1
|
Renyard A, Gries G. Bimodal alarm signals modulate responses to monomodal alarm signals in Camponotus modoc carpenter ants. INSECT SCIENCE 2025; 32:343-355. [PMID: 38747084 PMCID: PMC11824887 DOI: 10.1111/1744-7917.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 02/14/2025]
Abstract
Distressed western carpenter ants, Camponotus modoc, produce alarm pheromone and substrate-borne vibrations. The alarm pheromone attracts nestmates but the effects of vibratory signals, or of bimodal pheromonal and vibratory signals, are not known. Worker ants of two Camponotus congeners reportedly stand still ("freeze") or run fast in response to engineered drumming vibrations inputted on plastic, but many responses to ant-produced vibratory signals on wood have not yet been investigated. Generally, orientating toward signalers under vertebrate predator attack seems maladaptive and not beneficial to ant colonies. We tested the hypotheses (1) that vibratory alarm signals cause freezing, rapid running but not attraction of nestmates, and (2) that bimodal alarm signals modulate responses to monomodal alarm signals, thereby possibly reducing predation risk. Laser Doppler vibrometry recordings revealed that the ants' vibratory signals readily propagate through ant nest lamellae, and thus quickly inform nest mates of perceived threats. With a speaker modified to record and deliver vibratory signals, we obtained drumming signals of distressed ants on a Douglas fir veneer, and bioassayed signal effects on ants in an arena with a suspended veneer floor. In response playback of vibratory signals, ants ran rapidly, or froze, but did not approach the vibratory signals. Exposed to alarm pheromone, ants frequently visited the pheromone source. However, concurrently exposed to both alarm pheromone and vibratory signals, ants visited the pheromone source less often but spent more time "frozen." The ants' modulated responses to bimodal signals seem adaptive but the reproductive fitness benefits are still to be quantified.
Collapse
Affiliation(s)
- Asim Renyard
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Gerhard Gries
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| |
Collapse
|
2
|
Koenig PA, Moreau CS. Acorn ant exhibits age-dependent induced defence in response to parasitic raids. Biol Lett 2024; 20:20240335. [PMID: 39406339 PMCID: PMC11523098 DOI: 10.1098/rsbl.2024.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024] Open
Abstract
When risk is unpredictable, organisms may evolve induced defenses, which are activated after an indication of increased risk. In colonies with behavioural specialization, investment in defence may not be uniformly beneficial among group members. Instead, it should depend on the individual's likelihood of participating in defence. The ant Temnothorax longispinosus uses venom to defend against raids by the social parasite Temnothorax americanus. We tested whether T. longispinosus upregulate investment in venom after experiencing a raid, investigating the relationship between venom volume and worker behavioural caste. Overall, raided colonies had more venom per capita than unraided colonies. When divided into behavioural castes, foragers had more venom after experiencing a raid, while nurses did not. These results demonstrate that T. longispinosus have an induced chemical defence against parasitic raids. However, instead of this defence being deployed uniformly among all workers, the induction of the defence depends on the behavioural caste, and therefore age, of the worker, implying that plasticity in venom production increases with age. Since older social insect workers tend to perform riskier tasks, inducibility may align with an increase in expected risk of death, especially if foragers are more likely to defend the colony against parasites than younger workers.
Collapse
|
3
|
Champer J, Schlenoff D. Battles between ants (Hymenoptera: Formicidae): a review. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:25. [PMID: 38913609 PMCID: PMC11195475 DOI: 10.1093/jisesa/ieae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
With their unique colony structure, competition between ants (Hymenoptera: Formicidae) can be particularly intense, with colonies potentially willing to sacrifice large number of individuals to obtain resources or territory under the right circumstances. In this review, we cover circumstances in which ant competition escalates into combat, battle strategies and tactics, and analysis methods for these battles. The trends for when colonies choose to fight can vary greatly dependent on the species and situation, which we review in detail. Because of their large group sizes, ant conflicts can follow different patterns than many other species, with a variety of specialist adaptations and battle strategies, such as specialized worker classes and the need to rapidly recruit large number of compatriots. These same large group sizes also can make ant fighting amenable to mathematical analysis, particularly in the context of Lanchester's laws that consider how total numbers influence the outcome of a confrontation. Yet, dynamic behavior can often disrupt idealized mathematical predictions in real-world scenarios, even though these can still shed light on the explanations for such behavior. We also systematically cover the literature on battles between groups of ants, presenting several other interesting studies on species with unique colony organization, such as army ants and leafcutter ants.
Collapse
Affiliation(s)
- Jackson Champer
- Center for Bioinformatics and Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Debra Schlenoff
- Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
4
|
Popp S, Dornhaus A. Collective search in ants: Movement determines footprints, and footprints influence movement. PLoS One 2024; 19:e0299432. [PMID: 38652728 PMCID: PMC11037541 DOI: 10.1371/journal.pone.0299432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/11/2024] [Indexed: 04/25/2024] Open
Abstract
Collectively searching animals might be expected to coordinate with their groupmates to cover ground more evenly or efficiently than uncoordinated groups. Communication can lead to coordination in many ways. Previous work in ants suggests that chemical 'footprints', left behind by individuals as they walk, might serve this function by modulating the movement patterns of following ants. Here, we test this hypothesis by considering the two predictions that, first, ants may turn away from sites with higher footprint concentrations (klinotaxis), or, second, that they may change their turning patterns depending on the presence of footprints (klinokinesis). We tracked 5 whole colonies of Temnothorax rugatulus ants in a large arena over 5h. We approximated the footprint concentration by summing ant visitations for each point in the arena and calculated the speed and local path straightness for each point of the ant trajectories. We counterintuitively find that ants walk slightly faster and straighter in areas with fewer footprints. This is partially explained by the effect that ants who start out from the nest walking straighter move on average further away from the nest, where there are naturally fewer footprints, leading to an apparent relationship between footprint density and straightness However, ants walk slightly faster and straighter off footprints even when controlling for this effect. We tested for klinotaxis by calculating the footprint concentrations perceived by the left and right antennae of ants and found no evidence for a turning-away (nor turning-towards) behavior. Instead, we found noticeable effects of environmental idiosyncrasies on the behavior of ants which are likely to overpower any reactions to pheromones. Our results indicate that search density around an ant colony is affected by several independent processes, including individual differences in movement pattern, local spatial heterogeneities, and ants' reactions to chemical footprints. The multitude of effects illustrates that non-communicative coordination, individual biases and interactions with the environment might have a greater impact on group search efficiency and exploratory movements than pheromone communication.
Collapse
Affiliation(s)
- Stefan Popp
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Anna Dornhaus
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
5
|
Martin R, Leroy C, Maák I, d'Ettorre P. Group phenotypic composition drives task performances in ants. Biol Lett 2024; 20:20230463. [PMID: 38195057 PMCID: PMC10776233 DOI: 10.1098/rsbl.2023.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Differences in individual behaviour within a group can give rise to functional dissimilarities between groups, particularly in social animals. However, how individual behavioural phenotypes translate into the group phenotype remains unclear. Here, we investigate whether individual behavioural type affects group performance in a eusocial species, the ant Aphaenogaster senilis. We measured individual behavioural traits and created groups of workers with similar behavioural type, either high-exploratory or low-exploratory workers. We tested these groups in four different, ecologically relevant, tasks: reaction to an intruder, prey retrieval from a maze, nest relocation and tool use. We show that, compared to groups of low-exploratory workers, groups of high-exploratory workers were more aggressive towards intruders, more efficient in collecting prey, faster in nest relocation and more likely to perform tool use. Our results demonstrate a strong link between individual and collective behaviour in ants. This supports the 'behavioural type hypothesis' for group dynamics, which suggests that an individual's behaviour in a social environment reflects its own behavioural type. The average behavioural phenotype of a group can therefore be predicted from the behavioural types of individual group members.
Collapse
Affiliation(s)
- Rayanne Martin
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
| | - Chloé Leroy
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
| | - István Maák
- Department of Ecology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00679 Warszawa, Poland
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
Wiernasz DC, Cole BJ. The ontogeny of selection on genetic diversity in harvester ants. Proc Biol Sci 2022; 289:20220496. [PMID: 35673867 PMCID: PMC9174731 DOI: 10.1098/rspb.2022.0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selection may favour traits throughout an individual's lifetime or at a particular life stage. In many species of social insects, established colonies that are more genetically diverse outperform less diverse colonies with respect to a variety of traits that contribute to fitness, but whether selection favours high diversity in small colonies is unknown. We tested the hypothesis that selection favours genetically diverse colonies during the juvenile period using a multi-year field experiment with the harvester ant, Pogonomyrmex occidentalis. We used controlled matings to generate colonies that varied in genetic diversity and transplanted them into the field. We monitored their survival for seven (the 2015 cohort, n = 149) and six (the 2016 cohort, n = 157) years. Genetically more diverse colonies had greater survival, resulting in significant viability selection. However, in both cohorts survival was not influenced by genetic diversity until colonies were three years old. We suggest that changes in their internal organization enabled colonies to use the benefits of multiple genotypes, and discuss possible mechanisms that can generate this pattern.
Collapse
Affiliation(s)
- Diane C. Wiernasz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Blaine J. Cole
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| |
Collapse
|
7
|
Scharf I, Stoldt M, Libbrecht R, Höpfner AL, Jongepier E, Kever M, Foitzik S. Social isolation causes downregulation of immune and stress response genes and behavioural changes in a social insect. Mol Ecol 2021; 30:2378-2389. [PMID: 33772940 DOI: 10.1111/mec.15902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
Humans and other social mammals experience isolation from their group as stressful, triggering behavioural and physiological anomalies that reduce fitness. While social isolation has been intensely studied in social mammals, it is less clear how social insects, which evolved sociality independently, respond to isolation. Here we examined whether the typical mammalian responses to social isolation, e.g., an impaired ability to interact socially and immune suppression are also found in social insects. We studied the consequences of social isolation on behaviour and brain gene expression in the ant Temnothorax nylanderi. Following isolation, workers interacted moderately less with adult nestmates, increased the duration of brood contact, and reduced the time spent self-grooming, an important sanitary behaviour. Our brain transcriptome analysis revealed that only a few behaviour-related genes had altered their expression with isolation time. Rather, many genes linked to immune system functioning and stress response had been downregulated. This probably sensitizes isolated individuals to various stressors, in particular because isolated workers exhibit reduced sanitary behaviour. We provide evidence of the diverse consequences of social isolation in social insects, some of which resemble those found in social mammals, suggesting a general link between social well-being, stress tolerance, and immune competence in social animals.
Collapse
Affiliation(s)
- Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anna Lena Höpfner
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Behavioral responses to numerical differences when two invasive ants meet: the case of Lasius neglectus and Linepithema humile. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02412-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractTwo of the world’s most invasive ants, Linepithema humile and Lasius neglectus, are destined to overlap in range as they continue to spread throughout Europe. Although L. humile arrived first, and is therefore more numerically abundant, L. neglectus is the more behaviorally dominant of the two. We performed lab trials to determine whether L. humile could use numerical abundance to overcome the behavioral dominance of L. neglectus and whether the ants’ behavioral patterns shifted when the species co-occurred. We found that L. neglectus was more aggressive when less abundant, whereas the opposite was true of L. humile. When L. neglectus was outnumbered, it employed aggressive behaviors, such as biting or chemical attacks, more frequently than L. humile; it also utilized a behavioral sequence that included mandible opening and biting. Our results for these species support the hypothesis that species modulate their behavior towards competitors, which facilitates the understanding of how multiple invasive ant species can co-occur in a given area. Moreover, our study shows that the co-occurrence of invasive species could result from the use of two strategies: (1) the Bourgeois strategy, in which aggressiveness changes based on numerical dominance and (2) the dear-enemy strategy, in which aggressiveness is reduced when competitors co-occur. Since these strategies may lead to territory partitioning, we suggest that the behavioral flexibility displayed by both species when they overlap may allow local co-occurrence and increase their likelihood of co-occurrence during their range expansion in Europe, which could have a negative cumulative impact on invaded areas.
Collapse
|
9
|
Vázquez J, Fargallo JA, Jiménez N, Aguilar-Montiel F, Rodríguez-Martínez L. Dear enemy effect in the Mexican volcano mouse Neotomodon alstoni: Implications of sex in the agonistic behaviour among neighbours. Behav Processes 2020; 181:104251. [PMID: 32976966 DOI: 10.1016/j.beproc.2020.104251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Two opposite phenomena have been found in territorial animals, the "dear enemy'' and the "nasty neighbour'', which refer to individuals that show less aggression toward neighbours than toward strangers and vice versa. However, the need to maintain territory should differ for males and females because sexual reproduction is the result of the different adaptive strategies of the sexes. In this study, we explore territorial behaviour in the context of dear-enemy and nasty neighbour effects in the Mexican volcano mouse (Neotomodon alstoni). Patterns of spatial relationships between individuals and the degrees of agonistic behaviour among neighbours were analysed for a period of one year. Results exhibit a greater spatial proximity between male pairs during the non-reproductive period than during the reproductive period, and greater spatial proximity between pairs of females during the reproductive period than during the non-reproductive period. The analysis of agonistic behaviour showed that there is less tolerance for distant neighbours than for nearest neighbours. However, there is a greater frequency of aggression between male pairs than between females, while females appear to exhibit non-aggressive avoidance among individuals. The results support the theory that Mexican volcano mouse exhibits the "dear enemy phenomenon".
Collapse
Affiliation(s)
- Jorge Vázquez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, km 1.5 Carretera Tlaxcala-Puebla S/N. 90070, Tlaxcala, Mexico.
| | - Juan A Fargallo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Nallely Jiménez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N. Delegación Coyoacán, 04510. Ciudad Universitaria, Ciudad de México. Mexico
| | - Fernando Aguilar-Montiel
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, km 1.5 Carretera Tlaxcala-Puebla S/N. 90070, Tlaxcala, Mexico
| | - Luisa Rodríguez-Martínez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, km 1.5 Carretera Tlaxcala-Puebla S/N. 90070, Tlaxcala, Mexico.
| |
Collapse
|
10
|
Kaur R, Stoldt M, Jongepier E, Feldmeyer B, Menzel F, Bornberg-Bauer E, Foitzik S. Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180192. [PMID: 30967075 DOI: 10.1098/rstb.2018.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The geographical mosaic theory of coevolution predicts that species interactions vary between locales. Depending on who leads the coevolutionary arms race, the effectivity of parasite attack or host defence strategies will explain parasite prevalence. Here, we compare behaviour and brain transcriptomes of Temnothorax longispinosus ant workers when defending their nest against an invading social parasite, the slavemaking ant Temnothorax americanus. A full-factorial design allowed us to test whether behaviour and gene expression are linked to parasite pressure on host populations or to the ecological success of parasite populations. Albeit host defences had been shown before to covary with local parasite pressure, we found parasite success to be much more important. Our chemical and behavioural analyses revealed that parasites from high prevalence sites carry lower concentrations of recognition cues and are less often attacked by hosts. This link was further supported by gene expression analysis. Our study reveals that host-parasite interactions are strongly influenced by social parasite strategies, so that variation in parasite prevalence is determined by parasite traits rather than the efficacy of host defence. Gene functions associated with parasite success indicated strong neuronal responses in hosts, including long-term changes in gene regulation, indicating an enduring impact of parasites on host behaviour. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Rajbir Kaur
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Marah Stoldt
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Evelien Jongepier
- 2 Molecular Evolution and Bioinformatics Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität , Münster , Germany
| | - Barbara Feldmeyer
- 3 Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung , Senckenberganlage 25, 60325 Frankfurt am Main , Germany
| | - Florian Menzel
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Erich Bornberg-Bauer
- 2 Molecular Evolution and Bioinformatics Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität , Münster , Germany
| | - Susanne Foitzik
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
11
|
Alma AM, Farji-Brener AG, Elizalde L. Phorid parasitoid attack triggers specific defensive behaviours and collaborative responses in leaf-cutting ants. Behav Processes 2019; 165:36-43. [DOI: 10.1016/j.beproc.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
12
|
Pérez-Lachaud G, Rocha FH, Valle-Mora J, Hénaut Y, Lachaud JP. Fine-tuned intruder discrimination favors ant parasitoidism. PLoS One 2019; 14:e0210739. [PMID: 30653595 PMCID: PMC6336292 DOI: 10.1371/journal.pone.0210739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/31/2018] [Indexed: 11/19/2022] Open
Abstract
A diversity of arthropods (myrmecophiles) thrives within ant nests, many of them unmolested though some, such as the specialized Eucharitidae parasitoids, may cause direct damage to their hosts. Ants are known to discriminate between nestmates and non-nestmates, but whether they recognize the strength of a threat and their capacity to adjust their behavior accordingly have not been fully explored. We aimed to determine whether Ectatomma tuberculatum ants exhibited specific behavioral responses to potential or actual intruders posing different threats to the host colony and to contribute to an understanding of complex ant-eucharitid interactions. Behavioral responses differed significantly according to intruder type. Ants evicted intruders that represented a threat to the colony's health (dead ants) or were not suitable as prey items (filter paper, eucharitid parasitoid wasps, non myrmecophilous adult weevils), but killed potential prey (weevil larvae, termites). The timing of detection was in accordance with the nature and size of the intruder: corpses (a potential source of contamination) were detected faster than any other intruder and transported to the refuse piles within 15 min. The structure and complexity of behavioral sequences differed among those intruders that were discarded. Workers not only recognized and discriminated between several distinct intruders but also adjusted their behavior to the type of intruder encountered. Our results confirm the previously documented recognition capabilities of E. tuberculatum workers and reveal a very fine-tuned intruder discrimination response. Colony-level prophylactic and hygienic behavioral responses through effective removal of inedible intruders appears to be the most general and flexible form of defense in ants against a diverse array of intruders. However, this generalized response to both potentially lethal and harmless intruders might have driven the evolution of ant-eucharitid interactions, opening a window for parasitoid attack and allowing adult parasitoid wasps to quickly leave the natal nest unharmed.
Collapse
Affiliation(s)
- Gabriela Pérez-Lachaud
- Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico
| | - Franklin H. Rocha
- Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico
| | | | - Yann Hénaut
- Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico
| | - Jean-Paul Lachaud
- Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Saar M, Eyer PA, Kilon-Kallner T, Hefetz A, Scharf I. Within-colony genetic diversity differentially affects foraging, nest maintenance, and aggression in two species of harvester ants. Sci Rep 2018; 8:13868. [PMID: 30217995 PMCID: PMC6138738 DOI: 10.1038/s41598-018-32064-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
There is accumulating evidence that genetic diversity improves the behavioral performance and consequently the fitness in groups of social animals. We examined the behavioral performance of colonies of two co-occurring, congeneric harvester ant species (Messor arenarius and a non-described Messor sp.) in fitness-related behaviors, pertaining to foraging performance, nest maintenance, and aggression. We linked these behaviors to the colonial genetic diversity, by genotyping workers, using six and five microsatellite markers for M. arenarius and M. sp., respectively. Correlations of genetic diversity with colony performance and aggression level contrasted between the two species. In M. arenarius, genetic diversity was correlated with foraging performance and nest maintenance but not with the overall aggression level, while in M. sp., genetic diversity was correlated with the overall aggression level, but not with foraging performance or nest maintenance. The two species exhibited similar specific aggression levels, with higher aggression shown towards heterospecifics and lower towards non-nestmate conspecifics and nestmates. However, M. sp. workers displayed a tendency to interact for longer with heterospecifics than did M. arenarius. We speculate that the different foraging strategies, group vs. individual foraging, and possibly also the different mating systems, contribute to the differences found in behavior between the two species.
Collapse
Affiliation(s)
- Maya Saar
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pierre-André Eyer
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tal Kilon-Kallner
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Hefetz
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Woods RD, Kings M, McIvor GE, Thornton A. Caller characteristics influence recruitment to collective anti-predator events in jackdaws. Sci Rep 2018; 8:7343. [PMID: 29743545 PMCID: PMC5943305 DOI: 10.1038/s41598-018-25793-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/25/2018] [Indexed: 11/17/2022] Open
Abstract
Across the animal kingdom, examples abound of individuals coming together to repel external threats. When such collective actions are initiated by recruitment signals, individuals may benefit from being selective in whom they join, so the identity of the initiator may determine the magnitude of the group response. However, the role of signaller discrimination in coordinating group-level responses has yet to be tested. Here we show that in wild jackdaws, a colonial corvid species, collective responses to anti-predator recruitment calls are mediated by caller characteristics. In playbacks next to nestboxes, the calls of nestbox residents attracted most recruits, followed in turn by other colony members, non-colony members and rooks (a sympatric corvid). Playbacks in fields outside nestbox colonies, where the immediate threat to broods was lower, showed similar results, with highest recruitment to nearby colony members’ calls. Responses were further influenced by caller sex: calls from non-colony member females were less likely to elicit responsive scolding by recruits than other calls, potentially reflecting social rank associated with sex and colony membership. These results show that vocal discrimination mediates jackdaws’ collective responses and highlight the need for further research into the cognitive basis of collective actions in animal groups.
Collapse
Affiliation(s)
- Richard D Woods
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Michael Kings
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Guillam E McIvor
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK.
| |
Collapse
|
15
|
Feldmeyer B, Elsner D, Alleman A, Foitzik S. Species-specific genes under selection characterize the co-evolution of slavemaker and host lifestyles. BMC Evol Biol 2017; 17:237. [PMID: 29202686 PMCID: PMC5715652 DOI: 10.1186/s12862-017-1078-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The transition to a parasitic lifestyle entails comprehensive changes to the selective regime. In parasites, genes encoding for traits that facilitate host detection, exploitation and transmission should be under selection. Slavemaking ants are social parasites that exploit the altruistic behaviour of their hosts by stealing heterospecific host brood during raids, which afterwards serve as slaves in slavemaker nests. Here we search for evidence of selection in the transcriptomes of three slavemaker species and three closely related hosts. We expected selection on genes underlying recognition and raiding or defense behaviour. Analyses of selective forces in species with a slavemaker or host lifestyle allowed investigation into whether or not repeated instances of slavemaker evolution share the same genetic basis. To investigate the genetic basis of host-slavemaker co-evolution, we created orthologous clusters from transcriptome sequences of six Temnothorax ant species - three slavemakers and three hosts - to identify genes with signatures of selection. We further tested for functional enrichment in selected genes from slavemakers and hosts respectively and investigated which pathways the according genes belong to. RESULTS Our phylogenetic analysis, based on more than 5000 ortholog sequences, revealed sister species status for two slavemakers as well as two hosts, contradicting a previous phylogeny based on mtDNA. We identified 309 genes with signs of positive selection on branches leading to slavemakers and 161 leading to hosts. Among these were genes potentially involved in cuticular hydrocarbon synthesis, thus species recognition, and circadian clock functionality possibly explaining the different activity patterns of slavemakers and hosts. There was little overlap of genes with signatures of positive selection among species, which are involved in numerous different functions and different pathways. CONCLUSIONS We identified different genes, functions and pathways under positive selection in each species. These results point to species-specific adaptations rather than convergent trajectories during the evolution of the slavemaker and host lifestyles suggesting that the evolution of parasitism, even in closely related species, may be achieved in diverse ways.
Collapse
Affiliation(s)
- B Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - D Elsner
- Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - A Alleman
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - S Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| |
Collapse
|
16
|
Miler K, Yahya BE, Czarnoleski M. Pro-social behaviour of ants depends on their ecological niche-Rescue actions in species from tropical and temperate regions. Behav Processes 2017; 144:1-4. [PMID: 28843392 DOI: 10.1016/j.beproc.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/26/2017] [Accepted: 08/16/2017] [Indexed: 11/25/2022]
Abstract
Some ants display rescue behaviour, which is performed by nearby nestmates and directed at individuals in danger. Here, using several ant species, we demonstrate that rescue behaviour expression matches predicted occurrences based on certain aspects of species' ecological niches. Rescue occurred in sand-dwelling ants exposed both to co-occurring antlion larvae, representing the threat of being captured by a predator, and to nest cave-ins, representing the threat of being trapped in a collapsed nest chamber. Rescue also occurred in forest groundcover ants exposed to certain entrapment situations. However, rescue never occurred in species associated with open plains, which nest in hardened soils and forage largely on herbaceous plants, or in ants living in close mutualistic relationships with their host plants. In addition, because we tested each species in two types of tests, antlion larva capture tests and artificial entrapment tests, we highlight the importance of accounting for test context in studying rescue behaviour expression.
Collapse
Affiliation(s)
- Krzysztof Miler
- Institute of Environmental Sciences, Jagiellonian University, Poland.
| | | | | |
Collapse
|
17
|
Rehm J. Digest: Evolve wisely-some ant defense strategies paved way to diversification, and others to a dead end*. Evolution 2017; 71:493-494. [DOI: 10.1111/evo.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Jeremy Rehm
- Department of Ecology and Evolutionary Biology; Brown University; Providence Rhode Island 02912
| |
Collapse
|
18
|
Włodarczyk T, Szczepaniak L. Facultative slave-making ants Formica sanguinea label their slaves with own recognition cues instead of employing the strategy of chemical mimicry. JOURNAL OF INSECT PHYSIOLOGY 2017; 96:98-107. [PMID: 27794425 DOI: 10.1016/j.jinsphys.2016.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Slave-making ant species use the host workforce to ensure normal colony functioning. Slaves are robbed as pupae from their natal nest and after eclosion, assume the parasite colony as their own. A possible factor promoting the successful integration of slaves into a foreign colony is congruence with the slave-makers in terms of cuticular hydrocarbons, which are known to play the role of recognition cues in social insects. Such an adaptation is observed in the obligate slave-making ant species, which are chemically adjusted to their slaves. To date, however, no reports have been available on facultative slave-making species, which represent an earlier stage of the evolution of slavery. Such an example is Formica sanguinea, which exploit F. fusca colonies as their main source of a slave workforce. Our results show that F. sanguinea ants have a distinct cuticular hydrocarbon profile, which contains compounds not present in free-living F. fusca ants from potential target nests. Moreover, enslaved F. fusca ants acquire hydrocarbons from their slave-making nestmates to such an extent that they become chemically differentiated from free-living, conspecific ants. Our study shows that F. sanguinea ants promote their own recognition cues in their slaves, rather than employing the strategy of chemical mimicry. Possible reasons why F. sanguinea is not chemically well adjusted to its main host species are discussed in this paper.
Collapse
Affiliation(s)
- Tomasz Włodarczyk
- Department of Invertebrate Zoology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Lech Szczepaniak
- Department of Environmental Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| |
Collapse
|
19
|
Beros S, Jongepier E, Hagemeier F, Foitzik S. The parasite's long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host. Proc Biol Sci 2015; 282:20151473. [PMID: 26582019 PMCID: PMC4685803 DOI: 10.1098/rspb.2015.1473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 01/09/2023] Open
Abstract
Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in their nest-mates. We report a parasite-induced shift in colony aggression, shown by lower aggression of uninfected nest-mates from parasitized colonies towards conspecifics, potentially explaining the tolerance towards infected ants. We also demonstrate that tapeworm-infected workers showed a reduced flight response and higher survival, while their presence caused a decrease in survival of uninfected nest-mates. This anomalous behaviour of infected ants, coupled with their increased survival, could facilitate the parasites' transmission to its definitive hosts, woodpeckers. We conclude that parasites exploiting individuals that are part of a society not only induce phenotypic changes within their individual hosts, but in uninfected group members as well.
Collapse
Affiliation(s)
- Sara Beros
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55128, Germany
| | - Evelien Jongepier
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55128, Germany
| | - Felizitas Hagemeier
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55128, Germany
| | - Susanne Foitzik
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55128, Germany
| |
Collapse
|
20
|
|
21
|
Kleeberg I, Jongepier E, Job S, Foitzik S. Geographic Variation in Social Parasite Pressure Predicts Intraspecific but not Interspecific Aggressive Responses in Hosts of a Slavemaking Ant. Ethology 2015. [DOI: 10.1111/eth.12384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Sylwester Job
- Institute of Zoology; Johannes Gutenberg University; Mainz Germany
| | - Susanne Foitzik
- Institute of Zoology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
22
|
Facial markings in the social cuckoo wasp Polistes sulcifer: No support for the visual deception and the assessment hypotheses. Behav Processes 2014; 111:19-24. [PMID: 25447514 DOI: 10.1016/j.beproc.2014.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 10/27/2014] [Accepted: 11/11/2014] [Indexed: 11/23/2022]
Abstract
Insect social parasites have to conquer a host colony by overcoming its defensive barriers. In addition to increased fighting abilities, many social parasites evolved sophisticated sensory deception mechanisms to elude host colonies defenses by exploiting host communication channels. Recently, it has been shown that the conspicuous facial markings of a paper wasp social parasite, Polistes sulcifer, decrease the aggressiveness of host foundresses. Two main hypotheses stand as explanations of this phenomenon: visual sensory deception (i.e. the black patterning reduces host aggression by exploiting the host visual communication system) and visual quality assessment (i.e. facial markings reduce aggressiveness as they signal the increased fighting ability of parasites). Through behavioral assays and morphological measurements we tested three predictions resulting from these hypotheses and found no support either for the visual sensory deception or for the quality assessment to explain the reduction in host aggressiveness towards the parasite. Our results suggest that other discrimination processes may explain the observed phenomenon.
Collapse
|
23
|
Cunningham JP, Hereward JP, Heard TA, De Barro PJ, West SA. Bees at War: Interspecific Battles and Nest Usurpation in Stingless Bees. Am Nat 2014; 184:777-86. [DOI: 10.1086/678399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Pamminger T, Foitzik S, Metzler D, Pennings PS. Oh sister, where art thou? Spatial population structure and the evolution of an altruistic defence trait. J Evol Biol 2014; 27:2443-56. [PMID: 25262856 DOI: 10.1111/jeb.12496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022]
Abstract
The evolution of parasite virulence and host defences is affected by population structure. This effect has been confirmed in studies focusing on large spatial scales, whereas the importance of local structure is not well understood. Slavemaking ants are social parasites that exploit workers of another species to rear their offspring. Enslaved workers of the host species Temnothorax longispinosus have been found to exhibit an effective post-enslavement defence behaviour: enslaved workers were observed killing a large proportion of the parasites' offspring. As enslaved workers do not reproduce, they gain no direct fitness benefit from this 'rebellion' behaviour. However, there may be an indirect benefit: neighbouring host nests that are related to 'rebel' nests can benefit from a reduced raiding pressure, as a result of the reduction in parasite nest size due to the enslaved workers' killing behaviour. We use a simple mathematical model to examine whether the small-scale population structure of the host species could explain the evolution of this potentially altruistic defence trait against slavemaking ants. We find that this is the case if enslaved host workers are related to nearby host nests. In a population genetic study, we confirm that enslaved workers are, indeed, more closely related to host nests within the raiding range of their resident slavemaker nest, than to host nests outside the raiding range. This small-scale population structure seems to be a result of polydomy (e.g. the occupation of several nests in close proximity by a single colony) and could have enabled the evolution of 'rebellion' by kin selection.
Collapse
Affiliation(s)
- T Pamminger
- Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany; School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | | |
Collapse
|
25
|
Context-dependent responses to neighbours and strangers in wild European rabbits (Oryctolagus cuniculus). Behav Processes 2014; 106:17-21. [DOI: 10.1016/j.beproc.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 11/23/2022]
|
26
|
Cues or meaningless objects? Differential responses of the ant Formica cinerea to corpses of competitors and enslavers. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Scharf I, Martin OY. Same-sex sexual behavior in insects and arachnids: prevalence, causes, and consequences. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1610-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Delattre O, Châline N, Chameron S, Lecoutey E, Jaisson P. Social parasite pressure affects brood discrimination of host species in Temnothorax ants. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Allon O, Pascual-Garrido A, Sommer V. Army ant defensive behaviour and chimpanzee predation success: field experiments in Nigeria. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2012.00946.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- O. Allon
- Department of Anthropology; University College London; London; UK
| | | | | |
Collapse
|
30
|
|
31
|
Scharf I, Modlmeier AP, Fries S, Tirard C, Foitzik S. Characterizing the collective personality of ant societies: aggressive colonies do not abandon their home. PLoS One 2012; 7:e33314. [PMID: 22457751 PMCID: PMC3310061 DOI: 10.1371/journal.pone.0033314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/07/2012] [Indexed: 11/18/2022] Open
Abstract
Animal groups can show consistent behaviors or personalities just like solitary animals. We studied the collective behavior of Temnothorax nylanderi ant colonies, including consistency in behavior and correlations between different behavioral traits. We focused on four collective behaviors (aggression against intruders, nest relocation, removal of infected corpses and nest reconstruction) and also tested for links to the immune defense level of a colony and a fitness component (per-capita productivity). Behaviors leading to an increased exposure of ants to micro-parasites were expected to be positively associated with immune defense measures and indeed colonies that often relocated to other nest sites showed increased immune defense levels. Besides, colonies that responded with low aggression to intruders or failed to remove infected corpses, showed a higher likelihood to move to a new nest site. This resembles the trade-off between aggression and relocation often observed in solitary animals. Finally, one of the behaviors, nest reconstruction, was positively linked to per-capita productivity, whereas other colony-level behaviors, such as aggression against intruders, showed no association, albeit all behaviors were expected to be important for fitness under field conditions. In summary, our study shows that ant societies exhibit complex personalities that can be associated to the physiology and fitness of the colony. Some of these behaviors are linked in suites of correlated behaviors, similar to personalities of solitary animals.
Collapse
Affiliation(s)
- Inon Scharf
- Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany.
| | | | | | | | | |
Collapse
|
32
|
Buehlmann C, Hansson BS, Knaden M. Path integration controls nest-plume following in desert ants. Curr Biol 2012; 22:645-9. [PMID: 22405868 DOI: 10.1016/j.cub.2012.02.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/20/2012] [Accepted: 02/15/2012] [Indexed: 11/19/2022]
Abstract
The desert ant Cataglyphis fortis is equipped with sophisticated navigational skills for returning to its nest after foraging. The ant's primary means for long-distance navigation is path integration, which provides a continuous readout of the ant's approximate distance and direction from the nest. The nest is pinpointed with the aid of visual and olfactory landmarks. Similar landmark cues help ants locate familiar food sites. Ants on their outward trip will position themselves so that they can move upwind using odor cues to find food. Here we show that homing ants also move upwind along nest-derived odor plumes to approach their nest. The ants only respond to odor plumes if the state of their path integrator tells them that they are near the nest. This influence of path integration is important because we could experimentally provoke ants to follow odor plumes from a foreign, conspecific nest and enter that nest. We identified CO(2) as one nest-plume component that can by itself induce plume following in homing ants. Taken together, the results suggest that path-integration information enables ants to avoid entering the wrong nest, where they would inevitably be killed by resident ants.
Collapse
|