1
|
Clark DL, Macedonia JM, Rowe JW, Austin MR, Centurione IM, Valle CA. Galápagos lava lizards (Microlophus bivittatus) respond dynamically to displays from interactive conspecific robots. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2732-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Woo KL, Rieucau G, Burke D. Computer-animated stimuli to measure motion sensitivity: constraints on signal design in the Jacky dragon. Curr Zool 2018; 63:75-84. [PMID: 29491965 PMCID: PMC5804146 DOI: 10.1093/cz/zow074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/20/2016] [Indexed: 11/12/2022] Open
Abstract
Identifying perceptual thresholds is critical for understanding the mechanisms that underlie signal evolution. Using computer-animated stimuli, we examined visual speed sensitivity in the Jacky dragon Amphibolurus muricatus, a species that makes extensive use of rapid motor patterns in social communication. First, focal lizards were tested in discrimination trials using random-dot kinematograms displaying combinations of speed, coherence, and direction. Second, we measured subject lizards’ ability to predict the appearance of a secondary reinforcer (1 of 3 different computer-generated animations of invertebrates: cricket, spider, and mite) based on the direction of movement of a field of drifting dots by following a set of behavioural responses (e.g., orienting response, latency to respond) to our virtual stimuli. We found an effect of both speed and coherence, as well as an interaction between these 2 factors on the perception of moving stimuli. Overall, our results showed that Jacky dragons have acute sensitivity to high speeds. We then employed an optic flow analysis to match the performance to ecologically relevant motion. Our results suggest that the Jacky dragon visual system may have been shaped to detect fast motion. This pre-existing sensitivity may have constrained the evolution of conspecific displays. In contrast, Jacky dragons may have difficulty in detecting the movement of ambush predators, such as snakes and of some invertebrate prey. Our study also demonstrates the potential of the computer-animated stimuli technique for conducting nonintrusive tests to explore motion range and sensitivity in a visually mediated species.
Collapse
Affiliation(s)
- Kevin L Woo
- SUNY Empire State College, Metropolitan Center, 325 Hudson Street, New York, NY 10013-1005, USADepartment of Biological Sciences, Florida International University, 3000 Northeast 151 St, North Miami, FL 33181, USA,School of Psychology, University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales, 2258, Australia
| | - Guillaume Rieucau
- SUNY Empire State College, Metropolitan Center, 325 Hudson Street, New York, NY 10013-1005, USADepartment of Biological Sciences, Florida International University, 3000 Northeast 151 St, North Miami, FL 33181, USA,School of Psychology, University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales, 2258, Australia
| | - Darren Burke
- SUNY Empire State College, Metropolitan Center, 325 Hudson Street, New York, NY 10013-1005, USADepartment of Biological Sciences, Florida International University, 3000 Northeast 151 St, North Miami, FL 33181, USA,School of Psychology, University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales, 2258, Australia
| |
Collapse
|
3
|
Chouinard-Thuly L, Gierszewski S, Rosenthal GG, Reader SM, Rieucau G, Woo KL, Gerlai R, Tedore C, Ingley SJ, Stowers JR, Frommen JG, Dolins FL, Witte K. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr Zool 2017; 63:5-19. [PMID: 29491958 PMCID: PMC5804155 DOI: 10.1093/cz/zow104] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/12/2016] [Indexed: 11/14/2022] Open
Abstract
Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior.
Collapse
Affiliation(s)
- Laura Chouinard-Thuly
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Quebec, Canada H3A 1B1
| | - Stefanie Gierszewski
- Research Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein Str. 2, Siegen 57068, Germany
| | - Gil G. Rosenthal
- Ecology & Evolutionary Biology, Texas A&M University, 3258 TAMU College Station, TX 77843, USA
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, Calnali, Hidalgo, México
| | - Simon M. Reader
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Quebec, Canada H3A 1B1
| | - Guillaume Rieucau
- Department of Biological Sciences, Florida International University, 3000 Northeast 151 Street, North Miami, FL 33181, USA
| | - Kevin L. Woo
- SUNY Empire State College, Metropolitan Center, 325 Hudson Street, New York, NY 10013-1005, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Cynthia Tedore
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund 22362, Sweden
| | - Spencer J. Ingley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Coker Hall, Chapel Hill, NC 27599, USA
| | - John R. Stowers
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, Vienna 1030, Austria
- loopbio gmbh, Hauptstrasse 93, Kritzendorf 3420, Austria
| | - Joachim G. Frommen
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, Hinterkappelen 3032, Switzerland
| | - Francine L. Dolins
- Department of Behavioral Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA
| | - Klaudia Witte
- Research Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein Str. 2, Siegen 57068, Germany
| |
Collapse
|
5
|
Moura LN, Silva ML, Garotti MMF, Rodrigues ALF, Santos AC, Ribeiro IF. Gestural communication in a new world parrot. Behav Processes 2014; 105:46-8. [PMID: 24631994 DOI: 10.1016/j.beproc.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 11/29/2022]
Abstract
Male birds can use visual signals to provide information about their sexual status, via bright coloration, sophisticated sexual displays and elaborate tail and head crests. The majority of forest bird species use vocal communication as their main strategy to show their physiological status during breeding season. It is also used to keep contact between individuals in the same group, in agonistic contexts, and by chicks begging for food. We registered, for the very first time, gestural communication acting in the context of biparental care for the Orange-winged Amazon, Amazona amazonica. This parrot presents at least nine different sounds uttered in contexts of alarm, agonistic, foraging, contact flight and others. This finding suggests that despite being a vocal species, this parrot can perform gestural communication related to parental care. The gestures exhibited by this species represent a strategy for survival, a clever way to protect the nest, reducing the risk of attracting the attention of predators.
Collapse
Affiliation(s)
- Leiliany N Moura
- Laboratório de Ornitologia e Bioacústica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.
| | - Maria L Silva
- Laboratório de Ornitologia e Bioacústica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.
| | - Marilice M F Garotti
- Laboratório de Ecologia e Desenvolvimento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Brazil.
| | - Angélica L F Rodrigues
- Laboratório de Ornitologia e Bioacústica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.
| | - Adrine C Santos
- Laboratório de Ecologia e Desenvolvimento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Brazil.
| | - Ivete F Ribeiro
- Laboratório de Ecologia e Desenvolvimento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Brazil.
| |
Collapse
|