1
|
Habas E, Al Adab A, Arryes M, Alfitori G, Farfar K, Habas AM, Akbar RA, Rayani A, Habas E, Elzouki A. Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates. Cureus 2023; 15:e46737. [PMID: 38022248 PMCID: PMC10631488 DOI: 10.7759/cureus.46737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic kidney disease (CKD) is caused by hypoxia in the renal tissue, leading to inflammation and increased migration of pathogenic cells. Studies showed that leukocytes directly sense hypoxia and respond by initiating gene transcription, encoding the 2-integrin adhesion molecules. Moreover, other mechanisms participate in hypoxia, including anemia. CKD-associated anemia is common, which induces and worsens hypoxia, contributing to CKD progression. Anemia correction can slow CKD progression, but it should be cautiously approached. In this comprehensive review, the underlying pathophysiology mechanisms and the impact of renal tissue hypoxia and anemia in CKD onset and progression will be reviewed and discussed in detail. Searching for the latest updates in PubMed Central, Medline, PubMed database, Google Scholar, and Google search engines were conducted for original studies, including cross-sectional studies, cohort studies, clinical trials, and review articles using different keywords, phrases, and texts such as "CKD progression, anemia in CKD, CKD, anemia effect on CKD progression, anemia effect on CKD progression, and hypoxia and CKD progression". Kidney tissue hypoxia and anemia have an impact on CKD onset and progression. Hypoxia causes nephron cell death, enhancing fibrosis by increasing interstitium protein deposition, inflammatory cell activation, and apoptosis. Severe anemia correction improves life quality and may delay CKD progression. Detection and avoidance of the risk factors of hypoxia prevent recurrent acute kidney injury (AKI) and reduce the CKD rate. A better understanding of kidney hypoxia would prevent AKI and CKD and lead to new therapeutic strategies.
Collapse
Affiliation(s)
| | - Aisha Al Adab
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Mehdi Arryes
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | | | | | - Ala M Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | - Raza A Akbar
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Amnna Rayani
- Hemat-oncology Department, Pediatric Tripoli Hospital, Tripoli University, Tripoli, LBY
| | - Eshrak Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | | |
Collapse
|
2
|
Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. Compr Physiol 2022; 12:3767-3780. [PMID: 36073750 DOI: 10.1002/cphy.c210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.
Collapse
Affiliation(s)
- Luis A Juncos
- Division of Nephrology, Central Arkansas Veterans' Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Patrick M Wieruszewski
- Division of Hospital Pharmacy, Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Watchorn J, Huang D, Bramham K, Hutchings S. Decreased renal cortical perfusion, independent of changes in renal blood flow and sublingual microcirculatory impairment, is associated with the severity of acute kidney injury in patients with septic shock. Crit Care 2022; 26:261. [PMID: 36050737 PMCID: PMC9438253 DOI: 10.1186/s13054-022-04134-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Reduced renal perfusion has been implicated in the development of septic AKI. However, the relative contributions of macro- and microcirculatory blood flow and the extent to which impaired perfusion is an intrinsic renal phenomenon or part of a wider systemic shock state remains unclear.
Methods Single-centre prospective longitudinal observational study was carried out. Assessments were made at Day 0, 1, 2 and 4 after ICU admission of renal cortical perfusion in 50 patients with septic shock and ten healthy volunteers using contrast-enhanced ultrasound (CEUS). Contemporaneous measurements were made using transthoracic echocardiography of cardiac output. Renal artery blood flow was calculated using velocity time integral and vessel diameter. Assessment of the sublingual microcirculation was made using handheld video microscopy. Patients were classified based on the degree of AKI: severe = KDIGO 3 v non-severe = KDIGO 0–2. Results At study enrolment, patients with severe AKI (37/50) had prolonged CEUS mean transit time (mTT) (10.2 vs. 5.5 s, p < 0.05), and reduced wash-in rate (WiR) (409 vs. 1203 au, p < 0.05) and perfusion index (PI) (485 vs. 1758 au, p < 0.05); differences persisted throughout the entire study. Conversely, there were no differences in either cardiac index, renal blood flow or renal resistive index. Sublingual microcirculatory variables were not significantly different between groups at study enrolment or at any subsequent time point. Although lactate was higher in the severe AKI group at study enrolment, these differences did not persist, and there were no differences in either ScvO2 or ScvCO2-SaCO2 between groups. Patients with severe AKI received higher doses of noradrenaline (0.34 vs. 0.21mcg/kg/min, p < 0.05). Linear regression analysis showed no correlation between mTT and cardiac index (R-0.18) or microcirculatory flow index (R-0.16). Conclusion Renal cortical hypoperfusion is a persistent feature in critically ill septic patients who develop AKI and does not appear to be caused by reductions in macrovascular renal blood flow or cardiac output. Cortical hypoperfusion appears not be associated with changes in the sublingual microcirculation, raising the possibility of a specific renal pathogenesis that may be amenable to therapeutic intervention. Trial Registration Clinical Trials.gov NCT03713307, 19 Oct 2018.
Collapse
|
4
|
Kasuno K, Yodoi J, Iwano M. Urinary Thioredoxin as a Biomarker of Renal Redox Dysregulation and a Companion Diagnostic to Identify Responders to Redox-Modulating Therapeutics. Antioxid Redox Signal 2022; 36:1051-1065. [PMID: 34541903 DOI: 10.1089/ars.2021.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The development and progression of renal diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), are the result of heterogeneous pathophysiology that reflects a range of environmental factors and, in a lesser extent, genetic mutations. The pathophysiology specific to most kidney diseases is not currently identified; therefore, these diseases are diagnosed based on non-pathological factors. For that reason, pathophysiology-based companion diagnostics for selection of pathophysiology-targeted treatments have not been available, which impedes personalized medicine in kidney disease. Recent Advances: Pathophysiology-targeted therapeutic agents are now being developed for the treatment of redox dysregulation. Redox modulation therapeutics, including bardoxolone methyl, suppresses the onset and progression of AKI and CKD. On the other hand, pathophysiology-targeted diagnostics for renal redox dysregulation are also being developed. Urinary thioredoxin (TXN) is a biomarker that can be used to diagnose tubular redox dysregulation. AKI causes oxidation and urinary excretion of TXN, which depletes TXN from the tubules, resulting in tubular redox dysregulation. Urinary TXN is selectively elevated at the onset of AKI and correlates with the progression of CKD in diabetic nephropathy. Critical Issues: Diagnostic methods should provide information about molecular mechanisms that aid in the selection of appropriate therapies to improve the prognosis of kidney disease. Future Directions: A specific diagnostic method enabling detection of redox dysregulation based on pathological molecular mechanisms is much needed and could provide the first step toward personalized medicine in kidney disease. Urinary TXN is a candidate for a companion diagnostic method to identify responders to redox-modulating therapeutics. Antioxid. Redox Signal. 36, 1051-1065.
Collapse
Affiliation(s)
- Kenji Kasuno
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Junji Yodoi
- Institute for Virus Research, Kyoto University, Kyoto, Japan.,Japan Biostress Research Promotion Alliance (JBPA), Kyoto, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
5
|
Seah JM, Botterill E, MacIsaac RJ, Milne M, Ekinci EI, Lim RP. Functional MRI in assessment of diabetic kidney disease in people with type 1 diabetes. J Diabetes Complications 2022; 36:108076. [PMID: 34802902 DOI: 10.1016/j.jdiacomp.2021.108076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022]
Abstract
AIMS To compare levels of renal hypoxia measured by Blood Oxygen Level Dependent (BOLD) magnetic resonance imaging (MRI) with measured transverse relaxation rate (R2*) and renal structural changes including apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in patients with type 1 diabetes and healthy controls. METHODS Cohort study comparing MRI metrics in type 1 diabetes (n = 32, GFR 105 (77, 120) ml/min.1.73m2) and controls (n = 10). Renal function and selected inflammatory renal biomarkers were also measured. RESULTS For BOLD, we found reduced cortical [14.7 (13.7,15.8) (1/s) vs 15.7 (15.1,16.6) (1/s), p < 0.001] and medullary [24.8 (21.8,28.2) (1/s) vs. 29.3 (24.3,32.4) (1/s), p < 0.001] R2*, indicating more oxygenated parenchyma, in type 1 diabetes vs. controls, respectively. We observed reduced cortical FA, indicating decreased structural integrity in type 1 diabetes -0.04 (-0.07, -0.01), (p = 0.02). We found reduced cortical ADC, reflecting reduced water diffusion, in non-hyperfiltering [2.40 (2.29,2.53) (103mm2/s)] versus hyperfiltering [2.61 (2.53,2.74) (103mm2/s)] type 1 diabetes patients. MRI parameters correlated with renal function and inflammatory renal biomarkers. CONCLUSIONS MRI derived indices of renal function and structure differed between (i) type 1 diabetes and healthy controls, and (ii) between non-hyperfiltering and hyperfiltering type 1 diabetes patients, providing insight into the role of hypoxia and renal structural, and functional changes in DKD.
Collapse
Affiliation(s)
- Jas-Mine Seah
- Department of Endocrinology and Diabetes, Austin Health, Heidelberg, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Elissa Botterill
- Department of Radiology and Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Richard J MacIsaac
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Michele Milne
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Elif I Ekinci
- Department of Endocrinology and Diabetes, Austin Health, Heidelberg, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| | - Ruth P Lim
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Department of Radiology and Surgery, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
6
|
[Acute kidney injury in intensive care unit: A review]. Nephrol Ther 2021; 18:7-20. [PMID: 34872863 DOI: 10.1016/j.nephro.2021.07.324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury is a common complication in intensive care unit. Its incidence is variable according to the studies. It is considered to occur in more than 50 % of patients. Acute kidney injury is responsible for an increase in morbidity (length of hospitalization, renal replacement therapy) but also for excess mortality. The commonly accepted definition of acute kidney injury comes from the collaborative workgroup named Kidney Disease: Improving Global Outcomes (KDIGO). It made it possible to standardize practices and raise awareness among practitioners about monitoring plasma creatinine and also diuresis. Acute kidney injury in intensive care unit is a systemic disease including circulatory, endothelial, epithelial and cellular function involvement and an acute kidney injury is not accompanied by ad integrum repair. After prolonged injury, inadequate repair begins with a fibrotic process. Several mechanisms are involved (cell cycle arrest, epithelial-mesenchymal transition, mitochondrial dysfunction) and result in improper repair. A continuum exists between acute kidney disease and chronic kidney disease, characterized by different renal recovery phenotypes. Thus, preventive measures to prevent the occurrence of kidney damage play a major role in management. The nephrologist must be involved at every stage, from the prevention of the first acute kidney injury (upon arrival in intensive care unit) to long-term follow-up and the care of a chronic kidney disease.
Collapse
|
7
|
Kidney Microcirculation as a Target for Innovative Therapies in AKI. J Clin Med 2021; 10:jcm10184041. [PMID: 34575154 PMCID: PMC8471583 DOI: 10.3390/jcm10184041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a serious multifactorial conditions accompanied by the loss of function and damage. The renal microcirculation plays a crucial role in maintaining the kidney’s functional and structural integrity for oxygen and nutrient supply and waste product removal. However, alterations in microcirculation and oxygenation due to renal perfusion defects, hypoxia, renal tubular, and endothelial damage can result in AKI and the loss of renal function regardless of systemic hemodynamic changes. The unique structural organization of the renal microvasculature and the presence of autoregulation make it difficult to understand the mechanisms and the occurrence of AKI following disorders such as septic, hemorrhagic, or cardiogenic shock; ischemia/reperfusion; chronic heart failure; cardiorenal syndrome; and hemodilution. In this review, we describe the organization of microcirculation, autoregulation, and pathophysiological alterations leading to AKI. We then suggest innovative therapies focused on the protection of the renal microcirculation and oxygenation to prevent AKI.
Collapse
|
8
|
Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L, Blondeau N, Hauet T, Tauc M, F Pisani D. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic Biol Med 2021; 169:258-270. [PMID: 33892115 DOI: 10.1016/j.freeradbiomed.2021.04.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R) are the most common causes of debilitating diseases and death in stroke, cardiovascular ischemia, acute kidney injury or organ transplantation. In the latter example the I/R step defines both the amplitude of the damages to the graft and the functional recovery outcome. During transplantation the kidney is subjected to blood flow arrest followed by a sudden increase in oxygen supply at the time of reperfusion. This essential clinical protocol causes massive oxidative stress which is at the basis of cell death and tissue damage. The involvement of both reactive oxygen species (ROS) and nitric oxides (NO) has been shown to be a major cause of these cellular damages. In fact, in non-physiological situations, these species escape endogenous antioxidant control and dangerously accumulate in cells. In recent years, the objective has been to find clinical and pharmacological treatments to reduce or prevent the appearance of oxidative stress in ischemic pathologies. This is very relevant because, due to the increasing success of organ transplantation, clinicians are required to use limit organs, the preservation of which against oxidative stress is crucial for a better outcome. This review highlights the key actors in oxidative stress which could represent new pharmacological targets.
Collapse
Affiliation(s)
- Romain Carcy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Marc Cougnon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Mallorie Poet
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Manon Durandy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Antoine Sicard
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Néphrologie-Dialyse-Transplantation, Nice, France; Clinical Research Unit of Université Côte d'Azur (UMR2CA), France
| | - Laurent Counillon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | | | - Thierry Hauet
- Université de Poitiers, INSERM, IRTOMIT, CHU de Poitiers, La Milétrie, Poitiers, France
| | - Michel Tauc
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review discusses the macrocirculatory and microcirculatory aspects of renal perfusion, as well as novel methods by which to measure renal blood flow. Finally, therapeutic options are briefly discussed, including renal-specific microcirculatory effects. RECENT FINDINGS The optimal mean arterial pressure (MAP) needed for preservation of renal function has been debated but is most likely a MAP of 60-80 mmHg. In addition, attention should be paid to renal outflow pressure, typically central venous pressure. Heterogeneity in microcirculation can exist and may be mitigated through appropriate use of vasopressors with unique microcirculatory effects. Excessive catecholamines have been shown to be harmful and should be avoided. Both angiotensin II and vasopressin may improve glomerular flow through a number of mechanisms. Macrocirculatory and microcirculatory blood flow can be measured through a number of bedside ultrasound modalities, sublingual microscopy and urinary oxygen measurement, SUMMARY: Acute kidney injury (AKI) is a common manifestation of organ failure in shock, and avoidance of hemodynamic instability can mitigate this risk. Measurement of renal haemodynamics is not routinely performed but may help to guide therapeutic goals. A thorough understanding of pathophysiology, measurement techniques and therapeutic options may allow for a personalized approach to blood pressure management in patients with septic shock and may ultimately mitigate AKI.
Collapse
|
10
|
Dinc B, Yilmaz VT, Aycan İO, Kisaoglu A, Dandin O, Aydinli B, Hadimioglu N, Ertug Z. Effect of post-perfusion hyperoxemia on early graft function in renal transplant recipients: a retrospective observational cohort study. Ir J Med Sci 2021; 190:1539-1545. [PMID: 33398714 DOI: 10.1007/s11845-020-02499-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/25/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The effects of hyperoxemia on the transplanted grafts arouse interest nowadays, particularly intraoperative hyperoxemia, on transplant kidney function and survival in the 1-year post-operative period. AIMS We aimed to investigate the effect of post-perfusion (5 min after perfusion) hyperoxemia on early graft function and survival in renal transplant recipients. METHODS Two hundred forty-seven living donor kidney transplant recipients were included in the study. Patients were divided into the three groups according to their partial arterial oxygen pressure in post-perfusion blood gas samples: group 1: normoxia (n = 52, PaO2 pressure: < 120 mmHg, 103 ± 13); group 2: moderate hyperoxemia (n = 121, PaO2: 120-200 mmHg, 169 ± 21); group 3: severe hyperoxemia (n = 74, PaO2: > 200 mmHg, 233 ± 25). Graft functions (serum creatinine levels, estimated-glomerular filtration rate values, spot urine protein/creatinine ratio), survival rates, and groups' clinical outcomes were compared in the first year after transplantation. RESULTS Graft survival rates were similar in the groups and the rate of BK virus viremia was the lowest in the group 3 (groups 1, 2, and 3: 15.4% (n = 8), 6.6% (n = 8), 1.4% (n = 1), respectively, P: 0.009). Serum creatinine and proteinuria levels were lower, and estimated-glomerular filtration rate values were higher in group 3. A negative correlation between partial arterial oxygen pressure and serum creatinine levels and a positive correlation with estimated-glomerular filtration rate value were noted. These results were confirmed by univariate and multivariate analyses. CONCLUSIONS We demonstrated that the kidney transplant recipients with post-perfusion hyperoxemia have better early graft functions and lower BK virus viremia rates. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04420897.
Collapse
Affiliation(s)
- Bora Dinc
- Department of Anaesthesiology and Reanimation, Akdeniz University Medical School, Antalya, Turkey
| | - Vural T Yilmaz
- Division of Nephrology, Department of Internal Medicine, Akdeniz University Medical School, Antalya, Turkey.
| | - İlker O Aycan
- Department of Anaesthesiology and Reanimation, Akdeniz University Medical School, Antalya, Turkey
| | - Abdullah Kisaoglu
- Department of General Surgery, Akdeniz University Medical School, Antalya, Turkey
| | - Ozgur Dandin
- Department of General Surgery, Akdeniz University Medical School, Antalya, Turkey
| | - Bulent Aydinli
- Department of General Surgery, Akdeniz University Medical School, Antalya, Turkey
| | - Necmiye Hadimioglu
- Department of Anaesthesiology and Reanimation, Akdeniz University Medical School, Antalya, Turkey
| | - Zeki Ertug
- Department of Anaesthesiology and Reanimation, Akdeniz University Medical School, Antalya, Turkey
| |
Collapse
|
11
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
12
|
Gardiner BS, Smith DW, Lee C, Ngo JP, Evans RG. Renal oxygenation: From data to insight. Acta Physiol (Oxf) 2020; 228:e13450. [PMID: 32012449 DOI: 10.1111/apha.13450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Computational models have made a major contribution to the field of physiology. As the complexity of our understanding of biological systems expands, the need for computational methods only increases. But collaboration between experimental physiologists and computational modellers (ie theoretical physiologists) is not easy. One of the major challenges is to break down the barriers created by differences in vocabulary and approach between the two disciplines. In this review, we have two major aims. Firstly, we wish to contribute to the effort to break down these barriers and so encourage more interdisciplinary collaboration. So, we begin with a "primer" on the ways in which computational models can help us understand physiology and pathophysiology. Second, we aim to provide an update of recent efforts in one specific area of physiology, renal oxygenation. This work is shedding new light on the causes and consequences of renal hypoxia. But as importantly, computational modelling is providing direction for experimental physiologists working in the field of renal oxygenation by: (a) generating new hypotheses that can be tested in experimental studies, (b) allowing experiments that are technically unfeasible to be simulated in silico, or variables that cannot be measured experimentally to be estimated, and (c) providing a means by which the quality of experimental data can be assessed. Critically, based on our experience, we strongly believe that experimental and theoretical physiology should not be seen as separate exercises. Rather, they should be integrated to permit an iterative process between modelling and experimentation.
Collapse
Affiliation(s)
- Bruce S. Gardiner
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Chang‐Joon Lee
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
- Department of Cardiac Physiology National Cerebral and Cardiovascular Research Center Osaka Japan
| | - Roger G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
| |
Collapse
|
13
|
Evans RG, Smith DW, Lee C, Ngo JP, Gardiner BS. What Makes the Kidney Susceptible to Hypoxia? Anat Rec (Hoboken) 2019; 303:2544-2552. [DOI: 10.1002/ar.24260] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Victoria Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Western Australia Australia
| | - Chang‐Joon Lee
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Western Australia Australia
- College of Science, Health, Engineering and Education Murdoch University Perth Western Australia Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Victoria Australia
| | - Bruce S. Gardiner
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Western Australia Australia
- College of Science, Health, Engineering and Education Murdoch University Perth Western Australia Australia
| |
Collapse
|
14
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
15
|
Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med 2018; 116:50-63. [PMID: 29305106 DOI: 10.1016/j.freeradbiomed.2017.12.040] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 01/06/2023]
Abstract
Oxidative stress has been implicated in the pathophysiology of diabetic nephropathy. Studies in experimental animal models of diabetes strongly implicate oxidant species as a major determinant in the pathophysiology of diabetic kidney disease. The translation, in the clinical setting, of these concepts have been quite disappointing, and new theories have challenged the concepts that oxidative stress per se plays a role in the pathophysiology of diabetic kidney disease. The concept of mitochondrial hormesis has been introduced to explain this apparent disconnect. Hormesis is intended as any cellular process that exhibits a biphasic response to exposure to increasing amounts of a substance or condition: specifically, in diabetic kidney disease, oxidant species may represent, at determined concentration, an essential and potentially protective factor. It could be postulated that excessive production or inhibition of oxidant species formation might result in an adverse phenotype. This review discusses the evidence underlying these two apparent contradicting concepts, with the aim to propose and speculate on potential mechanisms underlying the role of oxidant species in the pathophysiology of diabetic nephropathy and possibly open future more efficient therapies to be tested in the clinical settings.
Collapse
Affiliation(s)
- Manpreet K Sagoo
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
16
|
Guerci P, Ergin B, Ince C. The macro- and microcirculation of the kidney. Best Pract Res Clin Anaesthesiol 2017; 31:315-329. [PMID: 29248139 DOI: 10.1016/j.bpa.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
Acute kidney injury (AKI) remains one of the main causes of morbidity and mortality in the intensive care medicine today. Its pathophysiology and progress to chronic kidney disease is still under investigation. In addition, the lack of techniques to adequately monitor renal function and microcirculation at the bedside makes its therapeutic resolution challenging. In this article, we review current concepts related to renal hemodynamics compromise as being the event underlying AKI. In doing so, we discuss the physiology of the renal circulation and the effects of alterations in systemic hemodynamics that lead to renal injury specifically in the context of reperfusion injury and sepsis. The ultimate key culprit of AKI leading to failure is the dysfunction of the renal microcirculation. The cellular and subcellular components of the renal microcirculation are discussed and how their injury contributes to AKI is described.
Collapse
Affiliation(s)
- Philippe Guerci
- Department of Anesthesiology and Critical Care Medicine, University Hospital of Nancy, France; INSERM U1116, University of Lorraine, Vandoeuvre-Les-Nancy, France; Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Bulent Ergin
- Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands; Department of Intensive Care Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Can Ince
- Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands; Department of Intensive Care Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Lee CJ, Ngo JP, Kar S, Gardiner BS, Evans RG, Smith DW. A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood. Am J Physiol Renal Physiol 2017; 313:F237-F253. [DOI: 10.1152/ajprenal.00659.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 01/13/2023] Open
Abstract
To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as “Strahler” orders) of the preglomerular renal vasculature in the rat, with an analysis of an extensive data set obtained using light microscopy to estimate oxygen mass transfer coefficients for each Strahler order. Furthermore, the AV shunting model is now set within a global oxygen transport model that includes transport from arteries, glomeruli, peritubular capillaries, and veins to tissue. While a number of lines of evidence suggest AV shunting is significant, most importantly, our AV oxygen shunting model predicts AV shunting is small under normal physiological conditions (~0.9% of total renal oxygen delivery; range 0.4–1.4%), but increases during renal ischemia, glomerular hyperfiltration (~2.1% of total renal oxygen delivery; range 0.84–3.36%), and some cardiovascular disease states (~3.0% of total renal oxygen delivery; range 1.2–4.8%). Under normal physiological conditions, blood Po2 is predicted to fall by ~16 mmHg from the root of the renal artery to glomerular entry, with AV oxygen shunting contributing ~40% and oxygen diffusion from arteries to tissue contributing ~60% of this decline. Arterial Po2 is predicted to fall most rapidly from Strahler order 4, under normal physiological conditions. We conclude that AV oxygen shunting normally has only a small impact on renal oxygenation, but may exacerbate renal hypoxia during renal ischemia, hyperfiltration, and some cardiovascular disease states.
Collapse
Affiliation(s)
- Chang-Joon Lee
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Sydney, Australia; and
| | - Saptarshi Kar
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Bruce S. Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia, Australia
| | - Roger G. Evans
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Sydney, Australia; and
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
18
|
Maiden MJ, Otto S, Brealey JK, Finnis ME, Chapman MJ, Kuchel TR, Nash CH, Edwards J, Bellomo R. Structure and Function of the Kidney in Septic Shock. A Prospective Controlled Experimental Study. Am J Respir Crit Care Med 2017; 194:692-700. [PMID: 26967568 DOI: 10.1164/rccm.201511-2285oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE It is unclear how septic shock causes acute kidney injury (AKI) and whether this is associated with histological change. OBJECTIVES We aimed to determine the nature and extent of changes in renal structure and function over time in an ovine model of septic shock. METHODS Fifteen sheep were instrumented with a renal artery flow probe and renal vein cannula. Ten were given intravenous Escherichia coli to induce septic shock, and five acted as controls. Animals were mechanically ventilated for 48 hours, while receiving protocol-guided parenteral fluids and a norepinephrine infusion to maintain mean arterial pressure. Renal biopsies were taken every 24 hours or whenever animals were oliguric for 2 hours. A renal pathologist, blinded to tissue source, systematically quantified histological appearance by light and electron microscopy for 31 prespecified structural changes. MEASUREMENTS AND MAIN RESULTS Sheep given E. coli developed septic shock, oliguria, increased serum creatinine, and reduced creatinine clearance (AKI), but there were no changes over time in renal blood flow between groups (P > 0.30) or over time within groups (P > 0.50). Renal oxygen consumption increased only in nonseptic animals (P = 0.01), but there was no between-group difference in renal lactate flux (P > 0.50). There was little structural disturbance in all biopsies and, although some cellular appearances changed over time, the only difference between septic and nonseptic animals was mesangial expansion on electron microscopy. CONCLUSIONS In an intensive care-supported model of gram-negative septic shock, early AKI was not associated with changes in renal blood flow, oxygen delivery, or histological appearance. Other mechanisms must contribute to septic AKI.
Collapse
Affiliation(s)
- Matthew J Maiden
- 1 Intensive Care Unit, Royal Adelaide Hospital, Adelaide, Australia.,2 Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Sophia Otto
- 3 Department of Pathology, SA Pathology, Adelaide, Australia
| | - John K Brealey
- 3 Department of Pathology, SA Pathology, Adelaide, Australia
| | - Mark E Finnis
- 1 Intensive Care Unit, Royal Adelaide Hospital, Adelaide, Australia.,2 Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Marianne J Chapman
- 1 Intensive Care Unit, Royal Adelaide Hospital, Adelaide, Australia.,2 Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Tim R Kuchel
- 4 Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, Australia; and
| | - Coralie H Nash
- 2 Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Jason Edwards
- 1 Intensive Care Unit, Royal Adelaide Hospital, Adelaide, Australia
| | | |
Collapse
|
19
|
Ngo JP, Ow CP, Gardiner BS, Kar S, Pearson JT, Smith DW, Evans RG. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance. Am J Physiol Regul Integr Comp Physiol 2016; 311:R797-R810. [DOI: 10.1152/ajpregu.00246.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023]
Abstract
Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases, and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries and veins in the cortex are also arranged in a countercurrent fashion, as are descending and ascending vasa recta in the medulla. For countercurrent diffusion to occur, barriers to diffusion must be small. This appears to be characteristic of larger vessels in the renal cortex. There must also be gradients in the concentration of molecules between afferent and efferent vessels, with the transport of molecules possible in either direction. Such gradients exist for oxygen in both the cortex and medulla, but there is little evidence that large gradients exist for other molecules such as carbon dioxide, nitric oxide, superoxide, hydrogen sulfide, and ammonia. There is some experimental evidence for arterial-to-venous (AV) oxygen shunting. Mathematical models also provide evidence for oxygen shunting in both the cortex and medulla. However, the quantitative significance of AV oxygen shunting remains a matter of controversy. Thus, whereas the countercurrent arrangement of vasa recta in the medulla appears to have evolved as a consequence of the evolution of Henle’s loop, the evolutionary significance of the intimate countercurrent arrangement of blood vessels in the renal cortex remains an enigma.
Collapse
Affiliation(s)
- Jennifer P. Ngo
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| | - Connie P.C. Ow
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| | - Bruce S. Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia
| | - Saptarshi Kar
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - James T. Pearson
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
- Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - Roger G. Evans
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| |
Collapse
|
20
|
Post EH, Kellum JA, Bellomo R, Vincent JL. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int 2016; 91:45-60. [PMID: 27692561 DOI: 10.1016/j.kint.2016.07.032] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022]
Abstract
The pathogenesis of sepsis-associated acute kidney injury is complex and likely involves perfusion alterations, a dysregulated inflammatory response, and bioenergetic derangements. Although global renal hypoperfusion has been the main target of therapeutic interventions, its role in the development of renal dysfunction in sepsis is controversial. The implications of renal hypoperfusion during sepsis probably extend beyond a simple decrease in glomerular filtration pressure, and targeting microvascular perfusion deficits to maintain tubular epithelial integrity and function may be equally important. In this review, we provide an overview of macro- and microcirculatory dysfunction in experimental and clinical sepsis and discuss relationships with kidney oxygenation, metabolism, inflammation, and function.
Collapse
Affiliation(s)
- Emiel Hendrik Post
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, School of Medicine, The University of Melbourne, Parkville, Melbourne, Australia
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
21
|
Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E. How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 2015; 213:19-38. [PMID: 25204811 DOI: 10.1111/apha.12393] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/04/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. Yet, in vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Many of the established approaches are invasive, hence not applicable in humans. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) offers an alternative. BOLD-MRI is non-invasive and indicative of renal tissue oxygenation. Nonetheless, recent (pre-) clinical studies revived the question as to how bold renal BOLD-MRI really is. This review aimed to deliver some answers. It is designed to inspire the renal physiology, nephrology and imaging communities to foster explorations into the assessment of renal oxygenation and haemodynamics by exploiting the powers of MRI. For this purpose, the specifics of renal oxygenation and perfusion are outlined. The fundamentals of BOLD-MRI are summarized. The link between tissue oxygenation and the oxygenation-sensitive MR biomarker T2∗ is outlined. The merits and limitations of renal BOLD-MRI in animal and human studies are surveyed together with their clinical implications. Explorations into detailing the relation between renal T2∗ and renal tissue partial pressure of oxygen (pO2 ) are discussed with a focus on factors confounding the T2∗ vs. tissue pO2 relation. Multi-modality in vivo approaches suitable for detailing the role of the confounding factors that govern T2∗ are considered. A schematic approach describing the link between renal perfusion, oxygenation, tissue compartments and renal T2∗ is proposed. Future directions of MRI assessment of renal oxygenation and perfusion are explored.
Collapse
Affiliation(s)
- T. Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - K. Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - B. Flemming
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - K. Cantow
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - D. Grosenick
- Physikalisch-Technische Bundesanstalt (PTB); Berlin Germany
| | - M. Ladwig
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - H. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - E. Seeliger
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
22
|
Ngo JP, Kar S, Kett MM, Gardiner BS, Pearson JT, Smith DW, Ludbrook J, Bertram JF, Evans RG. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney. Am J Physiol Renal Physiol 2014; 307:F1111-22. [DOI: 10.1152/ajprenal.00382.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical geometry using a computational model. The kidneys of six rats were perfusion fixed, and the vasculature was filled with silicone rubber (Microfil). A single section was chosen from each kidney, and all arteries ( n = 1,628) were identified. Intrarenal arteries were largely divisible into two “types,” characterized by the presence or absence of a close physical relationship with a paired vein. Arteries with a close physical relationship with a paired vein were more likely to have a larger rather than smaller diameter, and more likely to be in the inner-cortex than the mid- or outer cortex. Computational simulations indicated that direct diffusion of oxygen from an artery to a paired vein can only occur when the two vessels have a close physical relationship. However, even in the absence of this close relationship oxygen can diffuse from an artery to periarteriolar capillaries and venules. Thus AV oxygen shunting in the proximal preglomerular circulation is dominated by direct diffusion of oxygen to a paired vein. In the distal preglomerular circulation, it may be sustained by diffusion of oxygen from arteries to capillaries and venules close to the artery wall, which is subsequently transported to renal veins by convection.
Collapse
Affiliation(s)
- Jennifer P. Ngo
- Department of Physiology, Monash University, Melbourne, Australia
| | - Saptarshi Kar
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - Michelle M. Kett
- Department of Physiology, Monash University, Melbourne, Australia
| | - Bruce S. Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - James T. Pearson
- Department of Physiology, Monash University, Melbourne, Australia
- Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | | | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Hypoxia in diabetic kidneys. BIOMED RESEARCH INTERNATIONAL 2014; 2014:837421. [PMID: 25054148 PMCID: PMC4094876 DOI: 10.1155/2014/837421] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is now a leading cause of end-stage renal disease. In addition, DN accounts for the increased mortality in type 1 and type 2 diabetes, and then patients without DN achieve long-term survival compatible with general population. Hypoxia represents an early event in the development and progression of DN, and hypoxia-inducible factor- (HIF-) 1 mediates the metabolic responses to renal hypoxia. Diabetes induces the "fraternal twins" of hypoxia, that is, pseudohypoxia and hypoxia. The kidneys are susceptible to hyperoxia because they accept 20% of the cardiac output. Therefore, the kidneys have specific vasculature to avoid hyperoxia, that is, AV oxygen shunting. The NAD-dependent histone deacetylases (HDACs) sirtuins are seven mammalian proteins, SIRTs 1-7, which are known to modulate longevity and metabolism. Recent studies demonstrated that some isoforms of sirtuins inhibit the activation of HIF by deacetylation or noncatalyzing effects. The kidneys, which have a vascular system that protects them against hyperoxia, unfortunately experience extraordinary hypernutrition today. Then, an unexpected overload of glucose augments the oxygen consumption, which ironically results in hypoxia. This review highlights the primary role of HIF in diabetic kidneys for the metabolic adaptation to diabetes-induced hypoxia.
Collapse
|
24
|
Pohlmann A, Cantow K, Hentschel J, Arakelyan K, Ladwig M, Flemming B, Hoff U, Persson PB, Seeliger E, Niendorf T. Linking non-invasive parametric MRI with invasive physiological measurements (MR-PHYSIOL): towards a hybrid and integrated approach for investigation of acute kidney injury in rats. Acta Physiol (Oxf) 2013; 207:673-89. [PMID: 23336404 DOI: 10.1111/apha.12065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/17/2012] [Accepted: 01/16/2013] [Indexed: 01/11/2023]
Abstract
Acute kidney injury of various origins shares a common link in the pathophysiological chain of events: imbalance between renal medullary oxygen delivery and oxygen demand. For in vivo assessment of kidney haemodynamics and oxygenation in animals, quantitative but invasive physiological methods are established. A very limited number of studies attempted to link these invasive methods with parametric Magnetic Resonance Imaging (MRI) of the kidney. Moreover, the validity of parametric MRI (pMRI) as a surrogate marker for renal tissue perfusion and renal oxygenation has not been systematically examined yet. For this reason, we set out to combine invasive techniques and non-invasive MRI in an integrated hybrid setup (MR-PHYSIOL) with the ultimate goal to calibrate, monitor and interpret parametric MR and physiological parameters by means of standardized interventions. Here we present a first report on the current status of this multi-modality approach. For this purpose, we first highlight key characteristics of renal perfusion and oxygenation. Second, concepts for in vivo characterization of renal perfusion and oxygenation are surveyed together with the capabilities of MRI for probing blood oxygenation-dependent tissue stages. Practical concerns evoked by the use of strong magnetic fields in MRI and interferences between MRI and invasive physiological probes are discussed. Technical solutions that balance the needs of in vivo physiological measurements together with the constraints dictated by small bore MR scanners are presented. An early implementation of the integrated MR-PHYSIOL approach is demonstrated including brief interventions of hypoxia and hyperoxia.
Collapse
Affiliation(s)
- A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin; Germany
| | - K. Cantow
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin; Germany
| | | | - M. Ladwig
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - B. Flemming
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - U. Hoff
- Nephrology and Intensive Care Medicine; Charité - Universitätsmedizin Berlin; Campus Virchow-Klinikum, and Center for Cardiovascular Research; Berlin; Germany
| | - P. B. Persson
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - E. Seeliger
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | | |
Collapse
|
25
|
Abstract
Loss of glomerular function associated with the presence of tubulointerstitial lesions, which are characterized by peritubular capillary loss, is a common finding in progressive renal disorders. Dysregulated expression of angiogenic factors (such as vascular endothelial growth factor [VEGF] and angiopoietins) and endogenous angiogenic inhibitors (such as thrombospondin-1, angiostatin and endostatin) underlie these conditions and negatively influence the balance between capillary formation and regression, resulting in capillary rarefaction. Recent studies have provided unequivocal evidence for a pathogenic role of tubulointerstitial hypoxia and the involvement of hypoxia-inducible transcription factors in the advanced stages of chronic kidney disease. The mainstay of potential angiogenic therapies is the application of angiogenic factors with the primary aim of ameliorating reduced oxygenation in the ischaemic tubulointerstitium. However, this strategy is strongly associated with inflammation and changes in vascular permeability. For example, supraphysiological expression of VEGF results in glomerular expansion and proteinuria, whereas VEGF blockade using neutralizing antibodies can cause hypertension and thrombotic microangiopathy. These effects highlight the importance of tight regulation of angiogenic factors and inhibitors. Novel therapeutic approaches that target vascular maturation and normalization are now being developed to protect kidneys from capillary rarefaction and hypoxic injury.
Collapse
Affiliation(s)
- Tetsuhiro Tanaka
- Division for Health Service Promotion, University of Tokyo School of Medicine, Tokyo, Japan
| | | |
Collapse
|
26
|
Evans RG, Ince C, Joles JA, Smith DW, May CN, O'Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 2013; 40:106-22. [DOI: 10.1111/1440-1681.12031] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/21/2012] [Accepted: 11/15/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Roger G Evans
- Department of Physiology; Monash University; Melbourne; Victoria; Australia
| | - Can Ince
- Department of Translational Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension; University Medical Center; Utrecht; The Netherlands
| | - David W Smith
- School of Computer Science and Software Engineering; The University of Western Australia; Perth; Western Australia; Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne; Victoria; Australia
| | - Paul M O'Connor
- Department of Physiology; Georgia Health Sciences University; Augusta; GA; USA
| | - Bruce S Gardiner
- School of Computer Science and Software Engineering; The University of Western Australia; Perth; Western Australia; Australia
| |
Collapse
|
27
|
Ha Y, Myung D, Shim JH, Kim MH, Lee Y. A dual electrochemical microsensor for simultaneous imaging of oxygen and pH over the rat kidney surface. Analyst 2013; 138:5258-64. [DOI: 10.1039/c3an00878a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Gardiner BS, Thompson SL, Ngo JP, Smith DW, Abdelkader A, Broughton BRS, Bertram JF, Evans RG. Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling. Am J Physiol Renal Physiol 2012; 303:F605-18. [DOI: 10.1152/ajprenal.00186.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand how geometric factors affect arterial-to-venous (AV) oxygen shunting, a mathematical model of diffusive oxygen transport in the renal cortex was developed. Preglomerular vascular geometry was investigated using light microscopy (providing vein shape, AV separation, and capillary density near arteries) and published micro-computed tomography (CT) data (providing vessel size and AV separation; Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. IUPS Physiome Project. http://www.physiome.org.nz/publications/nordsletten_blackett_ritman_bentley_smith_2005/folder_contents ). A “U-shaped” relationship was observed between the arterial radius and the distance between the arterial and venous lumens. Veins were found to partially wrap around the artery more consistently for larger rather than smaller arteries. Intrarenal arteries were surrounded by an area of fibrous tissue, lacking capillaries, the thickness of which increased from ∼5 μm for the smallest arteries (<16-μm diameter) to ∼20 μm for the largest arteries (>200-μm diameter). Capillary density was greater near smaller arteries than larger arteries. No capillaries were observed between wrapped AV vessel pairs. The computational model comprised a single AV pair in cross section. Geometric parameters critical in renal oxygen transport were altered according to variations observed by CT and light microscopy. Lumen separation and wrapping of the vein around the artery were found to be the critical geometric factors determining the amount of oxygen shunted between AV pairs. AV oxygen shunting increases both as lumen separation decreases and as the degree of wrapping increases. The model also predicts that capillaries not only deliver oxygen, but can also remove oxygen from the cortical parenchyma close to an AV pair. Thus the presence of oxygen sinks (capillaries or tubules) near arteries would reduce the effectiveness of AV oxygen shunting. Collectively, these data suggest that AV oxygen shunting would be favored in larger vessels common to the cortical and medullary circulations (i.e., arcuate and proximal interlobular arteries) rather than the smaller vessels specific to the cortical circulation (distal interlobular arteries and afferent arterioles).
Collapse
Affiliation(s)
- Bruce S. Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | - Sarah L. Thompson
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | - Jennifer P. Ngo
- Department of Physiology, Monash University, Melbourne, Australia
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | - Amany Abdelkader
- Department of Physiology, Monash University, Melbourne, Australia
| | | | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Evans RG, Goddard D, Eppel GA, O'Connor PM. Stability of tissue PO2 in the face of altered perfusion: a phenomenon specific to the renal cortex and independent of resting renal oxygen consumption. Clin Exp Pharmacol Physiol 2011; 38:247-54. [PMID: 21306412 DOI: 10.1111/j.1440-1681.2011.05494.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Oxygen tension (PO(2)) in renal cortical tissue can remain relatively constant when renal blood flow changes in the physiological range, even when changes in renal oxygen delivery (DO(2)) and oxygen consumption (VO(2)) are mismatched. In the current study, we examined whether this also occurs in the renal medulla and skeletal muscle, or if it is an unusual property of the renal cortex. We also examined the potential for dysfunction of the mechanisms underlying this phenomenon to contribute to kidney hypoxia in disease states associated with increased renal VO(2) . 2. In both the kidney and hindlimb of pentobarbitone anaesthetized rabbits, whole organ blood flow was reduced by intra-arterial infusion of angiotensin-II and increased by acetylcholine infusion. In the kidney, this was carried out before and during renal arterial infusion of the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), or its vehicle. 3. Angiotensin-II reduced renal (-34%) and hindlimb (-25%) DO(2) , whereas acetylcholine increased renal (+38%) and hindlimb (+66%) DO(2) . However, neither renal nor hindlimb VO(2) were altered. Tissue PO(2) varied with local perfusion in the renal medulla and biceps femoris, but not the renal cortex. DNP increased renal VO(2) (+38%) and reduced cortical tissue PO(2) (-44%), but both still remained stable during subsequent infusion of angiotensin-II and acetylcholine. 4. We conclude that maintenance of tissue PO(2) in the face of mismatched changes in local perfusion and VO(2) is an unusual property of the renal cortex. The underlying mechanisms remain unknown, but our current findings suggest they are not compromised when resting renal VO(2) is increased.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
30
|
Gardiner BS, Smith DW, O'Connor PM, Evans RG. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney. Am J Physiol Renal Physiol 2011; 300:F1339-52. [DOI: 10.1152/ajprenal.00544.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand how arterial-to-venous (AV) oxygen shunting influences kidney oxygenation, a mathematical model of oxygen transport in the renal cortex was created. The model consists of a multiscale hierarchy of 11 countercurrent systems representing the various branch levels of the cortical vasculature. At each level, equations describing the reactive-advection-diffusion of oxygen are solved. Factors critical in renal oxygen transport incorporated into the model include the parallel geometry of arteries and veins and their respective sizes, variation in blood velocity in each vessel, oxygen transport (along the vessels, between the vessels and between vessel and parenchyma), nonlinear binding of oxygen to hemoglobin, and the consumption of oxygen by renal tissue. The model is calibrated using published measurements of cortical vascular geometry and microvascular Po2. The model predicts that AV oxygen shunting is quantitatively significant and estimates how much kidney V̇o2 must change, in the face of altered renal blood flow, to maintain cortical tissue Po2 at a stable level. It is demonstrated that oxygen shunting increases as renal V̇o2 or arterial Po2 increases. Oxygen shunting also increases as renal blood flow is reduced within the physiological range or during mild hemodilution. In severe ischemia or anemia, or when kidney V̇o2 increases, AV oxygen shunting in proximal vascular elements may reduce the oxygen content of blood destined for the medullary circulation, thereby exacerbating the development of tissue hypoxia. That is, cortical ischemia could cause medullary hypoxia even when medullary perfusion is maintained. Cortical AV oxygen shunting limits the change in oxygen delivery to cortical tissue and stabilizes tissue Po2 when arterial Po2 changes, but renders the cortex and perhaps also the medulla susceptible to hypoxia when oxygen delivery falls or consumption increases.
Collapse
Affiliation(s)
- Bruce S. Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Perth
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth
| | - Paul M. O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
O'Connor PM, Evans RG. Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem? Am J Physiol Regul Integr Comp Physiol 2010; 299:R723-7. [DOI: 10.1152/ajpregu.00364.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue oxygen levels are tightly regulated in all organs. This poses a challenge for the kidney, as its function requires blood flow, and thus, oxygen delivery to greatly exceed its metabolic requirements. Because superoxide production in the kidney is dependent on oxygen availability, tissue hyperoxia could drive oxidative stress. In the mammalian renal cortex, this problem may have been solved, in part, through a structural antioxidant defense mechanism. That is, arteries and veins are closely associated in a countercurrent arrangement, facilitating diffusional arterial-to-venous (AV) oxygen shunting. Because of this mechanism, a proportion of the oxygen delivered in the renal artery never reaches kidney tissue but instead diffuses to the closely associated renal veins, thus limiting oxygen transport to tissue. In the nonmammalian kidney, arteries and veins are not arranged in an intimate countercurrent fashion as in mammals; thus AV oxygen shunting is likely less important in regulation of kidney oxygenation in these species. Instead, the kidney's blood supply is predominately of venous origin. This likely has a similar impact on tissue oxygenation as AV oxygen shunting, of limiting delivery of oxygen to renal tissue. Thus, we hypothesize the evolution of structural antioxidant mechanisms that are anatomically divergent but functionally homologous in the mammalian and nonmammalian kidney.
Collapse
Affiliation(s)
- Paul M. O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
32
|
Evans RG, Eppel GA, Michaels S, Burke SL, Nematbakhsh M, Head GA, Carroll JF, O'Connor PM. Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits. Am J Physiol Renal Physiol 2010; 298:F1235-43. [PMID: 20200093 DOI: 10.1152/ajprenal.00647.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the mechanisms that maintain stable renal tissue PO(2) during moderate renal ischemia, when changes in renal oxygen delivery (DO(2)) and consumption (VO(2)) are mismatched. When renal artery pressure (RAP) was reduced progressively from 80 to 40 mmHg, VO(2) (-38 ± 7%) was reduced more than DO(2) (-26 ± 4%). Electrical stimulation of the renal nerves (RNS) reduced DO(2) (-49 ± 4% at 2 Hz) more than VO(2) (-30 ± 7% at 2 Hz). Renal arterial infusion of angiotensin II reduced DO(2) (-38 ± 3%) but not VO(2) (+10 ± 10%). Despite mismatched changes in DO(2) and VO(2), renal tissue PO(2) remained remarkably stable at ≥40 mmHg RAP, during RNS at ≤2 Hz, and during angiotensin II infusion. The ratio of sodium reabsorption to VO(2) was reduced by all three ischemic stimuli. None of the stimuli significantly altered the gradients in PCO(2) or pH across the kidney. Fractional oxygen extraction increased and renal venous PO(2) fell during 2-Hz RNS and angiotensin II infusion, but not when RAP was reduced to 40 mmHg. Thus reduced renal VO(2) can help prevent tissue hypoxia during mild renal ischemia, but when renal VO(2) is reduced less than DO(2), other mechanisms prevent a fall in renal PO(2). These mechanisms do not include increased efficiency of renal oxygen utilization for sodium reabsorption or reduced washout of carbon dioxide from the kidney, leading to increased oxygen extraction. However, increased oxygen extraction could be driven by altered countercurrent exchange of carbon dioxide and/or oxygen between renal arteries and veins.
Collapse
Affiliation(s)
- Roger G Evans
- Dept. of Physiology, PO Box 13F, Monash Univ., Victoria 3800, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Renal injury distal to an atherosclerotic renovascular obstruction reflects multiple intrinsic factors producing parenchymal tissue injury. Atherosclerotic disease pathways superimposed on renal arterial obstruction may aggravate damage to the kidney and other target organs, and some of the factors activated by renal artery stenosis may in turn accelerate the progression of atherosclerosis. This cross-talk is mediated through amplified activation of renin-angiotensin system, oxidative stress, inflammation, and fibrosis-pathways notoriously involved in renal disease progression. Oxidation of lipids also accelerates the development of fibrosis in the stenotic kidney by amplifying profibrotic mechanisms and disrupting tissue remodeling. The extent to which actual ischemia modulates injury in the stenotic kidney has been controversial, partly because the decrease in renal oxygen consumption usually parallels a decrease in renal blood flow, and because renal vein oxygen pressure in the affected kidney is not decreased. However, recent data using novel methodologies demonstrate that intra-renal oxygenation is heterogeneously affected in different regions of the kidney. Activation of such local injury within the kidney may lead to renal dysfunction and structural injury, and ultimately unfavorable and irreversible renal outcomes. Identification of specific pathways producing progressive renal injury may enable development of targeted interventions to block these pathways and preserve the stenotic kidney.
Collapse
|
34
|
Dyson A, Stidwill R, Taylor V, Singer M. The impact of inspired oxygen concentration on tissue oxygenation during progressive haemorrhage. Intensive Care Med 2009; 35:1783-91. [DOI: 10.1007/s00134-009-1577-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/21/2009] [Indexed: 11/28/2022]
|
35
|
Evans RG, Gardiner BS, Smith DW, O'Connor PM. Methods for studying the physiology of kidney oxygenation. Clin Exp Pharmacol Physiol 2009; 35:1405-12. [PMID: 18983577 DOI: 10.1111/j.1440-1681.2008.05063.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
1. An improved understanding of the regulation of kidney oxygenation has the potential to advance preventative, diagnostic and therapeutic strategies for kidney disease. Here, we review the strengths and limitations of available and emerging methods for studying kidney oxygen status. 2. To fully characterize kidney oxygen handling, we must quantify multiple parameters, including renal oxygen delivery (DO2) and consumption (VO2), as well as oxygen tension (Po2). Ideally, these parameters should be quantified both at the whole-organ level and within specific vascular, tubular and interstitial compartments. 3. Much of our current knowledge of kidney oxygen physiology comes from established techniques that allow measurement of global kidney DO2 and VO2, or local tissue Po2. When used in tandem, these techniques can help us understand oxygen mass balance in the kidney. Po2 can be resolved to specific tissue compartments in the superficial cortex, but not deep below the kidney surface. We have limited ability to measure local kidney tissue DO2 and VO2. 4. Mathematical modelling has the potential to provide new insights into the physiology of kidney oxygenation, but is limited by the quality of the information such models are based on. 5. Various imaging techniques and other emerging technologies have the potential to allow Po2 mapping throughout the kidney and/or spatial resolution of Po2 in specific renal tissues, even in humans. All currently available methods have serious limitations, but with further refinement should provide a pathway through which data obtained from experimental animal models can be related to humans in the clinical setting.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Victoria, Australia.
| | | | | | | |
Collapse
|
36
|
Warner L, Gomez SI, Bolterman R, Haas JA, Bentley MD, Lerman LO, Romero JC. Regional decreases in renal oxygenation during graded acute renal arterial stenosis: a case for renal ischemia. Am J Physiol Regul Integr Comp Physiol 2008; 296:R67-71. [PMID: 18971350 DOI: 10.1152/ajpregu.90677.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic nephropathy describes progressive renal failure, defined by significantly reduced glomerular filtration rate, and may be due to renal artery stenosis (RAS), a narrowing of the renal artery. It is unclear whether ischemia is present during RAS since a decrease in renal blood flow (RBF), O(2) delivery, and O(2) consumption occurs. The present study tests the hypothesis that despite proportional changes in whole kidney O(2) delivery and consumption, acute progressive RAS leads to decreases in regional renal tissue O(2). Unilateral acute RAS was induced in eight pigs with an extravascular cuff. RBF was measured with an ultrasound flow probe. Cortical and medullary tissue oxygen (P(t(O(2)))) of the stenotic kidney was measured continuously with sensors during baseline, three sequentially graded decreases in RBF, and recovery. O(2) consumption decreased proportionally to O(2) delivery during the graded stenosis (19 +/- 10.8, 48.2 +/- 9.1, 58.9 +/- 4.7 vs. 15.1 +/- 5, 35.4 +/- 3.5, 57 +/- 2.3%, respectively) while arterial venous O(2) differences were unchanged. Acute RAS produced a sharp reduction in O(2) efficiency for sodium reabsorption (P < 0.01). Cortical (P(t(O(2)))) decreases are exceeded by medullary decreases during stenosis (34.8 +/- 1.3%). Decreases in tissue oxygenation, more pronounced in the medulla than the cortex, occur despite proportional reductions in O(2) delivery and consumption. This demonstrates for the first time that hypoxia is present in the early stages of RAS and suggests a role for hypoxia in the pathophysiology of this disease. Furthermore, the notion that arteriovenous shunting and increased stoichiometric energy requirements are potential contributors toward ensuing hypoxia with graded and progressive acute RAS cannot be excluded.
Collapse
Affiliation(s)
- Lizette Warner
- Department of Physiology and Biomedical Engineering , Mayo Clinic, ST 7, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Evans RG, Gardiner BS, Smith DW, O'Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 2008; 295:F1259-70. [PMID: 18550645 DOI: 10.1152/ajprenal.90230.2008] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney is faced with unique challenges for oxygen regulation, both because its function requires that perfusion greatly exceeds that required to meet metabolic demand and because vascular control in the kidney is dominated by mechanisms that regulate glomerular filtration and tubular reabsorption. Because tubular sodium reabsorption accounts for most oxygen consumption (Vo2) in the kidney, renal Vo2 varies with glomerular filtration rate. This provides an intrinsic mechanism to match changes in oxygen delivery due to changes in renal blood flow (RBF) with changes in oxygen demand. Renal Vo2 is low relative to supply of oxygen, but diffusional arterial-to-venous (AV) oxygen shunting provides a mechanism by which oxygen superfluous to metabolic demand can bypass the renal microcirculation. This mechanism prevents development of tissue hyperoxia and subsequent tissue oxidation that would otherwise result from the mismatch between renal Vo2 and RBF. Recent evidence suggests that RBF-dependent changes in AV oxygen shunting may also help maintain stable tissue oxygen tension when RBF changes within the physiological range. However, AV oxygen shunting also renders the kidney susceptible to hypoxia. Given that tissue hypoxia is a hallmark of both acute renal injury and chronic renal disease, understanding the causes of tissue hypoxia is of great clinical importance. The simplistic paradigm of oxygenation depending only on the balance between local perfusion and Vo2 is inadequate to achieve this goal. To fully understand the control of renal oxygenation, we must consider a triad of factors that regulate intrarenal oxygenation: local perfusion, local Vo2, and AV oxygen shunting.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
38
|
Leong CL, O’Connor PM, Eppel GA, Anderson WP, Evans RG. Measurement of Renal Tissue Oxygen Tension: Systematic Differences between Fluorescence Optode and Microelectrode Recordings in Anaesthetized Rabbits. ACTA ACUST UNITED AC 2008; 108:p11-7. [DOI: 10.1159/000114203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 11/25/2007] [Indexed: 11/19/2022]
|
39
|
Leong CL, Anderson WP, O'Connor PM, Evans RG. Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation. Am J Physiol Renal Physiol 2007; 292:F1726-33. [PMID: 17327497 DOI: 10.1152/ajprenal.00436.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal blood flow (RBF) can be reduced in rats and rabbits by up to 40% without significant changes in renal tissue Po2. We determined whether this occurs because renal oxygen consumption changes with RBF or due to some other mechanism. The relationships between RBF and renal cortical and medullary tissue Po2 and renal oxygen metabolism were determined in the denervated kidneys of anesthetized rabbits under hypoxic, normoxic, and hyperoxic conditions. During artificial ventilation with 21% oxygen (normoxia), RBF increased 32 ± 8% during renal arterial infusion of acetylcholine and reduced 31 ± 5% during ANG II infusion. Neither infusion significantly altered arterial pressure, tissue Po2 in the renal cortex or medulla, nor renal oxygen consumption. However, fractional oxygen extraction fell as RBF increased and the ratio of oxygen consumption to sodium reabsorption increased during ANG II infusion. Ventilation with 10% oxygen (hypoxia) significantly reduced both cortical and medullary Po2 (60–70%), whereas ventilation with 50% and 100% oxygen (hyperoxia) increased cortical and medullary Po2 (by 62–298 and 30–56%, respectively). However, responses to altered RBF under hypoxic and hyperoxic conditions were similar to those under normoxic conditions. Thus renal tissue Po2 was relatively independent of RBF within a physiological range (±30%). This was not due to RBF-dependent changes in renal oxygen consumption. The observation that fractional extraction of oxygen fell with increased RBF, yet renal parenchymal Po2 remained unchanged, supports the hypothesis that preglomerular diffusional shunting of oxygen from arteries to veins increases with increasing RBF, and so contributes to dynamic regulation of intrarenal oxygenation.
Collapse
Affiliation(s)
- Chai-Ling Leong
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
40
|
Abstract
The kidneys are second only to the heart in terms of O2 consumption; however, relative to other organs, the kidneys receive a very high blood flow and oxygen extraction in the healthy kidney is low. Despite low arterial-venous O2 extraction, the kidneys are particularly susceptible to hypoxic injury and much interest surrounds the role of renal hypoxia in the development and progression of both acute and chronic renal disease. Numerous regulatory mechanisms have been identified that act to maintain renal parenchymal oxygenation within homeostatic limits in the in vivo kidney. However, the processes by which many of these mechanisms act to modulate renal oxygenation and the factors that influence these processes remain poorly understood. A number of such mechanisms specific to the kidney are reviewed herein, including the relationship between renal blood flow and O2 consumption, pre- and post-glomerular arterial-venous O2 shunting, tubulovascular cross-talk, the differential control of regional kidney blood flow and the tubuloglomerular feedback mechanism. The roles of these mechanisms in the control of renal oxygenation, as well as how dysfunction of these mechanisms may lead to renal hypoxia, are discussed.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53202, USA.
| |
Collapse
|
41
|
|