1
|
Brandhorst H, Johnson PR, Mönch J, Kurfürst M, Korsgren O, Brandhorst D. Comparison of Clostripain and Neutral Protease as Supplementary Enzymes for Human Islet Isolation. Cell Transplant 2018; 28:176-184. [PMID: 30419762 PMCID: PMC6362525 DOI: 10.1177/0963689718811614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although human islet transplantation has been established as valid and safe treatment for patients with type 1 diabetes, the utilization rates of human pancreases for clinical islet transplantation are still limited and substantially determined by the quality and composition of collagenase blends. While function and integrity of collagenase has been extensively investigated, information is still lacking about the most suitable supplementary neutral proteases. The present study compared islet isolation outcome after pancreas digestion by means of collagenase used alone or supplemented with either neutral protease (NP), clostripain (CP), or both proteases. Decent amounts of islet equivalents (IEQ) were isolated using collagenase alone (3090 ± 550 IEQ/g), or in combination with NP (2340 ± 450 IEQ/g) or CP (2740 ± 280 IEQ/g). Nevertheless, the proportion of undigested tissue was higher after using collagenase alone (21.1 ± 1.1%, P < 0.05) compared with addition of NP (13.3 ± 2.2%) or CP plus NP (13.7 ± 2.6%). Likewise, the percentage of embedded islets was highest using collagenase only (13 ± 2%) and lowest adding NP plus CP (4 ± 1%, P < 0.01). The latter combination resulted in lowest post-culture overall survival (42.7 ± 3.9%), while highest survival was observed after supplementation with CP (74.5 ± 4.8%, P < 0.01). An insulin response toward glucose challenge was present in all experimental groups, but the stimulation index was significantly decreased using collagenase plus NP (2.0 ± 0.12) compared with supplementation with CP (3.16 ± 0.4, P < 0.001). This study demonstrates for the first time that it is possible to isolate significant numbers of human islets combining collagenase only with CP. The supplementation with CP is an effective means to substantially reduce NP activity, which significantly decreases survival and viability after culture. This will facilitate the manufacturing of enzyme blends with less harmful characteristics.
Collapse
Affiliation(s)
- Heide Brandhorst
- 1 Nuffield Department of Surgical Sciences, University of Oxford, UK.,2 Oxford Centre for Diabetes, Endocrinology and Metabolism, UK.,3 Department of Immunology, Genetics and Pathology, University of Uppsala, Sweden
| | - Paul R Johnson
- 1 Nuffield Department of Surgical Sciences, University of Oxford, UK.,2 Oxford Centre for Diabetes, Endocrinology and Metabolism, UK.,4 Oxford NIHR Biomedical Research Centre, UK
| | | | | | - Olle Korsgren
- 3 Department of Immunology, Genetics and Pathology, University of Uppsala, Sweden
| | - Daniel Brandhorst
- 1 Nuffield Department of Surgical Sciences, University of Oxford, UK.,2 Oxford Centre for Diabetes, Endocrinology and Metabolism, UK.,3 Department of Immunology, Genetics and Pathology, University of Uppsala, Sweden
| |
Collapse
|
2
|
Brandhorst D, Brandhorst H, Johnson PRV. Enzyme Development for Human Islet Isolation: Five Decades of Progress or Stagnation? Rev Diabet Stud 2017. [PMID: 28632819 DOI: 10.1900/rds.2017.14.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In comparison to procedures used for the separation of individual cell types from other organs, the process of human pancreatic islet isolation aims to digest the pancreatic exocrine matrix completely without dispersing the individual cells within the endocrine cell cluster. This objective is unique within the field of tissue separation, and outlines the challenge of islet isolation to balance two opposing priorities. Although significant progress has been made in the characterization and production of enzyme blends for islet isolation, there are still numerous areas which require improvement. The ultimate goal of enzyme production, namely the routine production of a consistent and standardized enzyme blend, has still not been realized. This seems to be mainly the result of a lack of detailed knowledge regarding the structure of the pancreatic extracellular matrix and the synergistic interplay between collagenase and different supplementary proteases during the degradation of the extracellular matrix. Furthermore, the activation of intrinsic proteolytic enzymes produced by the pancreatic acinar cells, also impacts on the chance of a successful outcome of human islet isolation. This overview discusses the challenges of pancreatic enzymatic digestion during human islet isolation, and outlines the developments in this field over the past 5 decades.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom
| | - Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom
| |
Collapse
|
3
|
Shima H, Inagaki A, Imura T, Yamagata Y, Watanabe K, Igarashi K, Goto M, Murayama K. Collagen V Is a Potential Substrate for Clostridial Collagenase G in Pancreatic Islet Isolation. J Diabetes Res 2016; 2016:4396756. [PMID: 27195301 PMCID: PMC4852369 DOI: 10.1155/2016/4396756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023] Open
Abstract
The clostridial collagenases, H and G, play key roles in pancreatic islet isolation. Collagenases digest the peptide bond between Yaa and the subsequent Gly in Gly-Xaa-Yaa repeats. To fully understand the pancreatic islet isolation process, identification of the collagenase substrates in the tissue is very important. Although collagen types I and III were reported as possible substrates for collagenase H, the substrate for collagenase G remains unknown. In this study, collagen type V was focused upon as the target for collagenases. In vitro digestion experiments for collagen type V were performed and analyzed by SDS-PAGE and mass spectrometry. Porcine pancreatic tissues were digested in vitro under three conditions and observed during digestion. The results revealed that collagen type V was only digested by collagenase G and that the digestion was initiated from the N-terminal part. Tissue degradation during porcine islet isolation was only observed in the presence of both collagenases H and G. These findings suggest that collagen type V is one of the substrates for collagenase G. The enzymatic activity of collagenase G appears to be more important for pancreatic islet isolation in large mammals such as pigs and humans.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Youhei Yamagata
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Kimiko Watanabe
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
- *Kazutaka Murayama:
| |
Collapse
|
4
|
Identifying Effective Enzyme Activity Targets for Recombinant Class I and Class II Collagenase for Successful Human Islet Isolation. Transplant Direct 2015; 2:e54. [PMID: 27500247 DOI: 10.1097/txd.0000000000000563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/17/2015] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED Isolation following a good manufacturing practice-compliant, human islet product requires development of a robust islet isolation procedure where effective limits of key reagents are known. The enzymes used for islet isolation are critical but little is known about the doses of class I and class II collagenase required for successful islet isolation. METHODS We used a factorial approach to evaluate the effect of high and low target activities of recombinant class I (rC1) and class II (rC2) collagenase on human islet yield. Consequently, 4 different enzyme formulations with divergent C1:C2 collagenase mass ratios were assessed, each supplemented with the same dose of neutral protease. Both split pancreas and whole pancreas models were used to test enzyme targets (n = 20). Islet yield/g pancreas was compared with historical enzymes (n = 42). RESULTS Varying the Wunsch (rC2) and collagen degradation activity (CDA, rC1) target dose, and consequently the C1:C2 mass ratio, had no significant effect on tissue digestion. Digestions using higher doses of Wunsch and CDA resulted in comparable islet yields to those obtained with 60% and 50% of those activities, respectively. Factorial analysis revealed no significant main effect of Wunsch activity or CDA for any parameter measured. Aggregate results from 4 different collagenase formulations gave 44% higher islet yield (>5000 islet equivalents/g) in the body/tail of the pancreas (n = 12) when compared with those from the same segment using a standard natural collagenase/protease mixture (n = 6). Additionally, islet yields greater than 5000 islet equivalents/g pancreas were also obtained in whole human pancreas. CONCLUSIONS A broader C1:C2 ratio can be used for human islet isolation than has been used in the past. Recombinant collagenase is an effective replacement for the natural enzyme and we have determined that high islet yield can be obtained even with low doses of rC1:rC2, which is beneficial for the survival of islets.
Collapse
|
5
|
Comparison of Neutral Proteases and Collagenase Class I as Essential Enzymes for Human Islet Isolation. Transplant Direct 2015; 2:e47. [PMID: 27500241 PMCID: PMC4946504 DOI: 10.1097/txd.0000000000000552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/06/2015] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED Efficient islet isolation requires synergistic interaction between collagenase class I (CI) and class II (CII). The CI degradation alters the ratio between CI and CII and is responsible for batch-to-batch variations. This study compares the role of neutral protease (NP) plus clostripain (CP) with CI as essential enzymes for human islet isolation. METHODS Human islets were isolated using 4 different enzyme mixtures composed of CII plus either intact (CI-115) or degraded CI (CI-100). Blends were administered either with or without NP/CP. Purified islets were cultured for 3 to 4 days before islet quality assessment. RESULTS Whereas using intact CI-115 without NP/CP did not significantly reduce islet yield (3429 ± 631 vs 3087 ± 970 islet equivalent/g, nonsignificant), administration of degraded CI-100 without NP/CP decreased islet yield from 3501 ± 580 to 1312 ± 244 islet equivalent/g (P < 0.01), doubled the amount of undigested tissue from 11.8 ± 1.6 to 24.4 ± 1.2% (P < 0.01) and triplicated the percentage of trapped islets from 7.7 ± 2.8 to 22.5 ± 3.6% (P < 0.05). Islet yield did not vary between supplemented CI-115 and CI-100, but was increased using CI-115 when NP/CP was omitted (P < 0.05). A trend toward higher viability and increased secretory insulin response was noted in both CI-100 and CI-115 when NP/CP was not added. CONCLUSIONS This study suggests that NP/CP can compensate reduced CI activity. Future attempts to optimize enzyme blends should consider the possibility to increase the proportion of collagenase CI to reduce the need for potentially harmful NPs.
Collapse
|
6
|
Salamone M, Nicosia A, Bennici C, Quatrini P, Catania V, Mazzola S, Ghersi G, Cuttitta A. Comprehensive Analysis of a Vibrio parahaemolyticus Strain Extracellular Serine Protease VpSP37. PLoS One 2015; 10:e0126349. [PMID: 26162075 PMCID: PMC4498684 DOI: 10.1371/journal.pone.0126349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/01/2015] [Indexed: 02/04/2023] Open
Abstract
Proteases play an important role in the field of tissue dissociation combined with regenerative medicine. During the years new sources of proteolytic enzymes have been studied including proteases from different marine organisms both eukaryotic and prokaryotic. Herein we have purified a secreted component of an isolate of Vibrio parahaemolyticus, with electrophoretic mobilities corresponding to 36 kDa, belonging to the serine proteases family. Sequencing of the N-terminus enabled the in silico identification of the whole primary structure consisting of 345 amino acid residues with a calculated molecular mass of 37.4 KDa. The purified enzyme, named VpSP37, contains a Serine protease domain between residues 35 and 276 and a canonical Trypsin/Chimotrypsin 3D structure. Functional assays were performed to evaluate protease activity of purified enzyme. Additionally the performance of VpSP37 was evaluated in tissue dissociations experiments and the use of such enzyme as a component of enzyme blend for tissue dissociation procedures is strongly recommended.
Collapse
Affiliation(s)
- Monica Salamone
- Laboratory of Molecular Ecology and Biotechnology, National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Detached Unit of Capo Granitola, Torretta Granitola 91021, Trapani, Sicily, Italy
| | - Aldo Nicosia
- Laboratory of Molecular Ecology and Biotechnology, National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Detached Unit of Capo Granitola, Torretta Granitola 91021, Trapani, Sicily, Italy
| | - Carmelo Bennici
- Laboratory of Molecular Ecology and Biotechnology, National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Detached Unit of Capo Granitola, Torretta Granitola 91021, Trapani, Sicily, Italy
| | - Paola Quatrini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF),Università di Palermo, Viale delle Scienze, edificio 16, Palermo, Sicily, Italy
| | - Valentina Catania
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF),Università di Palermo, Viale delle Scienze, edificio 16, Palermo, Sicily, Italy
| | - Salvatore Mazzola
- National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Calata porta di Massa, 80133, Napoli, Italy
| | - Giulio Ghersi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF),Università di Palermo, Viale delle Scienze, edificio 16, Palermo, Sicily, Italy
- National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Calata porta di Massa, 80133, Napoli, Italy
- ABIEL S.r.l., Via del Mare 3, Torretta Granitola 91021, Trapani, Sicily, Italy
| | - Angela Cuttitta
- Laboratory of Molecular Ecology and Biotechnology, National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Detached Unit of Capo Granitola, Torretta Granitola 91021, Trapani, Sicily, Italy
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF),Università di Palermo, Viale delle Scienze, edificio 16, Palermo, Sicily, Italy
- National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Calata porta di Massa, 80133, Napoli, Italy
- ABIEL S.r.l., Via del Mare 3, Torretta Granitola 91021, Trapani, Sicily, Italy
- * E-mail:
| |
Collapse
|
7
|
Ståhle M, Foss A, Gustafsson B, Lempinen M, Lundgren T, Rafael E, Tufveson G, Korsgren O, Friberg A. Clostripain, the Missing Link in the Enzyme Blend for Efficient Human Islet Isolation. Transplant Direct 2015; 1:e19. [PMID: 27500221 PMCID: PMC4946465 DOI: 10.1097/txd.0000000000000528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/26/2015] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Effective digestive enzymes are crucial for successful islet isolation. Supplemental proteases are essential as they synergize with collagenase for effective pancreas digestion. The presence of tryptic-like activity has been implicated in efficient enzyme blends and the present study aimed to evaluate if addition of clostripain, an enzyme with tryptic-like activity, could improve efficacy of the islet isolation procedure. METHODS Clostripain was added to the enzyme blend just before pancreas perfusion. Islets were isolated per standard method and numerous isolation parameters, islet quality control, and the number of isolations fulfilling standard transplantation criteria were evaluated. Two control organs per clostripain organ were chosen by blindly matching against body mass index, cold ischemia time, hemoglobin A1c, donor sex, and donor age. RESULTS There were no differences in pancreas weight, dissection time, digestion time, harvest time, percent digested pancreas, or total pellet volume before islet purification between control or clostripain pancreases. Glucose-stimulated insulin release results were similar between groups. Total isolation islet equivalents, purified tissue volume and islet equivalents/g pancreas as well as fulfillment of transplantation criteria favored clostripain processed pancreases. CONCLUSIONS The addition of clostripain to the enzyme blend soundly improved islet yields and transplantation rates. It gently aided pancreas digestion and maintained proper islet functionality. The addition of clostripain to the enzyme blend has now been implemented into standard isolation protocols at the isolation centers in Uppsala and in Oslo.
Collapse
Affiliation(s)
- Magnus Ståhle
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Aksel Foss
- Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Bengt Gustafsson
- Department of Transplantation, University Hospital, Gothenburg, Sweden
| | - Marko Lempinen
- Department of Transplantation and Liver Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Torbjörn Lundgren
- Division of Transplantation Surgery, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Ehab Rafael
- Transplantation Unit, Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Gunnar Tufveson
- Division of Transplantation Surgery, Department of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andrew Friberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Abstract
Clinical islet transplantation has progressed considerably over the past 12 years, and >750 patients with type 1 diabetes have received islet transplants internationally over this time. Many countries are beginning to accept the transition from research to accepted and funded clinical care, especially for patients with brittle control that cannot be stabilized by more conventional means. Major challenges remain, including the need for more than one donor, and the requirement for potent, chronic immunosuppression. Combining immunological tolerance both to allo- and autoantigens, and a limitless expandable source of stem cell- or xenograft-derived insulin-secreting cells represent remaining hurdles in moving this effective treatment to a potential cure for all those with type 1 or 2 diabetes.
Collapse
Affiliation(s)
- Michael McCall
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | | |
Collapse
|
9
|
McCarthy RC, Breite AG, Green ML, Dwulet FE. Tissue dissociation enzymes for isolating human islets for transplantation: factors to consider in setting enzyme acceptance criteria. Transplantation 2011; 91:137-45. [PMID: 21116222 PMCID: PMC3022104 DOI: 10.1097/tp.0b013e3181ffff7d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue dissociation enzymes are critical reagents that affect the yield and quality of human pancreatic islets required for islet transplantation. The United States Food and Drug Administration's oversight of this procedure recommends laboratories to set acceptance criteria for enzymes used in the manufacture of islet products for transplantation. Currently, many laboratories base this selection on personal experience because biochemical analysis is not predictive of success of the islet isolation procedure. This review identifies the challenges of correlating results from enzyme biochemical analysis to their effectiveness in human islet isolation and suggests a path forward to address these challenges to improve control of the islet manufacturing process.
Collapse
|