1
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Proctor MS, Sutherland GA, Canniffe DP, Hitchcock A. The terminal enzymes of (bacterio)chlorophyll biosynthesis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211903. [PMID: 35573041 PMCID: PMC9066304 DOI: 10.1098/rsos.211903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
(Bacterio)chlorophylls are modified tetrapyrroles that are used by phototrophic organisms to harvest solar energy, powering the metabolic processes that sustain most of the life on Earth. Biosynthesis of these pigments involves enzymatic modification of the side chains and oxidation state of a porphyrin precursor, modifications that differ by species and alter the absorption properties of the pigments. (Bacterio)chlorophylls are coordinated by proteins that form macromolecular assemblies to absorb light and transfer excitation energy to a special pair of redox-active (bacterio)chlorophyll molecules in the photosynthetic reaction centre. Assembly of these pigment-protein complexes is aided by an isoprenoid moiety esterified to the (bacterio)chlorin macrocycle, which anchors and stabilizes the pigments within their protein scaffolds. The reduction of the isoprenoid 'tail' and its addition to the macrocycle are the final stages in (bacterio)chlorophyll biosynthesis and are catalysed by two enzymes, geranylgeranyl reductase and (bacterio)chlorophyll synthase. These enzymes work in conjunction with photosynthetic complex assembly factors and the membrane biogenesis machinery to synchronize delivery of the pigments to the proteins that coordinate them. In this review, we summarize current understanding of the catalytic mechanism, substrate recognition and regulation of these crucial enzymes and their involvement in thylakoid biogenesis and photosystem repair in oxygenic phototrophs.
Collapse
Affiliation(s)
- Matthew S. Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - George A. Sutherland
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Daniel P. Canniffe
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Solymosi K, Mysliwa-Kurdziel B. The Role of Membranes and Lipid-Protein Interactions in the Mg-Branch of Tetrapyrrole Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:663309. [PMID: 33995458 PMCID: PMC8113382 DOI: 10.3389/fpls.2021.663309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthesis and needs to be produced throughout the whole plant life, especially under changing light intensity and stress conditions which may result in the destruction and elimination of these pigments. All steps of the Mg-branch of tetrapyrrole biosynthesis leading to Chl formation are carried out by enzymes associated with plastid membranes. Still the significance of these protein-membrane and protein-lipid interactions in Chl synthesis and chloroplast differentiation are not very well-understood. In this review, we provide an overview on Chl biosynthesis in angiosperms with emphasis on its association with membranes and lipids. Moreover, the last steps of the pathway including the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), the biosynthesis of the isoprenoid phytyl moiety and the esterification of Chlide are also summarized. The unique biochemical and photophysical properties of the light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) enzyme catalyzing Pchlide photoreduction and located to peculiar tubuloreticular prolamellar body (PLB) membranes of light-deprived tissues of angiosperms and to envelope membranes, as well as to thylakoids (especially grana margins) are also reviewed. Data about the factors influencing tubuloreticular membrane formation within cells, the spectroscopic properties and the in vitro reconstitution of the native LPOR enzyme complexes are also critically discussed.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
5
|
Abstract
Phytol, the prenyl side chain of chlorophyll, is derived from geranylgeraniol by reduction of three double bonds. Recent results demonstrated that the conversion of geranylgeraniol to phytol is linked to chlorophyll synthesis, which is catalyzed by protein complexes associated with the thylakoid membranes. One of these complexes contains light harvesting chlorophyll binding like proteins (LIL3), enzymes of chlorophyll synthesis (protoporphyrinogen oxidoreductase, POR; chlorophyll synthase, CHLG) and geranylgeranyl reductase (GGR). Phytol is not only employed for the synthesis of chlorophyll, but also for tocopherol (vitamin E), phylloquinol (vitamin K) and fatty acid phytyl ester production. Previously, it was believed that phytol is derived from reduction of geranylgeranyl-diphosphate originating from the 4-methylerythritol-5-phosphate (MEP) pathway. The identification and characterization of two kinases, VTE5 and VTE6, involved in phytol and phytyl-phosphate phosphorylation, respectively, indicated that most phytol employed for tocopherol synthesis is derived from reduction of geranylgeranylated chlorophyll to (phytol-) chlorophyll. After hydrolysis from chlorophyll, free phytol is phosphorylated by the two kinases, and phytyl-diphosphate employed for the synthesis of tocopherol and phylloquinol. The reason why some chloroplast lipids, i.e. chlorophyll, tocopherol and phylloquinol, are derived from phytol, while others, i.e. carotenoids and tocotrienols (in some plant species) are synthesized from geranylgeraniol, remains unclear.
Collapse
|
6
|
Qian L, Qian W, Snowdon RJ. Haplotype hitchhiking promotes trait coselection in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1578-88. [PMID: 26800855 PMCID: PMC5066645 DOI: 10.1111/pbi.12521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 05/18/2023]
Abstract
Local haplotype patterns surrounding densely spaced DNA markers with significant trait associations can reveal information on selective sweeps and genome diversity associated with important crop traits. Relationships between haplotype and phenotype diversity, coupled with analysis of gene content in conserved haplotype blocks, can provide insight into coselection for nonrelated traits. We performed genome-wide analysis of haplotypes associated with the important physiological and agronomic traits leaf chlorophyll and seed glucosinolate content, respectively, in the major oilseed crop species Brassica napus. A locus on chromosome A01 showed opposite effects on leaf chlorophyll content and seed glucosinolate content, attributed to strong linkage disequilibrium (LD) between orthologues of the chlorophyll biosynthesis genes EARLY LIGHT-INDUCED PROTEIN and CHLOROPHYLL SYNTHASE, and the glucosinolate synthesis gene ATP SULFURYLASE 1. Another conserved haplotype block, on chromosome A02, contained a number of chlorophyll-related genes in LD with orthologues of the key glucosinolate biosynthesis genes METHYLTHIOALKYMALATE SYNTHASE-LIKE 1 and 3. Multigene haplogroups were found to have a significantly greater contribution to variation for chlorophyll content than haplotypes for any single gene, suggesting positive effects of additive locus accumulation. Detailed reanalysis of population substructure revealed a clade of ten related accessions exhibiting high leaf chlorophyll and low seed glucosinolate content. These accessions each carried one of the above-mentioned haplotypes from A01 or A02, generally in combination with further chlorophyll-associated haplotypes from chromosomes A05 and/or C05. The phenotypic rather than pleiotropic correlations between leaf chlorophyll content index and seed GSL suggest that LD may have led to inadvertent coselection for these two traits.
Collapse
Affiliation(s)
- Lunwen Qian
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
7
|
Saga Y, Hirota K, Harada J, Tamiaki H. In Vitro Enzymatic Activities of Bacteriochlorophyll a Synthase Derived from the Green Sulfur Photosynthetic Bacterium Chlorobaculum tepidum. Biochemistry 2015; 54:4998-5005. [PMID: 26258685 DOI: 10.1021/acs.biochem.5b00311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity of an enzyme encoded by the CT1610 gene in the green sulfur photosynthetic bacterium Chlorobaculum tepidum, which was annotated as bacteriochlorophyll (BChl) a synthase, BchG (denoted as tepBchG), was examined in vitro using the lysates of Escherichia coli containing the heterologously expressed enzyme. BChl a possessing a geranylgeranyl group at the 17-propionate residue (BChl aGG) was produced from bacteriochlorophyllide (BChlide) a and geranylgeranyl pyrophosphate in the presence of tepBchG. Surprisingly, tepBchG catalyzed the formation of BChl a bearing a farnesyl group (BChl aF) as in the enzymatic production of BChl aGG, indicating loose recognition of isoprenoid pyrophosphates in tepBchG. In contrast to such loose recognition of isoprenoid substrates, BChlide c and chlorophyllide a gave no esterifying product upon being incubated with geranylgeranyl or farnesyl pyrophosphate in the presence of tepBchG. These results confirm that tepBchG undoubtedly acts as the BChl a synthase in Cba. tepidum. The enzymatic activity of tepBchG was higher than that of BchG of Rhodobacter sphaeroides at 45 °C, although the former activity was lower than the latter below 35 °C.
Collapse
Affiliation(s)
- Yoshitaka Saga
- †Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan.,‡PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiya Hirota
- †Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Jiro Harada
- §Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- ∥Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
8
|
Lin YP, Lee TY, Tanaka A, Charng YY. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:14-26. [PMID: 25041167 DOI: 10.1111/tpj.12611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 05/08/2023]
Abstract
Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| | | | | | | |
Collapse
|
9
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. PHOTOSYNTHESIS RESEARCH 2008; 96:121-43. [PMID: 18273690 DOI: 10.1007/s11120-008-9291-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/29/2008] [Indexed: 05/20/2023]
Abstract
In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade--after many years of intensive research--that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
11
|
Blomqvist LA, Ryberg M, Sundqvist C. Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. PHOTOSYNTHESIS RESEARCH 2008; 96:37-50. [PMID: 18071923 DOI: 10.1007/s11120-007-9281-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 11/29/2007] [Indexed: 05/25/2023]
Abstract
The prolamellar body (PLB) proteome of dark-grown wheat leaves was characterized. PLBs are formed not only in etioplasts but also in chloroplasts in young developing leaves during the night, yet their function is not fully understood. Highly purified PLBs were prepared from 7-day-old dark-grown leaves and identified by their spectral properties as revealed by low-temperature fluorescence spectroscopy. The PLB preparation had no contamination of extra-plastidal proteins, and only two envelope proteins were found. The PLB proteome was analysed by a combination of 1-D SDS-PAGE and nano-LC FTICR MS. The identification of chlorophyll synthase in the PLB fraction is the first time this enzyme protein was found in extracts of dark-grown plants. This finding is in agreement with its previous localization to PLBs using activity studies. NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyses the reduction of protochlorophyllide to chlorophyllide, dominates the proteome of PLBs. Besides the identification of the PORA protein, the PORB protein was identified for the first time in dark-grown wheat. Altogether 64 unique proteins, representing pigment biosynthesis, photosynthetic light reaction, Calvin cycle proteins, chaperones and protein synthesis, were identified. The in number of proteins' largest group was the one involved in photosynthetic light reactions. This fact strengthens the assumption that the PLB membranes are precursors to the thylakoids and used for the formation of the photosynthetic membranes during greening. The present work is important to enhance our understanding of the significance of PLBs in chloroplast development.
Collapse
Affiliation(s)
- Lisa A Blomqvist
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
12
|
Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. PLANT PHYSIOLOGY 2007; 145:29-40. [PMID: 17535821 PMCID: PMC1976586 DOI: 10.1104/pp.107.100321] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) synthase catalyzes esterification of chlorophyllide to complete the last step of Chl biosynthesis. Although the Chl synthases and the corresponding genes from various organisms have been well characterized, Chl synthase mutants have not yet been reported in higher plants. In this study, a rice (Oryza Sativa) Chl-deficient mutant, yellow-green leaf1 (ygl1), was isolated, which showed yellow-green leaves in young plants with decreased Chl synthesis, increased level of tetrapyrrole intermediates, and delayed chloroplast development. Genetic analysis demonstrated that the phenotype of ygl1 was caused by a recessive mutation in a nuclear gene. The ygl1 locus was mapped to chromosome 5 and isolated by map-based cloning. Sequence analysis revealed that it encodes the Chl synthase and its identity was verified by transgenic complementation. A missense mutation was found in a highly conserved residue of YGL1 in the ygl1 mutant, resulting in reduction of the enzymatic activity. YGL1 is constitutively expressed in all tissues, and its expression is not significantly affected in the ygl1 mutant. Interestingly, the mRNA expression of the cab1R gene encoding the Chl a/b-binding protein was severely suppressed in the ygl1 mutant. Moreover, the expression of some nuclear genes associated with Chl biosynthesis or chloroplast development was also affected in ygl1 seedlings. These results indicate that the expression of nuclear genes encoding various chloroplast proteins might be feedback regulated by the level of Chl or Chl precursors.
Collapse
Affiliation(s)
- Ziming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Kruk J. Occurrence of chlorophyll precursors in leaves of cabbage heads – the case of natural etiolation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 80:187-94. [PMID: 15936210 DOI: 10.1016/j.jphotobiol.2005.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 04/08/2005] [Accepted: 04/19/2005] [Indexed: 11/16/2022]
Abstract
In the interior of cabbage (Brassica oleracea) heads (kale, white cabbage, Brussels sprouts), natural leaf etiolation takes place due to a limited light access and chlorophyll biosynthesis is inhibited in a consequence. Instead, apart from carotenoids, whose biosynthesis is not light-dependent, chlorophyll precursors accumulate, mainly protochlorophyllide and to a smaller extent also chlorophyllides a and b. Protochlorophyllide was also detected in green, light-exposed leaves of heads of all the investigated cabbage varieties. Protochlorophyll was not found in the investigated leaves. The analysis of xanthophylls composition showed that the central leaves of kale and white cabbage heads contain relatively high amounts of trans-neoxanthin and lutein epoxide which are found only in trace amounts in green leaves. This is the first systematic study on natural occurrence of chlorophyll biosynthesis precursors in different cabbage varieties.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
15
|
Roca M, Mínguez-Mosquera MI. Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll content. PHYSIOLOGIA PLANTARUM 2003; 117:459-466. [PMID: 12675736 DOI: 10.1034/j.1399-3054.2003.00073.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Olive fruits of the Arbequina variety are differentiated from those of Hojiblanca and Picual by the differing presence of 132-OH-chlorophyll a and of dephytylated chlorophyll derivatives during the life cycle of the fruit. During the fruit growth stage, which coincides with chlorophyll synthesis, chlorophyllase (EC: 3.1.1.14) is present in the three varieties but only yields chlorophyllides in Arbequina. The presence of oxidized catabolites of chlorophyll a in fruits of the Arbequina variety during this same period confirms the activity of oxidative enzyme systems. The low synthesis of chlorophylls in the fruits of the Arbequina variety is associated with the fact that, during the natural biosynthetic turnover, the catabolic pathway is more potentiated than the anabolic one. In the ripening phase, in the Hojiblanca and Picual fruits, chlorophyllase activity was measured but the absence of chlorophyllides showed that this enzyme remains latent and that oxidative enzymes are the ones taking part in the chlorophyll disappearance. In the Arbequina variety, both chlorophyllase and oxidative enzymes are responsible for the chlorophyll degradation.
Collapse
Affiliation(s)
- María Roca
- Departamento de Biotecnología de Alimentos, Instituto de la Grasa, CSIC, Avenida. Padre García Tejero, 4, Sevilla 41012, Spain
| | | |
Collapse
|
16
|
Schmid HC, Rassadina V, Oster U, Schoch S, Rüdiger W. Pre-loading of chlorophyll synthase with tetraprenyl diphosphate is an obligatory step in chlorophyll biosynthesis. Biol Chem 2002; 383:1769-78. [PMID: 12530542 DOI: 10.1515/bc.2002.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The reaction of recombinant chlorophyll synthase from Avena sativa, expressed in Escherichia coli, was investigated. To verify the identity of the recombinant and native enzymes, reaction rates were determined for both enzyme preparations with several chlorophyllide analogs. The rates of esterification of these modified substrates ranged from 0 to 100% of the rate with the natural substrate, and were nearly identical for both enzyme preparations. The Lineweaver-Burk plot for variation of both chlorophyllide a and phytyl diphosphate concentration showed parallel lines, indicative of a 'ping-pong' mechanism. Pre-incubation with phytyl diphosphate exhibited an initial rapid reaction phase, which did not occur after pre-incubation with chlorophyllide. We conclude that the tetraprenyl diphosphate must bind to the enzyme as the first substrate and esterification occurs when this pre-loaded enzyme meets the second substrate, chlorophyllide. Approximately 10-17% of the recombinant enzyme were pre-loaded with phytyl diphosphate under the experimental conditions. The rapid reaction phase is also observed for the chlorophyll synthase reaction in etiolated barley leaves in addition to the well-known slow phase. This indicates that pre-loading of the enzyme with tetraprenyl diphosphate is also the basis for the reaction in vivo.
Collapse
Affiliation(s)
- Heidi C Schmid
- Botanisches Institut, Ludwig-Maximilians-Universität München, Menzingerstr. 67, D-80638 München, Germany
| | | | | | | | | |
Collapse
|
17
|
Savidge B, Weiss JD, Wong YHH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. PLANT PHYSIOLOGY 2002; 129:321-32. [PMID: 12011362 PMCID: PMC155895 DOI: 10.1104/pp.010747] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Revised: 11/07/2001] [Accepted: 01/24/2002] [Indexed: 05/18/2023]
Abstract
Tocopherols, synthesized by photosynthetic organisms, are micronutrients with antioxidant properties that play important roles in animal and human nutrition. Because of these health benefits, there is considerable interest in identifying the genes involved in tocopherol biosynthesis to allow transgenic alteration of both tocopherol levels and composition in agricultural crops. Tocopherols are generated from the condensation of phytyldiphosphate and homogentisic acid (HGA), followed by cyclization and methylation reactions. Homogentisate phytyltransferase (HPT) performs the first committed step in this pathway, the phytylation of HGA. In this study, bioinformatics techniques were used to identify candidate genes, slr1736 and HPT1, that encode HPT from Synechocystis sp. PCC 6803 and Arabidopsis, respectively. These two genes encode putative membrane-bound proteins, and contain amino acid residues highly conserved with other prenyltransferases of the aromatic type. A Synechocystis sp. PCC 6803 slr1736 null mutant obtained by insertional inactivation did not accumulate tocopherols, and was rescued by the Arabidopsis HPT1 ortholog. The membrane fraction of wild-type Synechocystis sp. PCC 6803 was capable of catalyzing the phytylation of HGA, whereas the membrane fraction from the slr1736 null mutant was not. The microsomal membrane fraction of baculovirus-infected insect cells expressing the Synechocystis sp. PCC 6803 slr1736 were also able to perform the phytylation reaction, verifying HPT activity of the protein encoded by this gene. In addition, evidence that antisense expression of HPT1 in Arabidopsis resulted in reduced seed tocopherol levels, whereas seed-specific sense expression resulted in increased seed tocopherol levels, is presented.
Collapse
Affiliation(s)
- Beth Savidge
- Monsanto Company, Calgene Campus, 1920 Fifth Street, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schmid HC, Oster U, Kögel J, Lenz S, Rüdiger W. Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem 2001; 382:903-11. [PMID: 11501754 DOI: 10.1515/bc.2001.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The chlorophyll synthase gene from oat (Avena sativa) was cloned and expressed in Escherichia coli. The deduced amino acid sequence consists of 378 amino acids including a presequence of 46 amino acids. Deletion mutants show that a core protein comprising amino acid residues 88 to 377 is enzymatically active. The sequence of the mature protein shows 85% identity with the chlorophyll synthase of Arabidopsis thaliana and 62% identity with the chlorophyll synthase of Synechocystis PCC 6803. The gene is constitutively expressed as the same transcript level is found in dark-grown and in light-grown seedlings. The enzyme requires magnesium ions for activity; manganese ions can reconstitute only part of the activity. Diacetyl and N-phenylmaleimide (NPM) inhibit the enzyme activity. Site-directed mutagenesis reveals that, out of the 4 Arg residues present in the active core protein, Arg-91 and Arg-161 are essential for the activity. Five cysteine residues are present in the core protein, of which only Cys-109 is essential for the enzyme activity. Since the wild-type and all other Cys-mutants with the exception of the mutant C304A are inhibited by N-phenylmaleimide, we conclude that the inhibitor binds to a non-essential Cys residue to abolish activity. The role of the various Arg and Cys residues is discussed.
Collapse
Affiliation(s)
- H C Schmid
- Botanisches Institut der Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | |
Collapse
|
19
|
Tanaka, Oster, Kruse, Rudiger, Grimm. Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. PLANT PHYSIOLOGY 1999; 120:695-704. [PMID: 10398704 PMCID: PMC59307 DOI: 10.1104/pp.120.3.695] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/1999] [Accepted: 04/14/1999] [Indexed: 05/19/2023]
Abstract
The enzyme geranylgeranyl reductase (CHL P) catalyzes the reduction of geranylgeranyl diphosphate to phytyl diphosphate. We identified a tobacco (Nicotiana tabacum) cDNA sequence encoding a 52-kD precursor protein homologous to the Arabidopsis and bacterial CHL P. The effects of deficient CHL P activity on chlorophyll (Chl) and tocopherol contents were studied in transgenic plants expressing antisense CHL P RNA. Transformants with gradually reduced Chl P expression showed a delayed growth rate and a pale or variegated phenotype. Transformants grown in high (500 &mgr;mol m-2 s-1; HL) and low (70 &mgr;mol photon m-2 s-1; LL) light displayed a similar degree of reduced tocopherol content during leaf development, although growth of wild-type plants in HL conditions led to up to a 2-fold increase in tocopherol content. The total Chl content was more rapidly reduced during HL than LL conditions. Up to 58% of the Chl content was esterified with geranylgeraniol instead of phytol under LL conditions. Our results indicate that CHL P provides phytol for both tocopherol and Chl synthesis. The transformants are a valuable model with which to investigate the adaptation of plants with modified tocopherol levels against deleterious environmental conditions.
Collapse
Affiliation(s)
- Tanaka
- Institut fur Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, 06466 Gatersleben, Germany (R.T., E.K., B.G.)
| | | | | | | | | |
Collapse
|