1
|
Jiang S, Yan H, Lu X, Wei R, Chen H, Zhang A, Shi W, Xia L. How to improve the outcomes of elderly acute myeloid leukemia patients through allogeneic hematopoietic stem cell transplantation. Front Immunol 2023; 14:1102966. [PMID: 37207218 PMCID: PMC10189056 DOI: 10.3389/fimmu.2023.1102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
In recent years, with the gradual advancement of haploidentical transplantation technology, the availability of donors has increased significantly, along with the widespread use of reduced-intensity conditioning and the improvement of nursing techniques, giving more elderly acute myeloid leukemia (AML) patients the chance to receive allogeneic hematopoietic stem cell transplantation. We have summarized the classic and recently proposed pre-transplant assessment methods and assessed the various sources of donors, conditioning regimens, and post-transplant complication management based on the outcomes of large-scale clinical studies for elderly AML patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Shi
- *Correspondence: Linghui Xia, ; Wei Shi,
| | | |
Collapse
|
2
|
Takesue Y, Hanai Y, Oda K, Hamada Y, Ueda T, Mayumi T, Matsumoto K, Fujii S, Takahashi Y, Miyazaki Y, Kimura T. Clinical Practice Guideline for the Therapeutic Drug Monitoring of Voriconazole in Non-Asian and Asian Adult Patients: Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Clin Ther 2022; 44:1604-1623. [DOI: 10.1016/j.clinthera.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
|
3
|
Hannemann M, Wilmes D, Dombrowski F, Löffler J, Kaminski A, Hummel A, Ulm L, Bohnert J, Rickerts V, Springer J, Lode HN, Ehlert K. Splenic rupture and fungal endocarditis in a pediatric patient with invasive fusariosis after allogeneic hematopoietic stem cell transplantation for aplastic anemia: A case report. Front Pediatr 2022; 10:1060663. [PMID: 36533236 PMCID: PMC9755516 DOI: 10.3389/fped.2022.1060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Invasive mold infections are a well-known and life-threatening condition after allogeneic hematopoietic stem cell transplantation (HSCT). While Aspergillus species are recognized as predominant pathogens, Fusarium species should also be considered due to their broad environmental distribution and the expected poor outcome of invasive fusariosis. Particularly, splenic rupture as a complication of disseminated disease has not been reported yet. CASE PRESENTATION Two weeks after allogeneic HSCT for severe aplastic anemia, a 16-year-old boy presented with painful, erythematous skin nodules affecting the entire integument. As disseminated mycosis was considered, treatment with liposomal amphotericin B and voriconazole (VCZ) was initiated. Invasive fusariosis was diagnosed after histological and previously unpublished polymerase chain reaction-based examination of skin biopsies. Microbiological tests revealed Fusarium solani species. Despite stable neutrophil engraftment and uninterrupted treatment with VCZ, he developed mold disease-associated splenic rupture with hypovolemic shock and fungal endocarditis. The latter induced a cardiac thrombus and subsequent embolic cerebral infarctions with unilateral hemiparesis. Following cardiac surgery, the patient did not regain consciousness because of diffuse cerebral ischemia, and he died on day +92 after HSCT. CONCLUSION Invasive fusariosis in immunocompromised patients is a life-threatening condition. Despite antimycotic treatment adapted to antifungal susceptibility testing, the patient reported here developed uncommon manifestations such as splenic rupture and fungal endocarditis.
Collapse
Affiliation(s)
- Maurice Hannemann
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Dunja Wilmes
- Division for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Frank Dombrowski
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Kaminski
- Department for Heart and Vascular Surgery, Klinikum Karlsburg, Karlsburg, Germany
| | - Astrid Hummel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Lena Ulm
- Institute of Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Bohnert
- Institute of Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Volker Rickerts
- Division for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Jan Springer
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Holger N Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Karoline Ehlert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Changing Epidemiology of Invasive Fungal Disease in Allogeneic Hematopoietic Stem Cell Transplantation. J Fungi (Basel) 2021; 7:jof7100848. [PMID: 34682269 PMCID: PMC8539090 DOI: 10.3390/jof7100848] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal disease (IFD) is a common cause of morbidity and mortality in patients with hematologic malignancies, especially among those undergoing allogeneic hematopoietic stem cell transplantation (HSCT). The epidemiology of IFD in HSCT patients has been evolving over the last decades, mainly in relation to changes in HSCT therapies such as antifungal prophylaxis. A progressive decrease in Candida albicans infection has been documented, alongside a progressive increase in infections caused by non-albicans Candida species, filamentous fungi, and/or multidrug-resistant fungi. Currently, the most frequent IFD is invasive aspergillosis. In some parts of the world, especially in north Central Europe, a high percentage of Aspergillus fumigatus isolates are azole-resistant. New diagnostic techniques have documented the existence of cryptic Aspergillus species with specific characteristics. An increase in mucormycosis and fusariosis diagnoses, as well as diagnoses of other rare fungi, have also been described. IFD epidemiology is likely to continue changing further due to both an increased use of mold-active antifungals and a lengthened survival of patients with HSCT that may result in hosts with weaker immune systems. Improvements in microbiology laboratories and the widespread use of molecular diagnostic tools will facilitate more precise descriptions of current IFD epidemiology. Additionally, rising resistance to antifungal drugs poses a major threat. In this scenario, knowledge of current epidemiology and accurate IFD diagnoses are mandatory in order to establish correct prophylaxis guidelines and appropriate early treatments.
Collapse
|
5
|
Taghvaye-Masoumi H, Hadjibabaie M, Ghadimi M, Zarif-Yeganeh M, Vaezi M, Ghavamzadeh A. Association of Voriconazole Trough Plasma Concentration with Efficacy and Incidence of Hepatotoxicity in Iranian Patients with Hematological Malignancies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:62-71. [PMID: 34400941 PMCID: PMC8170753 DOI: 10.22037/ijpr.2020.112330.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
There are conflicting data regarding the association between plasma concentration of voriconazole (VCZ) and both efficacy and safety. This study investigates the association of VCZ trough plasma level with clinical efficacy and hepatotoxicity in the Iranian population suffering hematological malignancies. This cross-sectional study was performed on adult Iranian patients (age ≥ 18 years) with hematological malignancies undergoing treatment with oral or intravenous VCZ for proven or probable invasive aspergillosis. Plasma concentrations of VCZ were measured at two time points on day 4 and 14 during the study period. A total of 60 VCZ trough concentrations of 30 patients were drawn on days 4 and 14 after the initiation of treatment. There was no definite correlation between the mean plasma concentration of VCZ and VCZ dosage (p = 0.134, r = 0.280). In multivariable model, only plasma concentration of VCZ on day 14 was associated with the incidence of hepatotoxicity (p = 0.013; OR = 1.42, 95% CI = 1.07-3.24). Plasma trough concentration neither on day 4 nor on day 14 was related to the treatment response. No significant association was observed between the mean plasma concentration of VCZ and 3-month patients’ survival (p = 0.696). To conclude, VCZ trough concentration may not be a predictor of treatment response or 3-month patients’ survival. However, the wide inter- and intra-patient variability of VCZ plasma concentration coupled with the observed association between VCZ trough level and the incidence of hepatotoxicity would pose the question regarding the potential benefit of VCZ concentration monitoring.
Collapse
Affiliation(s)
- Hamidreza Taghvaye-Masoumi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Molouk Hadjibabaie
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghadimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morvarid Zarif-Yeganeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Favorable Effects of Voriconazole Trough Concentrations Exceeding 1 μg/mL on Treatment Success and All-Cause Mortality: A Systematic Review and Meta-Analysis. J Fungi (Basel) 2021; 7:jof7040306. [PMID: 33923727 PMCID: PMC8072959 DOI: 10.3390/jof7040306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
This systematic review and meta-analysis examined the optimal trough concentration of voriconazole for adult patients with invasive fungal infections. We used stepwise cutoffs of 0.5-2.0 μg/mL for efficacy and 3.0-6.0 μg/mL for safety. Studies were included if they reported the rates of all-cause mortality and/or treatment success, hepatotoxicity, and nephrotoxicity according to the trough concentration. Twenty-five studies involving 2554 patients were included. The probability of mortality was significantly decreased using a cutoff of ≥1.0 μg/mL (odds ratio (OR) = 0.34, 95% confidence interval (CI) = 0.15-0.80). Cutoffs of 0.5 (OR = 3.48, 95% CI = 1.45-8.34) and 1.0 μg/mL (OR = 3.35, 95% CI = 1.52-7.38) also increased the treatment success rate. Concerning safety, significantly higher risks of hepatotoxicity and neurotoxicity were demonstrated at higher concentrations for all cutoffs, and the highest ORs were recorded at 4.0 μg/mL (OR = 7.39, 95% CI = 3.81-14.36; OR = 5.76, 95% CI 3.14-10.57, respectively). Although further high-quality trials are needed, our findings suggest that the proper trough concentration for increasing clinical success while minimizing toxicity is 1.0-4.0 μg/mL for adult patients receiving voriconazole therapy.
Collapse
|
7
|
Shang S, Cheng L, Li X, Xiang R, Yu M, Xiong L, Chen Y. Effect of CYP2C19 polymorphism on the plasma voriconazole concentration and voriconazole-to-voriconazole-N-oxide concentration ratio in elderly patients. Mycoses 2020; 63:1181-1190. [PMID: 32416606 DOI: 10.1111/myc.13105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Effects of CYP2C19 polymorphism on voriconazole concentration (C0 ), dose-adjusted trough concentrations (C0 /dose) and voriconazole-to-voriconazole-N-oxide concentration ratio (C0 /CN ) have not been fully investigated. OBJECTIVES To investigate correlations of CYP2C19 polymorphisms with plasma concentrations of voriconazole and the major metabolite voriconazole-N-oxide in elderly patients. METHODS A prospective, multi-centre, non-intervention, open clinical study was conducted within Southwestern Chinese patients clinically diagnosed with invasive fungal infections, to investigate the associations of CYP2C19∗2 (681G > A), CYP2C19∗3 (636G > A) and CYP2C19∗17 (-806C > T) genetic polymorphisms with voriconazole C0 , C0 /dose and C0 /CN . RESULTS The study included 131 adult patients, of which 72 were elderly (≥60 years) and 59 were adults (<60 years). The allele frequencies of CYP2C19∗2, ∗3 and ∗17 in the elderly cohort were 61.1%, 29.9% and 7.6%, respectively, which were similar to those in the adult cohort (66.9%, 29.7% and 2.5%, respectively; P > .05). The median voriconazole C0 (C0 ), C0 /dose and C0 /CN ratio in patients with the CYP2C19∗1/∗2 and CYP2C19∗2/∗2 genotypes were significantly higher than those in patients with the CYP2C19∗1/∗1 genotype in the adult cohort (P < .05). The C0 and C0 /dose in patients with the CYP2C19∗1/∗3 and CYP2C19∗2/∗2 genotypes, and the C0 /CN ratio for patients with the CYP2C19∗1/∗2 genotype were numerically higher than those in patients with the CYP2C19∗1/∗1 genotype in the elderly cohort, but this difference was not statistically significant (P > 0.05). The C0 , C0 /dose and C0 /CN in patients with poor metaboliser phenotypes were higher than in those with normal metaboliser phenotypes and C0 in patients with intermediate metaboliser phenotypes were significantly higher than in those with normal metaboliser phenotypes in the adult cohort (P < .05). However, there were no significant differences in the C0 , C0 /dose and C0 /CN among different CYP2C19-predicted metabolic phenotypes in the elderly cohort. CONCLUSIONS Voriconazole C0 , C0 /dose and C0 /CN ratio are not significantly affected by the CYP2C19∗2/∗3 polymorphisms in the elderly patients.
Collapse
Affiliation(s)
- Shenglan Shang
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyu Li
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
- Department of Pharmacy, Handan Branch of No. 980 Hospital of PLA, Handan, China
| | - Rongfeng Xiang
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingjie Yu
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Lirong Xiong
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongchuan Chen
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
8
|
Lee J, Ng P, Hamandi B, Husain S, Lefebvre MJ, Battistella M. Effect of Therapeutic Drug Monitoring and Cytochrome P450 2C19 Genotyping on Clinical Outcomes of Voriconazole: A Systematic Review. Ann Pharmacother 2020; 55:509-529. [DOI: 10.1177/1060028020948174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives To examine current knowledge on the clinical utility of therapeutic drug monitoring (TDM) in voriconazole therapy, the impact of CYP2C19 genotype on voriconazole plasma concentrations, and the role of CYP2C19 genotyping in voriconazole therapy. Data Sources Three literature searches were conducted for original reports on (1) TDM and voriconazole outcomes and (2) voriconazole and CYP2C19 polymorphisms. Searches were conducted through EMBASE, MEDLINE/PubMed, Scopus, and Cochrane Central Register of Controlled Trials from inception to June 2020. Study Selection and Data Extraction Randomized controlled trials, cohort studies, and case series with ≥10 patients were included. Only full-text references in English were eligible. Data Synthesis A total of 63 studies were reviewed. TDM was recommended because of established concentration and efficacy/toxicity relationships. Voriconazole trough concentrations ≥1.0 mg/L were associated with treatment success; supratherapeutic concentrations were associated with increased neurotoxicity; and hepatotoxicity associations were more prevalent in Asian populations. CYP2C19 polymorphisms significantly affect voriconazole metabolism, but no relationship with efficacy/safety were found. Genotype-guided dosing with TDM was reported to increase chances of achieving therapeutic range. Relevance to Patient Care and Clinical Practice Genotype-guided dosing with TDM is a potential solution to optimizing voriconazole efficacy while avoiding treatment failures and common toxicities. Conclusions Voriconazole plasma concentrations and TDM are treatment outcome predictors, but research is needed to form a consensus target therapeutic range and dosage adjustment guidelines based on plasma concentrations. CYP2C19 polymorphisms are a predictor of voriconazole concentrations and metabolism, but clinical implications are not established. Large-scale, high-methodological-quality trials are required to investigate the role for prospective genotyping and establish CYP2C19-guided voriconazole dosing recommendations.
Collapse
Affiliation(s)
| | - Patrick Ng
- University Health Network, Toronto, ON, Canada
| | - Bassem Hamandi
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | - Shahid Husain
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | | | - Marisa Battistella
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| |
Collapse
|
9
|
Hamada Y, Ueda T, Miyazaki Y, Nakajima K, Fukunaga K, Miyazaki T, Nakada-Motokawa N, Nagao M, Kawamura H, Shigemi A, Ebihara F, Kimura T, Ikegame K, Uchino M, Ikeuchi H, Takesue Y. Effects of antifungal stewardship using therapeutic drug monitoring in voriconazole therapy on the prevention and control of hepatotoxicity and visual symptoms: A multicentre study conducted in Japan. Mycoses 2020; 63:779-786. [PMID: 32510723 PMCID: PMC7496238 DOI: 10.1111/myc.13129] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022]
Abstract
Background Hepatotoxicity and visual symptoms are common adverse effects (AEs) of voriconazole therapy. Objective To retrospectively evaluate the effects of treatment modification based on therapeutic drug monitoring on AEs in patients undergoing voriconazole therapy. Methods The target voriconazole trough concentration (Cmin) was 1‐5 µg/mL. Receiver operating characteristic curves were used to determine Cmin cut‐offs for AEs. Results A total of 401 patients were included. Among 108 patients with high initial Cmin, voriconazole was discontinued in 32 and the dose was reduced in 71. Among 44 patients with low initial Cmin, voriconazole was discontinued in 4 and the dose was increased in 19. Hepatotoxicity occurred in 6.0% of patients, after a median of 10 days. Visual symptoms were evident in 9.5% of patients after a median of 4 days. Initial Cmin was significantly associated with visual symptoms but not hepatotoxicity, which suggested the effect of treatment modification on hepatotoxicity. However, both hepatotoxicity and visual symptoms were significantly correlated with Cmin at the onset of AEs, and the Cmin cut‐offs were 3.5 μg/mL for hepatotoxicity and 4.2 μg/mL for visual symptoms. Voriconazole was discontinued after the occurrence of AEs in 62.5% of patients with hepatotoxicity but only 26.3% of patients with visual symptoms. With dose adjustment, treatment was completed in 8/9 patients with hepatotoxicity and 27/28 patients with visual symptoms. Conclusions A significant preventive effect was demonstrated on hepatotoxicity, but not on visual symptoms because of earlier occurrence. With treatment modification after the occurrence of AEs, most patients completed therapy.
Collapse
Affiliation(s)
- Yukihiro Hamada
- Department of Pharmacy, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Takashi Ueda
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Nakajima
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
| | - Keiko Fukunaga
- Department of Hematology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Nana Nakada-Motokawa
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Miki Nagao
- Department of Infection Control and Prevention, Kyoto University Hospital, Kyoto, Japan
| | - Hideki Kawamura
- Division of Medical and Environmental Safety, Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan
| | - Akari Shigemi
- Division of Medical and Environmental Safety, Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan
| | - Fumiya Ebihara
- Department of Pharmacy, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Toshimi Kimura
- Department of Pharmacy, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Kazuhiro Ikegame
- Department of Hematology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Motoi Uchino
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroki Ikeuchi
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshio Takesue
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
10
|
Therapeutic Drug Monitoring of Antifungal Drugs: Another Tool to Improve Patient Outcome? Infect Dis Ther 2020; 9:137-149. [PMID: 32026399 PMCID: PMC7054538 DOI: 10.1007/s40121-020-00280-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/28/2023] Open
Abstract
Introduction This study aimed to examine the relationship among adequate dose, serum concentration and clinical outcome in a non-selected group of hospitalized patients receiving antifungals. Methods Prospective cross-sectional study performed between March 2015 and June 2015. Dosage of antifungals was considered adequate according to the IDSA guidelines, whereas trough serum concentrations (determined with HPLC) were considered adequate as follows: fluconazole > 11 µg/ml, echinocandins > 1 µg/ml, voriconazole 1–5.5 µg/ml and posaconazole > 0.7 µg/ml. Results During the study period, 84 patients (65.4% male, 59.6 years) received antifungals for prophylaxis (40.4%), targeted (31.0%) and empirical therapy (28.6%). The most frequent drug was micafungin (28/84; 33.3%) followed by fluconazole (23/84; 27.4%), voriconazole (15/84; 17.9%), anidulafungin (8/84; 9.5%), posaconazole (7/84; 8.3%) and caspofungin (3/84; 3.6%). Considerable interindividual variability was observed for all antifungals with a large proportion of the patients (64.3%) not attaining adequate trough serum concentrations, despite receiving an adequate antifungal dose. Attaining the on-target serum antifungal level was significantly associated with a favorable clinical outcome (OR = 0.02; 95% CI 0.01–0.64; p = 0.03), whereas the administration of an adequate antifungal dosage was not. Conclusions With the standard antifungal dosage, a considerable proportion of patients have low drug concentrations, which are associated with poor clinical outcome.
Collapse
|
11
|
Girmenia C, Annino L, Bertaina A, Mariotti B, Caselli D, Fanci R, Barberi W, Marchesi F, Carotti A, Ferrari A, Cerchiara E, Cupelli L, Arcioni F, Ribersani M, Proia A, Cartoni C, Girardi K, Venditti A, Cassetta MI, Fallani S, Novelli A. Voriconazole treatment in adults and children with hematological diseases: can it be used without measurement of plasma concentration? Med Mycol 2019; 56:263-278. [PMID: 28992093 DOI: 10.1093/mmy/myx053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023] Open
Abstract
Indication and timing of trough plasma-voriconazole (VCZ)-concentration (t-PVC) measurement during VCZ treatment is a debated issue. Patterns of t-PVC were prospectively evaluated in pediatric (50 courses) and adult (95 courses) hematologic patients. Efficacy patterns were defined: adequate, t-PVC always ≥1 mcg/ml; borderline, at least one t-PVC measurement <1 mcg/ml but median value of the measurements ≥1 mcg/ml; inadequate, median value of the measurements <1 mcg/ml. Toxicity patterns were defined: favorable, t-PVC always ≤5 mcg/ml; borderline, one or more t-PVC measurements >5 mcg/ml but median value of the measurements ≤5 mcg/ml; unfavorable, median value of the measurements >5 mcg/ml. In children and adults the mean t-PVCs were higher during intravenous treatments. The t-PVC efficacy pattern was adequate, borderline and inadequate in 48%, 12%, and 40% of courses, respectively, in children, and in 66.3%, 16.8%, and 16.8% of courses, respectively, in adults. Adequate efficacy pattern was more frequent in children with body weight above the median (≥25 kg) (OR 4.8; P = .011) and in adults with active hematological disease receiving intravenous therapy (OR 3.93; P = .006). Favorable toxicity pattern was more frequent in children receiving VCZ daily dosage below the median (<14 mg/kg) (OR 4.18; P = .027) and in adults with body weight below the median (<68 kg) (OR 0.22; P = .004). T-PVC measurement is generally needed, however, a non t-PVC guided approach may be considered in heavier adults receiving intravenous VCZ. The risk of supratherapeutic levels does not seem an absolute indication for t-PVC monitoring.
Collapse
Affiliation(s)
- Corrado Girmenia
- Dipartimento di Ematologia, Oncologia e Dermatologia, Azienda Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Luciana Annino
- Unità Operativa di Ematologia, Azienda Ospedaliera San Giovanni Addolorata, Rome, Italy
| | - Alice Bertaina
- Dipartimento di Oncoematologia, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Benedetta Mariotti
- Unità di Trapianto Cellule Staminali, Dipartimento di Biomedicina e Prevenzione, University Tor Vergata, Rome, Italy
| | | | - Rosa Fanci
- Unità Funzionale di Ematologia, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Walter Barberi
- Dipartimento di Ematologia, Oncologia e Dermatologia, Azienda Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Francesco Marchesi
- UOSD di Ematologia e Trapianti, Istituto Nazionale Tumori Regina Elena, IFO, Rome, Italy
| | - Alessandra Carotti
- Ematologia con Trapianto di Midollo Osseo, Azienda Ospedaliera e Universita' degli Studi di Perugia, Perugia, Italy
| | | | - Elisabetta Cerchiara
- UOC Ematologia Trapianto Cellule Staminali, Medicina Trasfusionale e Terapia Cellulare, Università Campus Biomedico, Rome, Italy
| | - Luca Cupelli
- Divisione di Ematologia, Ospedale S.Eugenio, Rome, Italy
| | - Francesco Arcioni
- Onco Ematologia Pediatrica con Trapianto di Midollo Osseo, Azienda Ospedalera Santa Maria della Misericordia, Perugia, Italy
| | - Michela Ribersani
- Istituto Mediterraneo di Ematologia, Policlinico Tor Vergata, Rome, Italy
| | - Anna Proia
- UOC di Ematologia e Trapianti di Cellule Staminali, Azienda Ospedaliera S. Camillo-Forlanini, Rome, Italy
| | - Claudio Cartoni
- Dipartimento di Ematologia, Oncologia e Dermatologia, Azienda Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Katia Girardi
- Dipartimento di Oncoematologia, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Adriano Venditti
- Ematologia, Dipartimento di Biomedicina e Prevenzione, University Tor Vergata, Rome, Italy
| | - Maria Iris Cassetta
- Dipartimento di Scienze della Salute, Sezione di farmacologia Clinica e Oncologia, Università degli Studi di Firenze oppure Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| | - Stefania Fallani
- Dipartimento di Scienze della Salute, Sezione di farmacologia Clinica e Oncologia, Università degli Studi di Firenze oppure Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| | - Andrea Novelli
- Dipartimento di Scienze della Salute, Sezione di farmacologia Clinica e Oncologia, Università degli Studi di Firenze oppure Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| |
Collapse
|
12
|
Liu Y, Qiu T, Liu Y, Wang J, Hu K, Bao F, Zhang C. Model-based Voriconazole Dose Optimization in Chinese Adult Patients With Hematologic Malignancies. Clin Ther 2019; 41:1151-1163. [PMID: 31079860 DOI: 10.1016/j.clinthera.2019.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE The objective of this study was to characterize the population pharmacokinetics of voriconazole and to identify factors that significantly affect pharmacokinetic parameters and to further investigate optimal dosage regimens in Chinese adult patients with hematologic malignancies. METHODS A prospective population pharmacokinetic analysis was performed on 186 concentration measurements obtained from 41 adult patients with hematologic malignancies. All enrolled patients were treated with voriconazole for diagnosed or suspected invasive fungal diseases. Oral voriconazole was routinely administered at a maintenance dose of 200 mg q12h. Serial blood samples were collected after steady-state of each patient. Monte Carlo simulation was applied to optimize dosage strategies. FINDINGS A one-compartment model with first-order absorption and elimination adequately described the data. The typical voriconazole clearance was 4.18 L/h, the volume of distribution was 88.9 L, and the absorption rate constant was 0.729 h-1. Clearance and steady-state exposure (AUC0-12) were found to be significantly associated with age and CYP2C19 phenotype. The average AUC0-12 of elderly patients (aged 60-90 years) was 2.1 times higher than that of relative younger patients (aged 18-59 years). The average AUC0-12 of poor metabolizers (PMs) was approximately 2.5 and 1.8 times higher than that of extensive and intermediate metabolizers (IMs), respectively. Considering both efficacy and tolerability, dosage regimens of 100 and 50 mg orally administered every 12 hours were recommended for elderly IMs and PMs, respectively. IMPLICATIONS A population pharmacokinetic model for voriconazole in Chinese adult patients with hematologic malignancies was successfully developed and could well capture voriconazole's pharmacokinetic characteristics. Age and CYP2C19 phenotype were found to significantly influence voriconazole clearance and should be taken into consideration clinically for dose optimization. The optimal dosage strategies in specific clinical scenarios were proposed in this study based on model simulation. Because of the high incidence of mutant CYP2C19*2 and *3 alleles, genetic testing seems to be necessary for Asian elderly patients when voriconazole treatment is initiated.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Centre, Beijing, China
| | - Tingting Qiu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Jijun Wang
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Kai Hu
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Fang Bao
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Chao Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China; Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Carlesse FADMC, de Araujo OR, Marques LMA, Silva DCBD, Senerchia AA, Petrilli AS. A pharmacokinetic model for voriconazole in a highly diversified population of children and adolescents with cancer. Mycoses 2019; 62:399-404. [PMID: 30687957 DOI: 10.1111/myc.12899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The wide pharmacokinetic variability of voriconazole leads to uncertainty regarding adequate exposure. OBJECTIVES To create a pharmacokinetic model that could help to explain the variability. METHODS Retrospective review of paediatric patients with cancer. Models were built using Pmetrics. RESULTS We analysed 158 trough measurements in 55 patients; in 41.8%, the serum levels were between 1 and 6 mg/L on initial measurement. After the measurements, dosage adjustments were made in 42 (76.3%) patients, and the percentage of adequate levels rose to 54.5%. Fourteen deaths (25.4%) were attributed to invasive fungal diseases. The mean serum levels were higher in deceased patients (mean ± SD: 3.1 ± 3.2 mg/L vs 2.5 ± 3.6 mg/L in survivors; P = 0.018), but the median doses per kg were higher in survivors. Drug exposure was also higher in deceased patients (mean ± SD of AUC: 19.2 ± 8.1 vs 9.5 ± 19.1 in survivors; P = 0.005). No correlation was found between serum concentrations <1 mg/L and death attributable to fungal disease. Bioavailability was estimated in 50%. The maximum velocity of clearance was reduced in deceased patients. CONCLUSIONS Extremely ill patients can be poor metabolizers of voriconazole. Therapeutic monitoring promotes only a limited improvement in drug management.
Collapse
Affiliation(s)
- Fabianne Altruda de Moraes Costa Carlesse
- Infection Control Committee GRAACC/IOP/UNIFESP, and Pediatric Department, UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Orlei Ribeiro de Araujo
- Intensive Care Unit, GRAACC/IOP/UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Leticia Maria Acioli Marques
- Infection Control Committee GRAACC/IOP/UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Dafne Cardoso Bourguignon da Silva
- Intensive Care Unit, GRAACC/IOP/UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Andreza Almeida Senerchia
- Clinical Research Department, GRAACC/IOP/UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Antonio Sergio Petrilli
- Pediatric Oncology Department, GRAACC/IOP/UNIFESP, and Pediatric Department, UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| |
Collapse
|
14
|
Perreault S, McManus D, Anderson A, Lin T, Ruggero M, Topal JE. Evaluating a voriconazole dose modification guideline to optimize dosing in patients with hematologic malignancies. J Oncol Pharm Pract 2018; 25:1305-1311. [PMID: 29996736 DOI: 10.1177/1078155218786028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Voriconazole is an azole antifungal utilized for prophylaxis and treatment of invasive fungal infections in hematologic patients. Previous studies have revealed decreased efficacy and increased toxicity with subtherapeutic <1 mcg/mL and supratherapeutic > 4 mcg/mL levels. A voriconazole dose modification guideline was introduced in July 2014 based on a retrospective analysis. OBJECTIVE The primary objective was to evaluate the voriconazole dose modification guideline. Secondary objectives were to identify patient-specific characteristics that contribute to inadequate levels, adverse effects, and breakthrough invasive fungal infections. METHODS This prospective study included 128 patients with 250 admissions who received voriconazole from July 2014 to February 2016. Eligible adult patients receiving voriconazole for prophylaxis or treatment with at least one trough level, drawn appropriately, were included. Demographics, adverse effects, and breakthrough invasive fungal infections were documented. RESULTS Voriconazole use was categorized as: new start, new start with loading dose, or continuation of home therapy. The median initial levels were 1.5, 3.5, and 1.7 mcg/mL with 62% (73/119), 55% (6/11), and 60% (72/120) within the therapeutic range, respectively. Using the voriconazole dose modification guideline, 80% were within goal by the second dose adjustment. Age ≤ 30 and BMI ≤ 25 kg/m2 had higher rates of subtherapeutic levels in the new start cohorts (p = 0.024 and p = 0.009). Approximately 7.6% of patients experienced an adverse effect with neurologic/psychological being the most common. A total of 8.5% of patients had a possible, probable or proven breakthrough invasive fungal infections while on voriconazole. CONCLUSION Using the voriconazole dose modification guideline, the number of patients that reached therapeutic range improved from 36% to 80% by the second dose adjustment (p = 0.007). This voriconazole dose modification guideline can be utilized to help dose and adjust voriconazole in order to achieve therapeutic levels.
Collapse
Affiliation(s)
- Sarah Perreault
- 1 Department of Pharmacy Services, Yale-New Haven Hospital, New Haven, CT, USA
| | - Dayna McManus
- 1 Department of Pharmacy Services, Yale-New Haven Hospital, New Haven, CT, USA
| | - Anthony Anderson
- 2 Department of Pharmacy Services, University of Miami, Miami, FL, USA
| | - Tiffany Lin
- 3 Department of Pharmacy Services, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Ruggero
- 4 Department of Pharmacy Services, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey E Topal
- 5 Department of Internal Medicine, Section of Infectious Disease, Yale-New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
15
|
Impact of CYP2C19 Genotype and Liver Function on Voriconazole Pharmacokinetics in Renal Transplant Recipients. Ther Drug Monit 2018; 39:422-428. [PMID: 28604474 PMCID: PMC5538305 DOI: 10.1097/ftd.0000000000000425] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Invasive fungal infection (IFI) is one of the leading causes of early death after renal transplantation. Voriconazole (VRC) is the first-line drug of IFI. Because of the large inter- and intraindividual variability in VRC plasma concentrations and the narrow therapeutic window for treating patients with IFIs, it is crucial to study the factors which could influence pharmacokinetic variability. We performed a population pharmacokinetics (PPK) study of VRC for personalized medicine. METHODS A total of 125 trough concentrations (Cmin) from 56 patients were evaluated, retrospectively. Nonlinear mixed effect model was used to describe a PPK model that was internally validated by bootstrap method. Potential covariates included demographic characteristics, physiological and pathological data, concomitant medications, and CYP2C19 genotype. RESULTS A 1-compartment model with first-order absorption and elimination was fit to characterize the VRC pharmacokinetics in renal transplant recipients (RTRs). Aspartate aminotransferase (AST) had a significant influence on clearance (CL) while CYP2C19 genotype had a major impact on the volume of distribution (V). The parameters of CL and V were 4.76 L/h and 22.47 L, respectively. The final model was V (L) = 22.47 × [1 + 2.21 × (EM = 1)] × [1 + 4.67 × (IM = 1)] × [1 + 3.30 × (PM = 1)] × exp (0.96); CL (L/h) = 4.76 × (AST/33)^(-0.23) × exp (0.14). VRC Cmin in intermediate metabolizers was significantly higher than in extensive metabolizers. CONCLUSIONS Liver function and CYP2C19 polymorphism are major determinants of VRC pharmacokinetic variability in RTRs. Genotypes and clinical biomarkers can determine the initial scheme. Subsequently, therapeutic drug monitoring can optimize clinical efficacy and minimize toxicity. Hence, this is a feasible way to facilitate personalized medicine in RTRs. In addition, it is the first report about PPK of VRC in RTRs.
Collapse
|
16
|
Stelzer D, Weber A, Ihle F, Matthes S, Ceelen F, Zimmermann G, Kneidinger N, Schramm R, Winter H, Zoller M, Vogeser M, Behr J, Neurohr C. Comparing Azole Plasma Trough Levels in Lung Transplant Recipients: Percentage of Therapeutic Levels and Intrapatient Variability. Ther Drug Monit 2017; 39:93-101. [PMID: 28282366 PMCID: PMC5348107 DOI: 10.1097/ftd.0000000000000371] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study compared therapeutic azole plasma trough levels (APL) of the azole antimycotics itraconazole (ITR), voriconazole (VOR), and posaconazole (POS) in lung transplant recipients and analyzed the influencing factors. In addition, intrapatient variability for each azole was determined. METHODS From July 2012 to July 2015, 806 APL of ITR, VOR, posaconazole liquid (POS-Liq), and posaconazole tablets (POS-Tab) were measured in 173 patients of the Munich Lung Transplantation Program. Therapeutic APL were defined as follows: ITR, ≥700 ng/mL; VOR, 1000-5500 ng/mL; and POS, ≥700 ng/mL (prophylaxis) and ≥1000 ng/mL (therapy). RESULTS VOR and POS-Tab reached the highest number of therapeutic APL, whereas POS-Liq showed the lowest percentage (therapy: ITR 50%, VOR 70%, POS-Liq 38%, and POS-Tab 82%; prophylaxis: ITR 62%, VOR 85%, POS-Liq 49%, and POS-Tab 76%). Risk factors for subtherapeutic APL of all azoles were the azole dose (ITR, P < 0.001; VOR, P = 0.002; POS-Liq, P = 0.006) and age over 60 years (ITR, P = 0.003; VOR, P = 0.002; POS-Liq, P = 0.039; POS-Tab, P < 0.001). Cystic fibrosis was a significant risk factor for subtherapeutic APL for VOR and POS-Tab (VOR, P = 0.002; POS-Tab, P = 0.005). Double lung transplantation (LTx) was significantly associated with less therapeutic APL for VOR and POS-Liq (VOR, P = 0.030; POS-Liq, P < 0.001). Concomitant therapy with 80 mg pantoprazole led to significantly fewer therapeutic POS APL as compared to 40 mg (POS-Liq, P = 0.015; POS-Tab, P < 0.001). VOR displayed the greatest intrapatient variability (46%), whereas POS-Tab showed the lowest (32%). CONCLUSIONS Our study showed that VOR and POS-Tab achieve the highest percentage of therapeutic APL in patients with LTx; POS-Tab showed the lowest intrapatient variability. APL are significantly influenced by azole dose, age, cystic fibrosis, type of LTx, and comedication with proton-pump inhibitors. Considering the high number of subtherapeutic APL, therapeutic drug monitoring should be integrated in the post-LTx management.
Collapse
Affiliation(s)
- Daniela Stelzer
- Department of Internal Medicine V, LMU-Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research DZL, Munich, Germany
- Departments of Hospital Pharmacy,
| | | | - Franziska Ihle
- Department of Internal Medicine V, LMU-Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research DZL, Munich, Germany
| | - Sandhya Matthes
- Department of Internal Medicine V, LMU-Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research DZL, Munich, Germany
| | - Felix Ceelen
- Department of Internal Medicine V, LMU-Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research DZL, Munich, Germany
| | - Gregor Zimmermann
- Department of Internal Medicine V, LMU-Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research DZL, Munich, Germany
| | - Nikolaus Kneidinger
- Department of Internal Medicine V, LMU-Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research DZL, Munich, Germany
| | | | | | | | - Michael Vogeser
- Institute of Laboratory Medicine, LMU-Munich, Munich, Germany
| | - Juergen Behr
- Department of Internal Medicine V, LMU-Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research DZL, Munich, Germany
| | - Claus Neurohr
- Department of Internal Medicine V, LMU-Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research DZL, Munich, Germany
| |
Collapse
|
17
|
Marks DI, Liu Q, Slavin M. Voriconazole for prophylaxis of invasive fungal infections after allogeneic hematopoietic stem cell transplantation. Expert Rev Anti Infect Ther 2017; 15:493-502. [PMID: 28335642 DOI: 10.1080/14787210.2017.1305886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Invasive fungal infections (IFIs) following allogeneic hematopoietic stem cell transplantation (alloHSCT) are associated with a high mortality, and accordingly most alloHSCT recipients receive prophylaxis with antifungal agents. Despite some improvement in outcomes of IFIs over time, they continue to represent substantial clinical risk, mortality, and financial burden. Areas covered: We review the main pathogens responsible for IFIs in recipients of alloHSCT, current treatment recommendations, and discuss clinical and economic considerations associated with voriconazole prophylaxis of IFIs in these patients. Expert commentary: The clinical efficacy of voriconazole appears to be at least equivalent to other antifungal treatments, and generally well tolerated. Overall, benefit-risk balance is favorable, and findings from cost-effectiveness analyses support the use of voriconazole prophylaxis of IFIs in recipients of alloHSCT.
Collapse
Affiliation(s)
- David I Marks
- a Adult BMT Unit, Bristol Haematology and Oncology Centre , University Hospitals Bristol NHS Foundation Trust , Bristol , UK
| | - Qifa Liu
- b Department of Hematology , Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Monica Slavin
- c Department of Infectious Diseases , Victorian Infectious Diseases Service, Royal Melbourne Hospital , Melbourne , Australia
| |
Collapse
|
18
|
Heo ST, Aitken SL, Tverdek FP, Kontoyiannis DP. How common is subsequent central nervous system toxicity in asymptomatic patients with haematologic malignancy and supratherapeutic voriconazole serum levels? Clin Microbiol Infect 2017; 23:387-390. [PMID: 28082193 DOI: 10.1016/j.cmi.2016.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES We sought to determine the frequency at which patients with elevated voriconazole (VRC) levels but no clinically evident central nervous system (CNS) toxicity subsequently develop CNS toxicity. METHODS We retrospectively reviewed the records of adult patients with haematolologic malignancy who had a VRC serum level >5.5 μg/mL at MD Anderson Cancer Center (January 2010 to December 2015). Patients with any documented CNS toxicity at the time the VRC level was obtained or patients whose VRC was discontinued as a response to high VRC level were excluded. Neurologic status was assessed using standard grading scales. Demographic and clinical characteristics, including potentially interacting medications, were correlated with the development of toxicity. RESULTS We identified 320 such patients (mean age, 57 ± 15 years; 202 male (63%)). Subsequent CNS toxicity was documented in only 16 patients (5%). The most common CNS toxicities were visual disturbances (9/16, 56%), depressed consciousness (5/16, 31%) and cognitive disturbance (4/16, 19%). Patients with CNS toxicity tended to be older than those without (64 ± 8 vs 57 ± 15 y, p 0.08). The use of one or more neurotoxic drugs was common in patients with subsequent CNS toxicity (14/16, 88%). Reduction of VRC dose associated with the high VRC level did not correlate with less subsequent CNS toxicity. CONCLUSIONS Development of subsequent CNS toxicity is uncommon in haematolologic malignancy patients with elevated VRC levels who had no evidence of toxicity at the time the level was obtained. Automatic reduction of VRC dose out of concern for impending CNS toxicity might not be warranted.
Collapse
Affiliation(s)
- S T Heo
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Infectious Diseases, Jeju National University School of Medicine, Jeju, South Korea
| | - S L Aitken
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F P Tverdek
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Safety, Efficacy, and Exposure-Response of Voriconazole in Pediatric Patients With Invasive Aspergillosis, Invasive Candidiasis or Esophageal Candidiasis. Pediatr Infect Dis J 2017; 36:e1-e13. [PMID: 27636722 PMCID: PMC5345593 DOI: 10.1097/inf.0000000000001339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Data on safety and efficacy of voriconazole for invasive aspergillosis (IA) and invasive candidiasis/esophageal candidiasis (IC/EC) in pediatric patients are limited. METHODS Patients aged 2-<18 years with IA and IC/EC were enrolled in 2 prospective open-label, non-comparative studies of voriconazole. Patients followed dosing regimens based on age, weight and indication, with adjustments permitted. Treatment duration was 6-12 weeks for IA patients, ≥14 days after last positive Candida culture for IC patients and ≥7 days after signs/symptoms resolution for EC patients. Primary analysis for both the studies was safety and tolerability of voriconazole. Secondary end points included global response success at week 6 and end of treatment (EOT), all-causality mortality and time to death. Voriconazole exposure-response relationship was explored. RESULTS Of 53 voriconazole-treated pediatric patients (31 IA; 22 IC/EC), 14 had proven/probable IA, 7 had confirmed IC and 10 had confirmed EC. Treatment-related hepatic and visual adverse events, respectively, were reported in 22.6% and 16.1% of IA patients, and 22.7% and 27.3% of IC/EC patients. All-causality mortality in IA patients was 14.3% at week 6; no deaths were attributed to voriconazole. No deaths were reported for IC/EC patients. Global response success rate was 64.3% (week 6 and EOT) in IA patients and 76.5% (EOT) in IC/EC patients. There was no association between voriconazole exposure and efficacy; however, a slight positive association between voriconazole exposure and hepatic adverse events was established. CONCLUSIONS Safety and efficacy outcomes in pediatric patients with IA and IC/EC were consistent with previous findings in adult patients.
Collapse
|
20
|
Different effects of lansoprazole and rabeprazole on the plasma voriconazole trough levels in allogeneic hematopoietic cell transplant recipients. Ann Hematol 2016; 95:1845-51. [PMID: 27535751 DOI: 10.1007/s00277-016-2782-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 11/27/2022]
Abstract
Voriconazole (VRC) is widely used as prophylaxis and in the treatment of invasive fungal disease (IFD) after allogeneic hematopoietic cell transplantation (HCT). We retrospectively examined the results of VRC therapeutic drug monitoring (TDM) in allogeneic HCT recipients. A total of 474 samples were obtained from 59 adult patients who received VRC during the first 100 days following HCT between 2009 and 2014 in our institute. Seventeen patients received VRC for prophylaxis of IFD, and 42 received VRC for the empirical or preemptive therapy for IFD. A total of 299 samples (63 %) were obtained during the administration of the intravenous form of VRC. The median VRC daily dose based on the actual body weight was 6.68 mg/kg/day (range, 1.92-10.41 mg/kg/day). The median VRC trough level was 0.99 mg/l (range, <0.09-5.45 mg/l). The multivariate analysis using a logistic regression model demonstrated significantly higher VRC trough levels (≥1.0 mg/l) in males (P < 0.001), empirical or preemptive therapy (P = 0.002), VRC daily dose based on the actual body weight ≥7 mg/kg/day (P < 0.001), and concomitant use of lansoprazole as compared to rabeprazole (P < 0.001). The concomitant use of calcineurin inhibitors and corticosteroids had no effects on VRC trough levels in multivariate analysis. These data suggest that lansoprazole and rabeprazole have different effects on the plasma VRC trough levels in the allogeneic HCT recipients.
Collapse
|
21
|
Luong ML, Al-Dabbagh M, Groll AH, Racil Z, Nannya Y, Mitsani D, Husain S. Utility of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother 2016; 71:1786-99. [DOI: 10.1093/jac/dkw099] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/29/2016] [Indexed: 11/12/2022] Open
|
22
|
Jin H, Wang T, Falcione BA, Olsen KM, Chen K, Tang H, Hui J, Zhai S. Trough concentration of voriconazole and its relationship with efficacy and safety: a systematic review and meta-analysis. J Antimicrob Chemother 2016; 71:1772-85. [PMID: 26968880 PMCID: PMC4896404 DOI: 10.1093/jac/dkw045] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/29/2016] [Indexed: 01/12/2023] Open
Abstract
This meta-analysis showed trough concentrations of 0.5 mg/L to be the lower limit of voriconazole during treatment, whereas trough concentrations of 3.0 mg/L were associated with an increased risk of moderate to severe hepatotoxicity, particularly for the Asian population. Objectives The optimum trough concentration of voriconazole for clinical response and safety is controversial. The objective of this review was to determine the optimum trough concentration of voriconazole and evaluate its relationship with efficacy and safety. Methods MEDLINE, EMBASE, ClinicalTrials.gov, the Cochrane Library and three Chinese literature databases were searched. Observational studies that compared clinical outcomes below and above the trough concentration cut-off value were included. We set the trough concentration cut-off value for efficacy as 0.5, 1.0, 1.5, 2.0 and 3.0 mg/L and for safety as 3.0, 4.0, 5.0, 5.5 and 6.0 mg/L. The efficacy outcomes were invasive fungal infection-related mortality, all-cause mortality, rate of successful treatment and rate of prophylaxis failure. The safety outcomes included incidents of hepatotoxicity, neurotoxicity and visual disorders. Results A total of 21 studies involving 1158 patients were included. Compared with voriconazole trough concentrations of >0.5 mg/L, levels of <0.5 mg/L significantly decreased the rate of treatment success (risk ratio = 0.46, 95% CI 0.29–0.74). The incidence of hepatotoxicity was significantly increased with trough concentrations >3.0, >4.0, >5.5 and >6.0 mg/L. The incidence of neurotoxicity was significantly increased with trough concentrations >4.0 and >5.5 mg/L. Conclusions A voriconazole level of 0.5 mg/L should be considered the lower threshold associated with efficacy. A trough concentration >3.0 mg/L is associated with increased hepatotoxicity, particularly for the Asian population, and >4.0 mg/L is associated with increased neurotoxicity.
Collapse
Affiliation(s)
- Haiying Jin
- Department of Pharmacy, Peking University Third Hospital, Beijing, China Department of Pharmacy, The Affiliated Hospital of Medical College, Ningbo University, Ningbo, Zhejiang, China
| | - Tiansheng Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China Department of Pharmacy Administration and Clinical Pharmacy, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Bonnie A Falcione
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keith M Olsen
- Department of Pharmacy Practice, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ken Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China Department of Pharmacy Administration and Clinical Pharmacy, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Huilin Tang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - John Hui
- Department of Pharmacy, Stanford University Hospital and Clinics, Palo Alto, CA, USA
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
23
|
Chuwongwattana S, Jantararoungtong T, Chitasombat MN, Puangpetch A, Prommas S, Dilokpattanamongkol P, Watcharananan SP, Sukasem C. A prospective observational study of CYP2C19 polymorphisms and voriconazole plasma level in adult Thai patients with invasive aspergillosis. Drug Metab Pharmacokinet 2016; 31:117-22. [PMID: 26861072 DOI: 10.1016/j.dmpk.2015.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/10/2015] [Accepted: 12/27/2015] [Indexed: 01/22/2023]
Abstract
The aim of this study was to investigate the association of genetic variants of CYP2C19 (CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles) and voriconazole trough plasma concentrations in Thai patients with invasive fungal infection. A total of 285 samples from patients with invasive fungal infection and treated with voriconazole were prospectively enrolled. At steady state, trough voriconazole concentrations were measured using tandem mass spectrophotometry and high performance liquid chromatography. The genetic variants in the CYP2C19 gene were genotyped for CYP2C19*2 (G681A), CYP2C19*3 (G636A) and CYP2C19*17 (C-806T) on plasma voriconazole level. Voriconazole Ctrough levels were positively associated with CYP2C19*3. The median Ctrough level for patients with the 636GA genotype (2.109, IQR 1.054-4.166 μg/ml) was statistically significantly higher than those with the 636GG genotype (1.596, IQR 0.755-2.980 μg/ml), P = 0.046. The patients with a poor metabolizer (PM; CYP2C19*2/*2, *2/*3) had voriconazole Ctrough level of 1.900 (IQR, 1.130-3.673 μg/ml). This was statistically significantly higher than that seen with the extensive metabolizer phenotype (1.470; IQR, 0.632-2.720 μg/ml), P = 0.039. An association between CYP2C19 variant alleles and high voriconazole plasma level was identified. Therefore, determining the CYP2C19 genotype before initiation of voriconazole treatment may be useful in optimizing the dosing regimen in Thai patients with invasive fungal infections.
Collapse
Affiliation(s)
- Sumonrat Chuwongwattana
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Maria N Chitasombat
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | | | - Siriorn P Watcharananan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.
| |
Collapse
|
24
|
Guinea J, Escribano P, Marcos-Zambrano LJ, Peláez T, Kestler M, Muñoz P, Vena A, López-Fabal F, Bouza E. Therapeutic drug monitoring of voriconazole helps to decrease the percentage of patients with off-target trough serum levels. Med Mycol 2016; 54:353-60. [PMID: 26739190 DOI: 10.1093/mmy/myv099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022] Open
Abstract
We monitored trough voriconazole serum concentrations from 107 patients (n = 258 samples) at 6 hospitals in Madrid. Most of the patients were male (67%) and had the following underlying conditions: hematological cancer (42%), solid organ transplantation (15%), chronic obstructive pulmonary disease (14%), human immunodeficiency virus infection (8.4%), solid cancer (5.6%), and other (29%). The indication for voriconazole administration was aspergillosis treatment (74.6%) and prophylaxis (14%). The main reasons for voriconazole trough drug monitoring were initiation of treatment/prophylaxis (33%), patient monitoring (47%), and suspected toxicity (3.5%). Levels (μg/ml) were subtherapeutic (<1; 18.2%), on-target (1-5.5; 71.3%), and high (>5.5; 10.5%). The samples percentage with on-target levels was significantly lower for the first sample than for subsequent samples (62.6% vs. 77.5%). "Subsequent samples," "admission in nonpediatric wards," "voriconazole used for treatment of invasive aspergillosis," and "use of proton pump inhibitors" were predictors of voriconazole therapeutic levels (≥1 μg/ml).
Collapse
Affiliation(s)
- Jesús Guinea
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigación Sanitaria del Hospital Gregorio Marañón CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigación Sanitaria del Hospital Gregorio Marañón CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Laura Judith Marcos-Zambrano
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigación Sanitaria del Hospital Gregorio Marañón
| | - Teresa Peláez
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigación Sanitaria del Hospital Gregorio Marañón CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Kestler
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigación Sanitaria del Hospital Gregorio Marañón
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigación Sanitaria del Hospital Gregorio Marañón CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Vena
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigación Sanitaria del Hospital Gregorio Marañón
| | | | - Emilio Bouza
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigación Sanitaria del Hospital Gregorio Marañón CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Cojutti P, Candoni A, Forghieri F, Isola M, Zannier ME, Bigliardi S, Luppi M, Fanin R, Pea F. Variability of Voriconazole Trough Levels in Haematological Patients: Influence of Comedications with cytochrome P450(CYP) Inhibitors and/or with CYP Inhibitors plus CYP Inducers. Basic Clin Pharmacol Toxicol 2015; 118:474-9. [PMID: 26572687 DOI: 10.1111/bcpt.12530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
Voriconazole plasma exposure greatly varies among haematological patients. The purpose of this study was to identify the magnitude of influence of comedications with CYP inhibitors and/or with CYP inhibitors plus CYP inducers on voriconazole trough level (Cmin ). Voriconazole Cmin was retrospectively assessed among haematological patients who underwent therapeutic drug monitoring (TDM). Univariate and multivariate linear mixed-effect regression analyses were performed to identify the independent predictors of normalized Cmin . Of the 83 included patients, 35 had comedications with CYP inhibitors (omeprazole or pantoprazole) and 21 with CYP inhibitors (omeprazole or pantoprazole) plus CYP inducers (methylprednisolone, dexamethasone, phenobarbital, rifampin or carbamazepine). Median Cmin value (n = 199) was 2.4 mg/L with a wide range of distribution (<0.2-13.5 mg/L). Median (IQR) normalized voriconazole Cmin value was significantly higher in the presence of CYP inhibitors (4.20 mg/L, 3.23-5.51 mg/L) than either in the absence of interacting cotreatments (2.55 mg/L, 1.54-3.47 mg/L) or in the presence of CYP inhibitors plus CYP inducers (2.16 mg/L, 1.19-3.09 mg/L). The presence of CYP inhibitors was highly significantly associated with Cmin >5.5 mg/L (OR: 23.22, 95% CI: 3.01-179.09, p = 0.003). No significant association emerged when CYP inhibitors were coadministered with CYP inducers (OR: 3.53, 95% CI: 0.36-34.95, p = 0.280). The amount of expected Cmin increase was significantly influenced by both the type and the dose of the administered proton pump inhibitor. The study highlights that the benefit from TDM of voriconazole may be maximal in those patients who are cotreated with CYP inhibitors and/or with CYP inhibitors plus CYP inducers, especially when receiving proton pump inhibitors (PPIs) at very high dosages intravenously.
Collapse
Affiliation(s)
- Piergiorgio Cojutti
- Institute of Clinical Pharmacology, University Teaching Hospital of Udine, Udine, Italy.,Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Anna Candoni
- Division of Haematology, University Teaching Hospital of Udine, Udine, Italy
| | - Fabio Forghieri
- Department of Medical and Surgical Sciences, Section of Haematology, University of Modena and Reggio Emilia, University Teaching Hospital of Modena, Modena, Italy
| | - Miriam Isola
- Department of Medical and Biological Sciences, Section of Statistics, University of Udine, Udine, Italy
| | - Maria Elena Zannier
- Division of Haematology, University Teaching Hospital of Udine, Udine, Italy
| | - Sara Bigliardi
- Department of Medical and Surgical Sciences, Section of Haematology, University of Modena and Reggio Emilia, University Teaching Hospital of Modena, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Haematology, University of Modena and Reggio Emilia, University Teaching Hospital of Modena, Modena, Italy
| | - Renato Fanin
- Division of Haematology, University Teaching Hospital of Udine, Udine, Italy
| | - Federico Pea
- Institute of Clinical Pharmacology, University Teaching Hospital of Udine, Udine, Italy.,Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| |
Collapse
|
26
|
Chau MM, Kong DCM, van Hal SJ, Urbancic K, Trubiano JA, Cassumbhoy M, Wilkes J, Cooper CM, Roberts JA, Marriott DJE, Worth LJ. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy, 2014. Intern Med J 2015; 44:1364-88. [PMID: 25482746 DOI: 10.1111/imj.12600] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antifungal agents may be associated with significant toxicity or drug interactions leading to sub-therapeutic antifungal drug concentrations and poorer clinical outcomes for patients with haematological malignancy. These risks may be minimised by clinical assessment, laboratory monitoring, avoidance of particular drug combinations and dose modification. Specific measures, such as the optimal timing of oral drug administration in relation to meals, use of pre-hydration and electrolyte supplementation may also be required. Therapeutic drug monitoring (TDM) of antifungal agents is warranted, especially where non-compliance, non-linear pharmacokinetics, inadequate absorption, a narrow therapeutic window, suspected drug interaction or unexpected toxicity are encountered. Recommended indications for voriconazole and posaconazole TDM in the clinical management of haematology patients are provided. With emerging knowledge regarding the impact of pharmacogenomics upon metabolism of azole agents (particularly voriconazole), potential applications of pharmacogenomic evaluation to clinical practice are proposed.
Collapse
Affiliation(s)
- M M Chau
- Pharmacy Department, The Royal Melbourne Hospital, Melbourne Health, Parkville, Victoria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Voriconazole is an azole useful for the prophylaxis and the treatment of aspergillosis and other fungal infections in immunosuppressed subjects, as those found in aplasia after aggressive polychemotherapy treatments, after hematopoietic stem cell, liver or lung transplantation. Its administration in therapeutic doses lead to extremely varied serum levels from patient to patient and even to the same patient. The explanations are varied: nonlinear pharmacokinetics, certain patient-related factors, including genetic polymorphisms in the cytochrome P450 2C19 gene, the kidney and liver function, simultaneous administration with other drugs metabolised by the same cytochrome. It is recommended to maintain the serum concentrations of voriconazole between 1.5 and 4 μg/mL. At lower values its efficacy decreases and at higher values the risk of neurological toxicity increases. Even at these concentrations it is not excluded the possible appearance of a variety of toxic effects, including on the liver, manifested by cholestasis, hepatocytolisis, or their combination. It is recommended to monitor the clinical and laboratory evolution of all patients treated with voriconazole, and of the serum levels of the drug of those who belong to risk groups, even if there is still no consensus on this issue, given the lack of correlation between the serum level and the occurrence of adverse effects in many patients.
Collapse
|
28
|
Optimizing azole antifungal therapy in the prophylaxis and treatment of fungal infections. Curr Opin Infect Dis 2015; 27:493-500. [PMID: 25229352 DOI: 10.1097/qco.0000000000000103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Azole antifungals are widely used in the prophylaxis and treatment of fungal infections, but are associated with a range of pharmacokinetic challenges and safety issues that necessitate individualized therapy to achieve optimal clinical outcomes. Recent advances in our knowledge of azole exposure-response relationships, therapeutic drug monitoring and individualized dosing strategies are reviewed as follows. RECENT FINDINGS Recent studies have significantly improved the understanding of exposure-response relationships for efficacy and toxicity, increasing confidence in target exposure ranges for azole antifungal agents. Population pharmacokinetic modelling of voriconazole has led to studies demonstrating the feasibility of model-guided dose individualization strategies with the drug, which holds significant promise for optimizing therapy. The recent approval of a solid oral tablet formulation of posaconazole with improved bioavailability and once-daily dosing has significantly improved the clinical utility of this agent. Further clinical experience with the investigational azole isavuconazole is needed to determine the role of individualized therapy. SUMMARY The coordination of CYP2C19 pharmacogenomic testing with model-guided dose individualization holds significant promise for optimizing therapy with voriconazole. Pharmacokinetic challenges with itraconazole, voriconazole and posaconazole oral suspension continue to require therapeutic drug monitoring to individualize therapy and optimize treatment outcomes.
Collapse
|
29
|
Therapeutic Drug Monitoring of Voriconazole in the Management of Invasive Fungal Infections: A Critical Review. Clin Pharmacokinet 2015; 54:1223-35. [DOI: 10.1007/s40262-015-0297-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Antifungal therapeutic drug monitoring: When, how, and why. Enferm Infecc Microbiol Clin 2015; 33:295-7. [DOI: 10.1016/j.eimc.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/21/2022]
|
31
|
Moriyama B, Kadri S, Henning SA, Danner RL, Walsh TJ, Penzak SR. Therapeutic Drug Monitoring and Genotypic Screening in the Clinical Use of Voriconazole. CURRENT FUNGAL INFECTION REPORTS 2015; 9:74-87. [PMID: 26918067 DOI: 10.1007/s12281-015-0219-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voriconazole is an antifungal triazole that is the first line agent for treatment of invasive aspergillosis. It is metabolized by CYP2C19, CYP2C9, and CYP3A4 and demonstrates wide interpatient variability in serum concentrations. Polymorphisms in CYP2C19 contribute to variability in voriconazole pharmacokinetics. Here, evidence is examined for the use of voriconazole therapeutic drug monitoring (TDM) and the role of CYP2C19 genotyping in voriconazole dosing. The majority of studies exploring the impact of voriconazole TDM on efficacy and safety have found TDM to be beneficial. However, most of these studies are observational, with only one being a randomized controlled trial. High-volume multicenter randomized controlled trials of TDM are currently not available to support definitive guidelines. There is a significant relationship in healthy volunteers between CYP2C19 genotype and voriconazole pharmacokinetics, but this association is markedly less visible in actual patients. While CYP2C19 genotype data may explain variability of voriconazole serum levels, they alone are not sufficient to guide initial dosing. The timeliness of availability of CYP2C19 genotype data in treatment of individual patients also remains challenging. Additional studies are needed before implementation of CYP2C19 genotyping for voriconazole dosing into routine clinical care.
Collapse
Affiliation(s)
- Brad Moriyama
- NIH Clinical Center, Pharmacy Department, Bethesda, MD
| | - Sameer Kadri
- NIH Clinical Center, Critical Care Medicine Department, Bethesda, MD
| | | | - Robert L Danner
- NIH Clinical Center, Critical Care Medicine Department, Bethesda, MD
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Department of Medicine, Pediatrics, and Microbiology and Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY
| | - Scott R Penzak
- Department of Pharmacotherapy University of North Texas System College of Pharmacy, Fort Worth, TX
| |
Collapse
|
32
|
Myers E, Dodds Ashley E. Antifungal Drug Therapeutic Monitoring: What are the Issues? CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0019-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Karthaus M, Lehrnbecher T, Lipp HP, Kluge S, Buchheidt D. Therapeutic drug monitoring in the treatment of invasive aspergillosis with voriconazole in cancer patients--an evidence-based approach. Ann Hematol 2015; 94:547-56. [PMID: 25697592 DOI: 10.1007/s00277-015-2333-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/24/2015] [Indexed: 11/28/2022]
Abstract
Invasive aspergillosis (IA) is a life-threatening complication in hematological cancer patients. Voriconazole (VCZ) is the established first-line treatment of IA. VCZ has a nonlinear pharmacokinetic profile and exhibits considerable variability of drug exposure. Therefore, therapeutic drug monitoring (TDM) of VCZ may help to improve treatment results in IA patients, but evidence-based data on the clinical use of TDM in patients treated with VCZ for IA are scarce. Evidence-based guidance is needed to support decisions on the use of TDM in routine VCZ therapy of IA. Our present analysis assessed published studies for evidence-based criteria for TDM of VCZ to improve efficacy and safety of IA therapy in cancer patients. Literature searches of MEDLINE and Cochrane database were performed. We identified 27 clinical studies reporting on the use of plasma level monitoring and/or TDM for VCZ. For each study, strength of recommendation and quality of evidence were categorized according to predefined criteria. A number of studies were published on plasma level monitoring (PLM) and TDM in VCZ therapy of IA. Across studies, VCZ levels >5-5.5 mg/L were found to be associated with toxicity, while reaching minimum levels of >1-2 mg/L appeared to improve efficacy. Timing, frequency, and intervention thresholds and dosage increments of VCZ for adjustment of plasma levels remain to be established. Currently, there is still no conclusive evidence for recommendations in routine clinical practice. More data from prospective randomized studies with TDM are desirable to provide a solid evidence basis for these approaches.
Collapse
Affiliation(s)
- Meinolf Karthaus
- Medical Clinic IV, Hematology and Oncology, Neuperlach Hospital, Munich, Germany,
| | | | | | | | | |
Collapse
|
34
|
Variability of voriconazole plasma concentrations after allogeneic hematopoietic stem cell transplantation: impact of cytochrome p450 polymorphisms and comedications on initial and subsequent trough levels. Antimicrob Agents Chemother 2015; 59:2305-14. [PMID: 25645831 DOI: 10.1128/aac.04838-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Voriconazole (VRC) plasma trough concentrations (Cmin) are highly variable, and this could affect treatment efficacy and safety in patients undergoing allogeneic hematopoietic stem cell transplantation (AHSCT). We aimed to describe the intra- and interindividual variation of VRC Cmin throughout the course of VRC therapy and to identify the determinants of this variation. Clinical data, medications, and VRC Cmin (n = 308) of 33 AHSCT patients were retrospectively collected. Cytochrome P450 (CYP450) genotypes of CYP2C19, CYP3A4, and CYP3A5 patients were retrospectively determined before allografting, and a combined genetic score was calculated for each patient. The higher the genetic score, the faster the metabolism of the patient. The VRC Cmin inter- and intraindividual coefficients of variation were 84% and 68%, respectively. The VRC dose (D) was correlated to VRC Cmin (r = 0.412, P < 0.0001) only for oral administration. The administration route and the genetic score significantly affected the initial VRC Cmin. Considering oral therapy, patients with a genetic score of <2 had higher initial VRC Cmin/D than patients with a genetic score of >2 (P = 0.009). Subsequent VRC Cmin remained influenced by the genetic score (P = 0.004) but were also affected by pump proton inhibitor comedication (P < 0.0001). The high variability of VRC Cmin in AHSCT patients is partially explained by the route of administration, treatment with pump proton inhibitors, and the combined genetic score. This study suggests the interest in combined genetic score determination to individualize a priori the VRC dose and underlines the need for longitudinal therapeutic drug monitoring to adapt subsequent doses to maintain the VRC Cmin within the therapeutic range.
Collapse
|
35
|
Therapeutic drug monitoring for triazoles: A needs assessment review and recommendations from a Canadian perspective. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2015; 25:327-43. [PMID: 25587296 PMCID: PMC4277162 DOI: 10.1155/2014/340586] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Invasive fungal infections cause significant morbidity and mortality in patients with concomitant underlying immunosuppressive diseases. The recent addition of new triazoles to the antifungal armamentarium has allowed for extended-spectrum activity and flexibility of administration. Over the years, clinical use has raised concerns about the degree of drug exposure following standard approved drug dosing, questioning the need for therapeutic drug monitoring (TDM). Accordingly, the present guidelines focus on TDM of triazole antifungal agents. A review of the rationale for triazole TDM, the targeted patient populations and available laboratory methods, as well as practical recommendations based on current evidence from an extended literature review are provided in the present document.
Collapse
|
36
|
Pharmacokinetics and safety of voriconazole intravenous-to-oral switch regimens in immunocompromised Japanese pediatric patients. Antimicrob Agents Chemother 2014; 59:1004-13. [PMID: 25451051 DOI: 10.1128/aac.04093-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the pharmacokinetics, safety, and tolerability of voriconazole following intravenous-to-oral switch regimens used with immunocompromised Japanese pediatric subjects (age 2 to <15 years) at high risk for systemic fungal infection. Twenty-one patients received intravenous-to-oral switch regimens based on a recent population pharmacokinetic modeling; they were given 9 mg/kg of body weight followed by 8 mg/kg of intravenous (i.v.) voriconazole every 12 h (q12h), and 9 mg/kg (maximum, 350 mg) of oral voriconazole q12h (for patients age 2 to <12 or 12 to <15 years and <50 kg) or 6 mg/kg followed by 4 mg/kg of i.v. voriconazole q12h and 200 mg of oral voriconazole q12h (for patients age 12 to <15 years and ≥50 kg). The steady-state area under the curve over the 12-h dosing interval (AUC0-12,ss) was calculated using the noncompartmental method and compared with the predicted exposures in Western pediatric subjects based on the abovementioned modeling. The geometric mean (coefficient of variation) AUC0-12,ss values for the intravenous and oral regimens were 51.1 μg · h/ml (68%) and 45.8 μg·h/ml (90%), respectively; there was a high correlation between AUC0-12,ss and trough concentration. Although the average exposures were higher in the Japanese patients than those in the Western pediatric subjects, the overall voriconazole exposures were comparable between these two groups due to large interindividual variability. The exposures in the 2 cytochrome P450 2C19 poor metabolizers were among the highest. Voriconazole was well tolerated. The most common treatment-related adverse events were photophobia and abnormal hepatic function. These recommended doses derived from the modeling appear to be appropriate for Japanese pediatric patients, showing no additional safety risks compared to those with adult patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT01383993.).
Collapse
|
37
|
Serum voriconazole level variability in patients with hematological malignancies receiving voriconazole therapy. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 25:271-6. [PMID: 25371690 PMCID: PMC4211351 DOI: 10.1155/2014/214813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voriconazole is an important antifungal agent used to treat invasive fungal infections; however, its administration can be difficult because of the narrow range between the level required for therapeutic efficacy and the level at which there is risk for hepatic and neurological toxicity. The purpose of this study was to elucidate the relationships among oral dosage, voriconazole levels and liver enzyme levels among leukemia patients. INTRODUCTION: Voriconazole plasma concentrations have been correlated with oral dosing in healthy subjects, but have been poorly characterized in ill patients with hematological malignancies receiving intensive chemotherapy. METHODS: The relationship between orally administered voriconazole, plasma concentrations and liver toxicity was examined in a cohort of 69 primarily acute leukemia patients undergoing intensive chemotherapy. RESULTS: Oral administration of voriconazole was associated with significant interpatient variability, with voriconazole steady-state concentrations ranging from 0 μg/mL to 16.6 μg/mL. Approximately 20% of patients achieved steady-state concentrations <1 μg/mL. When adjusted for weight, patients receiving higher voriconazole doses tended toward higher plasma concentrations; however, there was no significant relationship between the plasma concentration and genotype, age, sex or use of concomitant proton pump inhibitors. Voriconazole concentrations were correlated with higher serum alkaline phosphatase levels at day 6 to 8, and with higher bilirubin and aspartate aminotransferase levels at day 14 to 16, but not with other liver enzyme levels. CONCLUSION: In ill patients with acute leukemia and related disorders undergoing treatment with oral voriconazole, there is a poor correlation between the voriconazole dose and plasma concentrations, and many patients achieve levels that are considered to be subtherapeutic. The findings support the routine use of therapeutic drug monitoring in these patients.
Collapse
|
38
|
Wang T, Zhu H, Sun J, Cheng X, Xie J, Dong H, Chen L, Wang X, Xing J, Dong Y. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrob Agents 2014; 44:436-42. [DOI: 10.1016/j.ijantimicag.2014.07.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/22/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
|
39
|
Hoy Z, Dodds Ashley ES, Weinberg GA, Krysan DJ. Voriconazole Therapeutic Drug Monitoring. J Pediatric Infect Dis Soc 2014; 3:270-1. [PMID: 26625392 DOI: 10.1093/jpids/piu019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 11/12/2022]
|
40
|
Vanstraelen K, Wauters J, De Loor H, Vercammen I, Annaert P, Lagrou K, Spriet I. Protein-Binding Characteristics of Voriconazole Determined by High-Throughput Equilibrium Dialysis. J Pharm Sci 2014; 103:2565-70. [DOI: 10.1002/jps.24064] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023]
|
41
|
Dolton MJ, McLachlan AJ. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents 2014; 44:183-93. [PMID: 25106074 DOI: 10.1016/j.ijantimicag.2014.05.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 11/15/2022]
Abstract
The triazole antifungal voriconazole (VCZ) exhibits broad-spectrum antifungal activity and is the first-line treatment for invasive aspergillosis. Highly variable, non-linear pharmacokinetics, metabolism via the polymorphic drug-metabolising enzyme CYP2C19, and a range of serious adverse events (AEs) including hepatotoxicity and neurotoxicity complicate the clinical utility of VCZ. As interest in optimising VCZ treatment has increased, a growing number of studies have examined the relationships between VCZ exposure and efficacy in the treatment and prevention of invasive fungal infections, as well as associations with VCZ-related AEs. This review provides a critical analysis of VCZ pharmacokinetics and exposure-response (E-R) relationships, assessing the links between VCZ exposure, efficacy and toxicity. Low VCZ exposure has frequently been associated with a higher incidence of treatment failure; fewer studies have addressed E-R relationships with prophylactic VCZ. VCZ-related neurotoxicity appears common at high VCZ concentrations and can be minimised by maintaining concentrations below the recommended upper concentration thresholds; hepatotoxicity appears to be associated with increased VCZ exposure but is also prevalent at low concentrations. Further research should aim to inform and optimise the narrow therapeutic range of VCZ as well as develop interventions to individualise VCZ dosing to achieve maximal efficacy with minimal toxicity.
Collapse
Affiliation(s)
- Michael J Dolton
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Andrew J McLachlan
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia; Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Population pharmacokinetic-pharmacodynamic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob Agents Chemother 2014; 58:4727-36. [PMID: 24914120 DOI: 10.1128/aac.02809-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the exposure-response relationships for efficacy and safety of voriconazole and anidulafungin in adult patients with invasive aspergillosis (IA), a population pharmacokinetic-pharmacodynamic (PK-PD) analysis was performed with data from a phase 3, prospective, double-blind, comparative study evaluating voriconazole and anidulafungin combination therapy versus voriconazole (and placebo) monotherapy. Anidulafungin/placebo treatment duration was 2 to 4 weeks, and voriconazole treatment duration was 6 weeks. Efficacy (6-week all-causality mortality and 6-week global response [n = 176]) and safety (hepatic [n = 238], visual [n = 199], and psychiatric [n = 183] adverse events [AEs]) endpoints were analyzed separately using a binary logistic regression model. In IA patients receiving voriconazole monotherapy, no positive associations between voriconazole exposure and efficacy or safety were identified. In IA patients receiving combination therapy, no positive associations between voriconazole or anidulafungin exposures and efficacy were identified. The 6-week survival rate tended to increase as anidulafungin treatment duration increased; this finding should be considered with caution. Additionally, in IA patients receiving combination therapy, a positive association between voriconazole and anidulafungin exposures (area under the curve [AUC] and trough concentration [C(min)]) and hepatic AEs was established; a weak positive association between voriconazole exposure (AUC and C(min)) and psychiatric AEs was also established, but no association between voriconazole exposure and visual AEs was identified. Besides the drug exposures, no other covariates (i.e., CYP2C19 genotype status, age, weight, body mass index, sex, race, or neutropenia status) were identified as significant predictors of the efficacy and safety endpoints in IA patients. This study was registered on ClinicalTrials.gov (NCT00531479).
Collapse
|
43
|
Akan H, Antia VP, Kouba M, Sinkó J, Tănase AD, Vrhovac R, Herbrecht R. Preventing invasive fungal disease in patients with haematological malignancies and the recipients of haematopoietic stem cell transplantation: practical aspects. J Antimicrob Chemother 2014; 68 Suppl 3:iii5-16. [PMID: 24155144 DOI: 10.1093/jac/dkt389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Invasive fungal disease (IFD), predominantly aspergillosis, is associated with significant morbidity and mortality in immunocompromised patients, especially those with haematological malignancies and recipients of allogeneic haematopoietic stem cell transplantation. There has been a great deal of scientific debate as to the effectiveness of antifungal prophylaxis in preventing infection in different patient groups and in which patients it is an appropriate management option. Deciding on an appropriate prophylaxis regimen for IFD is challenging as the incidence varies among different patient groups, due to the varied nature of their underlying haematological disease, and in different regions and centres. Attempts have been made to define risk factors and include them in treatment protocols. Impaired immune status of the patient, especially neutropenia, is a key risk factor for IFD and can sometimes be related to specific polymorphisms of genes controlling innate immunity. Risk factors also vary according to the type of fungal pathogen. Consequently, prophylaxis needs to be tailored to individual patient groups. Furthermore, the choice of antifungal agent for prophylaxis depends on the potential for drug-drug interactions with the patients' concomitant medications. Additional challenges are optimal timing of antifungal prophylaxis, when to change from prophylaxis to antifungal treatment and how to prevent recurrence of IFD. This article considers the use of antifungal prophylaxis for patients at risk of IFD in daily clinical practice, with clinical profiles that may be distinct from those covered by guidelines, and aims to provide practical advice for treatment of these patient groups.
Collapse
Affiliation(s)
- Hamdi Akan
- Department of Hematology, Ankara University Medical Faculty, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang T, Chen S, Sun J, Cai J, Cheng X, Dong H, Wang X, Xing J, Dong W, Yao H, Dong Y. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother 2014; 69:463-470. [DOI: 10.1093/jac/dkt369] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
|
45
|
Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 2013; 69:1162-76. [PMID: 24379304 DOI: 10.1093/jac/dkt508] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics-pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the evidence that supports TDM is circumstantial. This document reviews the available literature and provides a series of recommendations for TDM of antifungal agents.
Collapse
Affiliation(s)
- H Ruth Ashbee
- Mycology Reference Centre, Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | | | | | | | | | | |
Collapse
|
46
|
Airway and parenchymal manifestations of pulmonary aspergillosis. Respir Med 2013; 107:1113-23. [PMID: 23702091 DOI: 10.1016/j.rmed.2013.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 02/04/2013] [Accepted: 03/18/2013] [Indexed: 01/15/2023]
Abstract
Pulmonary aspergillosis encompasses a heterogeneous group of mycoses that result from either colonisation or pathogenic damage of lung tissue by Aspergillus fungi. These clinical entities range from relatively benign saprophytic hypersensitivity associated with fungal inhabitation to life threatening invasive disease. The diagnosis of pulmonary disorders related to Aspergillus is on the increase and it is more important than ever those both general and respiratory physicians have a good understanding of these disorders. This paper reviews the contemporary understanding of the clinical, radiographic and histopathological aspects of pulmonary aspergillosis.
Collapse
|
47
|
Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies. Antimicrob Agents Chemother 2013; 57:3262-7. [PMID: 23629724 DOI: 10.1128/aac.00251-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Voriconazole plasma concentrations (VPCs) vary widely, and concentrations outside the therapeutic range are associated with either worse outcome in invasive aspergillosis (IA) or increased toxicity. The primary goal of this cohort study conducted in a real-life setting was to identify potential factors associated with inadequate VPCs in ICU patients and patients with hematological malignancies. Within a period of 12 months, trough VPCs were obtained and analyzed with high-performance liquid chromatography, and the adequate range was defined as 1.5 to 5.5 mg/liter. VPCs of <1.5 mg/liter were defined as low, whereas VPCs of >5.5 mg/liter were defined as potentially toxic. A total of 221 trough VPCs were obtained in 61 patients receiving voriconazole, and 124/221 VPCs (56%) were found to be low. Multivariate analysis revealed that low VPCs were significantly associated with clinical failure of voriconazole, prophylactic use, younger age, underlying hematological malignancy, concomitant proton pump inhibitor (PPI) (pantoprazole was used in 88% of the patients), and absence of side effects. Low VPCs remained an independent predictor of clinical failure of voriconazole. The defined adequate range was reached in 79/221 (36%) VPCs. In 18 samples (8%), potentially toxic levels were measured. Multivariate analysis revealed higher body mass index (BMI), absence of hematological malignancy, therapeutic application, and diarrhea as factors associated with potentially toxic VPCs. Neurotoxic adverse events occurred in six patients and were mostly associated with VPCs in the upper quartile of our defined adequate range. In conclusion, potential factors like younger age, prophylaxis, underlying hematological malignancy, BMI, and concomitant PPI should be considered within the algorithm of voriconazole treatment.
Collapse
|
48
|
Barreto JN, Beach CL, Wolf RC, Merten JA, Tosh PK, Wilson JW, Hogan WJ, Litzow MR. The incidence of invasive fungal infections in neutropenic patients with acute leukemia and myelodysplastic syndromes receiving primary antifungal prophylaxis with voriconazole. Am J Hematol 2013; 88:283-8. [PMID: 23460251 DOI: 10.1002/ajh.23388] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 01/23/2023]
Abstract
The objective of this study is to characterize the outcomes of primary antifungal prophylaxis with voriconazole in patients receiving intensive chemotherapy for acute myelogenous leukemia (AML) or myelodysplastic syndromes (MDS). We conducted a single center, retrospective, cohort study of consecutive adult patients with AML or MDS at Mayo Clinic between January 1, 2006 and July 1, 2010. The study included patients undergoing induction or first relapse combination chemotherapy who received voriconazole 200 mg orally twice daily as prophylaxis during the neutropenic phase. Patient records were evaluated until 30 days after neutrophil recovery for development of invasive fungal infection (IFI) as defined per EORTC/MSG 2008 criteria with computed tomography scans independently reviewed by a radiologist. Therapeutic drug monitoring and reasons for voriconazole discontinuation were documented. Twenty four episodes of IFI were detected among 165 consecutive patients for an overall incidence of 145 per 1000 patients. The incidence of IFI was 24, 42, and 78 per 1000 patients for proven, probable, and possible infection, respectively. Four patients developed proven IFI (n = 2 Aspergillus spp., n = 2 Rhizopus spp.). Serum voriconazole trough concentrations were available in 39 patients, and no statistically significant difference in voriconazole trough level was observed between those with versus without an IFI. Voriconazole prophylaxis was discontinued in 81 patients due to suspected IFI (n = 24), fever of unknown origin (n = 19), adverse events (n = 23), and other causes (n = 17). Voriconazole as primary IFI prophylaxis is safe and may be beneficial in AML/MDS patients receiving intensive chemotherapy.
Collapse
Affiliation(s)
| | - Cassidy L. Beach
- Department of Pharmacy; Duke University Medical Center; Durham North Carolina
| | - Robert C. Wolf
- Department of Pharmacy; Mayo Clinic; Rochester Minnesota
| | | | - Pritish K. Tosh
- Division of Infectious Diseases; Mayo Clinic; Rochester Minnesota
| | - John W. Wilson
- Division of Infectious Diseases; Mayo Clinic; Rochester Minnesota
| | | | - Mark R. Litzow
- Division of Hematology; Mayo Clinic; Rochester Minnesota
| |
Collapse
|