and folD-like genes. Only in bacteria grown in the presence of nicotine could transcripts of the purU-mabO-folD operon be detected, demonstrating that this operon constitutes part of the pAO1 nicotine regulon. Its transcriptional start site was determined by primer extension analysis. Transcription of the operon was shown to be controlled by a new transcriptional regulator, PmfR, the product of a gene that is transcribed divergently from the purU, mabO, and folD genes. PmfR was purified, and electromobility shift assays and DNase I-nuclease digestion experiments were used to determine that its DNA binding site is located between -48 and -88 nucleotides upstream of the transcriptional start site of the operon. Disruption of pmfR by homologous recombination with a chloramphenicol resistance cassette demonstrated that PmfR acts in vivo as a transcriptional activator. Mutagenesis of the PmfR target DNA suggested that the sequence GTTT-14 bp-AAAC is the core binding site of the regulator upstream of the -35 promoter region of the purU-mabO-folD operon.
Collapse
Affiliation(s)
- Calin B Chiribau
- Institute of Biochemistry and Molecular Biology, University of Freiburg, 76104 Freiburg, Germany
| | | | | | | |
Collapse
|