1
|
Boima V, Agyekum AB, Ganatra K, Agyekum F, Kwakyi E, Inusah J, Ametefe EN, Adu D. Advances in kidney disease: pathogenesis and therapeutic targets. Front Med (Lausanne) 2025; 12:1526090. [PMID: 40027896 PMCID: PMC11868101 DOI: 10.3389/fmed.2025.1526090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Chronic kidney disease (CKD) is a global public health issue characterized by progressive loss of kidney function, of which end-stage kidney disease (ESKD) is the last stage. The global increase in the prevalence of CKD is linked to the increasing prevalence of traditional risk factors, including obesity, hypertension, and diabetes mellitus, as well as metabolic factors, particularly insulin resistance, dyslipidemia, and hyperuricemia. Mortality and comorbidities, such as cardiovascular complications, rise steadily as kidney function deteriorates. Patients who progress to ESKD require long-term kidney replacement therapy, such as transplantation or hemodialysis/peritoneal dialysis. It is currently understood that a crucial aspect of CKD involves persistent, low-grade inflammation. In addition, increased oxidative and metabolic stress, endothelial dysfunction, vascular calcification from poor calcium and phosphate metabolism, and difficulties with coagulation are some of the complex molecular pathways underlying CKD-related and ESKD-related issues. Novel mechanisms, such as microbiome dysbiosis and apolipoprotein L1 gene mutation, have improved our understanding of kidney disease mechanisms. High kidney disease risk of Africa has been linked to APOL1 high-risk alleles. The 3-fold increased risk of ESKD in African Americans compared to European Americans is currently mainly attributed to variants in the APOL1 gene in the chromosome 22q12 locus. Additionally, the role of new therapies such as SGLT2 inhibitors, mineralocorticoid receptor antagonists, and APOL1 channel function inhibitors offers new therapeutic targets in slowing down the progression of chronic kidney disease. This review describes recent molecular mechanisms underlying CKD and emerging therapeutic targets.
Collapse
Affiliation(s)
- Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Alex Baafi Agyekum
- National Cardio-Thoracic Center, KorleBu Teaching Hospital, Accra, Ghana
| | - Khushali Ganatra
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Francis Agyekum
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Edward Kwakyi
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jalil Inusah
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Elmer Nayra Ametefe
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Science, University of Ghana, Accra, Ghana
| | - Dwomoa Adu
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Gomes KC, Lima FWB, da Silva Aguiar HQ, de Araújo SS, de Cordova CAS, de Cordova FM. Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2289-2307. [PMID: 34468817 DOI: 10.1007/s00210-021-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
At present, thiamine deficiency (TD) is managed with administration of high doses of thiamine. Even so, severe and permanent neurological disorders can occur in recurrent episodes of TD. In this study, we used a murine model to assess the efficacy of TD recovery treatments using thiamine with or without additional administration of the antioxidant Trolox or the anti-inflammatory dimethyl sulfoxide (DMSO) after a single or recurrent episode of TD. TD was induced for 9 days with deficient chow and pyrithiamine, and the recovery period was 7 days with standard amounts of chow and thiamine, Trolox, and/or DMSO. After these periods, we evaluated behavior, histopathology, and ERK1/2 modulation in the brain. Deficient animals showed reductions in locomotor activity, motor coordination, and spatial memory. Morphologically, after a single episode of TD and recovery, deficient mice showed neuronal vacuolization in the dorsal thalamus and, after two episodes, a reduction in neuronal cell number. These effects were attenuated or reversed by the recovery treatments, mainly in the treatments with thiamine associated with Trolox or DMSO. Deficient animals showed a strong increase in ERK1/2 phosphorylation in the thalamus, hippocampus, and cerebral cortex after one deficiency episode and recovery. Interestingly, after recurrent TD and recovery, ERK1/2 phosphorylation remained high only in the deficient mice treated with thiamine and/or Trolox or thiamine with DMSO. Our data suggest that a protocol for TD treatment with thiamine in conjunction with Trolox or DMSO enhances the recovery of animals and possibly minimizes the late neurological sequelae.
Collapse
Affiliation(s)
- Ketren Carvalho Gomes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Suiane Silva de Araújo
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
3
|
Seker U, Nergiz Y, Aktas A, Akkus M, Ozmen MF, Uyar E, Soker S. Trolox is more successful than allopurinol to reduce degenerative effects of testicular ischemia/reperfusion injury in rats. J Pediatr Urol 2020; 16:465.e1-465.e8. [PMID: 32595071 DOI: 10.1016/j.jpurol.2020.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Accepted: 05/10/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Reperfusion surgery following testicular ischemia is a reproductive health threatening status and may result with organ dysfunction in men. The high level of reactive oxygen species (ROS) and cease of blood flow to the testis are the most important reasons of this testicular injury. Until today, numerous experimental studies reported that antioxidants might be efficient to alleviate oxidative stress induced organ dysfunction. For this purpose, in this study, we have investigated the protective effects of xanthine oxidase (XO) inhibitor, allopurinol, and ROS scavenger, trolox, in a comparative perspective in testicular ischemia reperfusion injury subjected rats. MATERIALS AND METHODS Twenty-eight adult male Sprague Dawley rats were divided into four groups of seven animals in each; control, ischemia/reperfusion (I/R), allopurinol and trolox. The rats in control group did not receive any application. Animals in I/R, allopurinol and trolox groups were subjected to 2 h testicular reperfusion injury following 5 h ischemia. Intraperitoneally (i.p.) 1 ml isotonic, 200 mg/kg allopurinol and 50 mg/kg trolox were administered to the animals in these groups 30 min prior reperfusion. At the end of experiment, all animals were sacrificed and blood serum malondialdehyde (MDA) levels were measured. Histological sections were obtained from the testis and stained with hematoxylin and eosin (H&E), proliferating cell nuclear antigen (PCNA) and cleaved caspase-3. Apoptotic index was evaluated with TUNEL Assay. RESULTS Severe morphological degenerations, increased serum MDA, cleaved caspase-3 and TUNEL Assay positivity rate, but reduced PCNA positivity rate was observed in ischemia and reperfusion group. Morphological degenerations, MDA level, apoptotic index and PCNA positive cell rate were slightly alleviated in allopurinol administered animals compared with ischemia and reperfusion group. Protection with trolox was more successful and the results of the analysis were similar to the control group. DISCUSSION Ischemia that leading to testicular torsion is a reproductive health affecting problem and current surgical treatment methods might be insufficient to recover testis. Various types of ROS generating mechanisms in cell are limiting protective potency of allopurinol, and cocktail administration of different ROS inhibitors might be more effective. However, our results indicate that free radical scavenger trolox might be a candidate drug to alleviate degenerative effects of testicular ischemia reperfusion injury. CONCLUSIONS This is the first study that demonstrates antioxidant trolox was more successful than XO inhibitor allopurinol to protect testis against ischemia and reperfusion injury in rats.
Collapse
Affiliation(s)
- Ugur Seker
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Turkey.
| | - Yusuf Nergiz
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Turkey
| | - Ayfer Aktas
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Turkey
| | - Murat Akkus
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Turkey
| | - Mehmet Ferit Ozmen
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Dicle University, Turkey
| | - Emre Uyar
- Department of Pharmacology, Faculty of Medicine, Dicle University, Turkey
| | - Sevda Soker
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Turkey
| |
Collapse
|
4
|
Vogelaar PC, Roorda M, de Vrij EL, Houwertjes MC, Goris M, Bouma H, van der Graaf AC, Krenning G, Henning RH. The 6-hydroxychromanol derivative SUL-109 ameliorates renal injury after deep hypothermia and rewarming in rats. Nephrol Dial Transplant 2019; 33:2128-2138. [PMID: 29660027 DOI: 10.1093/ndt/gfy080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Methods Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 µg/kg/h) undergoing H/R at 15°C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. Results H/R injury in vitro lowered cell viability by 94 ± 1%, which was counteracted dose-dependently by multiple 6-hydroxychomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 5'-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. Conclusions The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols limit DNA damage, but only SUL-109 also prevented protein nitrosylation in tubular cells. Therefore SUL-109 offers a promising therapeutic strategy to preserve kidney mitochondrial function.
Collapse
Affiliation(s)
- Pieter C Vogelaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Sulfateq B.V., Groningen, The Netherlands
| | - Maurits Roorda
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin L de Vrij
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin C Houwertjes
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maaike Goris
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hjalmar Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Guido Krenning
- Sulfateq B.V., Groningen, The Netherlands
- Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. RECENT ADVANCES Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. CRITICAL ISSUES The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. FUTURE DIRECTIONS Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119-146.
Collapse
Affiliation(s)
- Brian B Ratliff
- 1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York.,2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Wasan Abdulmahdi
- 2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Rahul Pawar
- 1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Michael S Wolin
- 2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| |
Collapse
|
6
|
Fatemikia H, Ketabchi F, Karimi Z, Moosavi SMS. Distant effects of unilateral renal ischemia/reperfusion on contralateral kidney but not lung in rats: the roles of ROS and iNOS. Can J Physiol Pharmacol 2015; 94:477-87. [PMID: 26854976 DOI: 10.1139/cjpp-2015-0285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute kidney injury is usually associated with distant organ dysfunction. The roles of inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) in this phenomenon were investigated following 2 h unilateral renal ischemia and 24 h reperfusion. There were 3 groups of rats subjected to either unilateral ischemia/reperfusion (UIR group), unilateral nephrectomy (UNX group), or sham operation. Two further groups were given α-tocopherol and aminoguanidine with UIR (treated-UIR group) and UNX (treated-UNX group). Plasma nitrite/nitrate and malondialdehyde were elevated only in the UIR group. Creatinine clearance and blood flow increased in non-ischemic kidney of the UIR, but not to the same extent as remnant kidney of the UNX group, while they had equal compensatory rises in absolute Na(+) and K(+) excretion and urine flow. Non-ischemic kidney of the treated-UIR group, but not remnant kidney of the treated-UNX group, showed more elevation in blood flow, whereas both kidneys had reductions in absolute Na(+) excretion and urine flow. Respiratory functional variable were not different between all groups. Therefore, 2 h unilateral renal ischemia and 24 h reperfusion did not affect lung but had distant effects on contralateral kidney partly mediated by ROS and NO-derived from iNOS to dampen compensatory increases in renal hemodynamics and to decrease tubular reabsorption.
Collapse
Affiliation(s)
- Hossein Fatemikia
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran.,Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| | - Farzaneh Ketabchi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran.,Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| | - Zynab Karimi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran.,Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| | - Seyed Mostafa Shid Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran.,Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| |
Collapse
|
7
|
Impellizzeri D, Esposito E, Attley J, Cuzzocrea S. Targeting inflammation: new therapeutic approaches in chronic kidney disease (CKD). Pharmacol Res 2014; 81:91-102. [PMID: 24602801 DOI: 10.1016/j.phrs.2014.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 01/14/2023]
Abstract
Chronic inflammation and oxidative stress, features that are closely associated with nuclear factor (NF-κB) activation, play a key role in the development and progression of chronic kidney disease (CKD). Several animal models and clinical trials have clearly demonstrated the effectiveness of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy to improve glomerular/tubulointerstitial damage, reduce proteinuria, and decrease CKD progression, but CKD treatment still represents a clinical challenge. Bardoxolone methyl, a first-in-class oral Nrf-2 (nuclear factor erythroid 2-related factor 2) agonist that until recently showed considerable potential for the management of a range of chronic diseases, had been shown to improve kidney function in patients with advanced diabetic nephropathy (DN) with few adverse events in a phase 2 trial, but a large phase 3 study in patients with diabetes and CKD was halted due to emerging toxicity and death in a number of patients. Instead, palmitoylethanolamide (PEA) a member of the fatty acid ethanolamine family, is a novel non-steroidal, kidney friendly anti-inflammatory and anti-fibrotic agent with a well-documented safety profile, that may represent a potential candidate in treating CKD probably by a combination of pharmacological properties, including some activity at the peroxisome proliferator activated receptor alpha (PPAR-α). The aim of this review is to discuss new therapeutic approaches for the treatment of CKD, with particular reference to the outcome of two therapies, bardoxolone methyl and PEA, to improve our understanding of which pharmacological properties are responsible for the anti-inflammatory effects necessary for the effective treatment of renal disease.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, Messina 31-98166, Italy
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, Messina 31-98166, Italy
| | | | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, Messina 31-98166, Italy; Manchester Biomedical Research Centre, Manchester Royal Infirmary, University of Manchester, United Kingdom.
| |
Collapse
|
8
|
Ikemura K, Nakagawa E, Kurata T, Iwamoto T, Okuda M. Altered pharmacokinetics of cimetidine caused by down-regulation of renal rat organic cation transporter 2 (rOCT2) after liver ischemia-reperfusion injury. Drug Metab Pharmacokinet 2013; 28:504-9. [PMID: 23774469 DOI: 10.2133/dmpk.dmpk-13-rg-021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The renal tubular secretion of cationic drugs is dominated by basolateral organic cation transporter 2 (rOCT2/SLC22A2) and luminal multidrug and toxin extrusion 1 (rMATE1/SLC47A1). Little is known about the variation in the expression of these renal transporters after liver ischemia-reperfusion (I/R) injury. Here, we examined the pharmacokinetics of a cationic drug, cimetidine, and renal rOCT2 and rMATE1 levels as well as their regulation after liver I/R. Rats were subjected to 60 min of liver ischemia followed by 12 h of reperfusion. The antioxidant Trolox was administered intravenously 5 min before reperfusion. The systemic and tubular secretory clearances of cimetidine (78% and 55%) as well as renal rOCT2 and rMATE1 levels (67% and 61%) in I/R rats were decreased compared with those in sham-operated rats, respectively. However, the renal tissue-to-plasma concentration ratio but not the renal tissue-to-urine clearance ratio of cimetidine was decreased after liver I/R. Moreover, Trolox prevented the decreases in renal rOCT2 levels and systemic clearance of cimetidine after liver I/R. These results demonstrate that liver I/R decreases the tubular secretion of cimetidine, mainly because of the decreased rOCT2 level in the kidney, and that oxidative stress should be responsible in part for decreased renal rOCT2 after liver I/R injury.
Collapse
|
9
|
Rosenbaugh EG, Savalia KK, Manickam DS, Zimmerman MC. Antioxidant-based therapies for angiotensin II-associated cardiovascular diseases. Am J Physiol Regul Integr Comp Physiol 2013; 304:R917-28. [PMID: 23552499 DOI: 10.1152/ajpregu.00395.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases, including hypertension and heart failure, are associated with activation of the renin-angiotensin system (RAS) and increased circulating and tissue levels of ANG II, a primary effector peptide of the RAS. Through its actions on various cell types and organ systems, ANG II contributes to the pathogenesis of cardiovascular diseases by inducing cardiac and vascular hypertrophy, vasoconstriction, sodium and water reabsorption in kidneys, sympathoexcitation, and activation of the immune system. Cardiovascular research over the past 15-20 years has clearly implicated an important role for elevated levels of reactive oxygen species (ROS) in mediating these pathophysiological actions of ANG II. As such, the use of antioxidants, to reduce the elevated levels of ROS, as potential therapies for various ANG II-associated cardiovascular diseases has been intensely investigated. Although some antioxidant-based therapies have shown therapeutic impact in animal models of cardiovascular disease and in human patients, others have failed. In this review, we discuss the benefits and limitations of recent strategies, including gene therapy, dietary sources, low-molecular-weight free radical scavengers, polyethylene glycol conjugation, and nanomedicine-based technologies, which are designed to deliver antioxidants for the improved treatment of cardiovascular diseases. Although much work has been completed, additional research focusing on developing specific antioxidant molecules or proteins and identifying the ideal in vivo delivery system for such antioxidants is necessary before the use of antioxidant-based therapies for cardiovascular diseases become a clinical reality.
Collapse
Affiliation(s)
- Erin G Rosenbaugh
- Department of Cellular and Integrative Physiology, Nebraska Center for Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
10
|
Sedaghat Z, Kadkhodaee M, Seifi B, Salehi E, Najafi A, Dargahi L. Remote preconditioning reduces oxidative stress, downregulates cyclo-oxygenase-2 expression and attenuates ischaemia-reperfusion-induced acute kidney injury. Clin Exp Pharmacol Physiol 2013; 40:97-103. [PMID: 23240616 DOI: 10.1111/1440-1681.12044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022]
Abstract
Remote preconditioning (rPeC) is a phenomenon by which short-time intermittent ischaemia-reperfusion (I/R) of a remote organ during ischaemia protects other organs from I/R injury (IRI). The aim of the present study was to investigate the protective effect of rPeC on renal IRI in rats. Rats were subjected to right nephrectomy and randomized as into a sham group (no additional intervention), an I/R group (subjected to 45 min left renal pedicle occlusion) and an rPeC group (subjected to four cycles of 5 min I/R of the left femoral artery administered at the beginning of renal ischaemia). After 24 h, blood, urine and tissue samples were collected. Compared with the sham group, I/R resulted in renal dysfunction, as evidenced by significantly lower creatinine clearance (CCr; 0.52 ± 0.06 vs 0.11 ± 0.02 mL/min, respectively) and higher fractional excretion of sodium (FE(Na) ; 0.80 ± 0.07% vs 2.46 ± 0.20%, respectively). This was accompanied by decreased superoxide dismutase (SOD; 6.9 ± 1.7 vs 26.7 ± 2.7 U/g tissue) and catalase (CAT; 20.2 ± 8.8 vs 32.2 ± 8.7 K/g tissue) activity in the I/R group, as well as decreased levels of reduced glutathione (GSH; 21.7 ± 8.1 vs 81.2 ± 20.2 μmol/g tissue) and increased malondialdehyde levels (MDA; 1.2 to 0.1 vs 0.5 ± 0.2 μmol/100 mg), cyclo-oxygenase (COX)-2 expression and histological damage. In the rPeC group, renal histology and function were significantly improved (CCr 0.32 ± 0.02 mL/min; FE(Na) 1.33 ± 0.12%) compared with the I/R group. Furthermore, compared with the I/R group, the rPeC group exhibited increases in SOD and CAT activity (22.8 ± 3.8 U/g tissue and 21.7 ± 8.6 K/g tissue, respectively), increased GSH levels (74.0 ± 4.9) and decreased MDA levels (1.1 ± 0.3 μmol/100 mg) and COX-2 expression. In conclusion, rPeC appears to exert protective effects against renal IRI. This protection may be a consequence of reductions in lipid peroxidation, intensification of anti-oxidant systems and downregulation of COX-2 expression. A simple approach, rPeC may be a promising strategy for protection against IRI in clinical practice.
Collapse
Affiliation(s)
- Zahra Sedaghat
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
11
|
Silawat N, Gupta VB. Chebulic acid attenuates ischemia reperfusion induced biochemical alteration in diabetic rats. PHARMACEUTICAL BIOLOGY 2013; 51:23-29. [PMID: 22963650 DOI: 10.3109/13880209.2012.698288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Diabetic nephropathy is one of the important microvascular complications of diabetes; however, the main problem remains is the control of progression of nephropathy in diabetes. Chebulic acid was selected, as tannins from Terminalia chebula are used as antidiabetic, renoprotective, antioxidant, hypotensive and an α-glucosidase inhibitor. OBJECTIVE In this study, we evaluated the effect of chebulic acid on ischemia reperfusion induced biochemical alteration in diabetic rats. MATERIALS AND METHODS Chebulic acid (CA) was isolated from T. chebula; LD(50) and acute toxicity studies of CA were done. Renal ischemia and reperfusion technique was used to induce nephropathy in diabetic rats. Glibenclamide (10 mg/kg) was used as diabetic standard; CA at doses of 25 and 50 mg/kg were administered for 28 days and various biochemical parameters were monitored. RESULTS The LD(50) was found to be 251 mg/kg; 25 and 50 mg/kg doses were selected as no toxic symptoms were observed at both doses, except slight diarrhea. CA significantly (p < 0.001) reduced the glucose, creatinine, urea nitrogen, glycosylated hemoglobulin, proteinuria, urine albumin excretion, glomerular filtration rate (GFR), and increased serum insulin and glycogen level. CA also restored glucose 6-phosphate dehydrogenase, glutathione, superoxide dismutase, catalase and malondialdehyde levels. Improvement in kidney was also noted in histopathological studies. CONCLUSIONS The statistical data indicated that chebulic acid at both doses (25 and 50 mg/kg) improves biochemical alterations caused by renal ischemia in diabetic rats.
Collapse
Affiliation(s)
- Narendra Silawat
- Faculty of Pharmaceutical Sciences, Jodhpur National University, Jodhpur, India.
| | | |
Collapse
|
12
|
Ikemura K, Inoue K, Mizutani H, Oka H, Iwamoto T, Okuda M. An antioxidant Trolox restores decreased oral absorption of cyclosporine A after liver ischemia–reperfusion through distinct mechanisms between CYP3A and P-glycoprotein in the small intestine. Eur J Pharmacol 2012; 690:192-201. [DOI: 10.1016/j.ejphar.2012.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
|
13
|
Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton) 2012; 17:311-21. [PMID: 22288610 DOI: 10.1111/j.1440-1797.2012.01572.x] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic kidney disease (CKD) is a common and serious problem that adversely affects human health, limits longevity and increases costs to health-care systems worldwide. Its increasing incidence cannot be fully explained by traditional risk factors. Oxidative stress is prevalent in CKD patients and is considered to be an important pathogenic mechanism. Oxidative stress develops from an imbalance between free radical production often increased through dysfunctional mitochondria formed with increasing age, type 2 diabetes mellitus, inflammation, and reduced anti-oxidant defences. Perturbations in cellular oxidant handling influence downstream cellular signalling and, in the kidney, promote renal cell apoptosis and senescence, decreased regenerative ability of cells, and fibrosis. These factors have a stochastic deleterious effect on kidney function. The majority of studies investigating anti-oxidant treatments in CKD patients show a reduction in oxidative stress and many show improved renal function. Despite heterogeneity in the oxidative stress levels in the CKD population, there has been little effort to measure patient oxidative stress levels before the use of any anti-oxidants therapies to optimize outcome. This review describes the development of oxidative stress, how it can be measured, the involvement of mitochondrial dysfunction and the molecular pathways that are altered, the role of oxidative stress in CKD pathogenesis and an update on the amelioration of CKD using anti-oxidant therapies.
Collapse
Affiliation(s)
- David M Small
- Centre for Kidney Disease Research, School of Medicine, The University of Queensland, Queensland, Australia
| | | | | | | | | |
Collapse
|
14
|
Fishman AI, Alexander B, Eshghi M, Choudhury M, Konno S. Nephrotoxin-induced renal cell injury involving biochemical alterations and its prevention with antioxidant. J Clin Med Res 2012; 4:95-101. [PMID: 22505981 PMCID: PMC3320129 DOI: 10.4021/jocmr833w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2012] [Indexed: 11/04/2022] Open
Abstract
Background Although nephrotoxic agents or nephrotoxins are known to induce acute renal cell injury, their cytotoxic action is not fully elucidated. It is thus crucial to explore such a cytotoxic mechanism and the increasing volume of reports indicated a significant involvement of oxidative stress. To test this possibility, we investigated if a nephrotoxin would exert oxidative stress, leading to renal cell injury accompanied by certain biochemical alterations. We also examined if specific antioxidant might help prevent such oxidative cell injury. These studies may then help establish a prophylactic or preventive modality for renal cell injury induced by nephrotoxins. Methods As glycerol has been commonly used for studying acute renal failure in animals, whether it would induce cellular injury was tested in renal proximal tubular OK cells in vitro. Cells were exposed to the varying concentrations of glycerol and cell number/viability was determined in 24 hours. Severity of oxidative stress was assessed by lipid peroxidation assay. Possible effects of glycerol on biochemical parameters were also examined on glyoxalase I activity and heat shock protein 90 using spectrophotometric (enzymatic) assay and Western blot analysis. Results Glycerol (2.5%) was highly cytotoxic to OK cells, inducing 95% cell death in 24 hours. Lipid peroxidation assay indicated that nearly 3-fold greater oxidative stress was exerted by this glycerol. Concurrently, glyoxalase I activity was drastically lost by 75% and heat shock protein 90 was partially degraded following glycerol exposure. However, N-acetylcysteine, a potent glutathione-based antioxidant, was capable of almost completely preventing the glycerol-mediated adverse outcomes, such as cell death, glyoxalase I inactivation, and heat shock protein 90 degradation. Conclusions Glycerol is cytotoxic, capable of inducing specific biochemical alterations such as inactivation of glyoxalase I and degradation of heat shock protein 90, which may reflect a breakdown of the cellular detoxification and defense systems, leading ultimately to OK cell death. Nevertheless, as N-acetylcysteine can provide full cytoprotection against such glycerol toxicity, it could be considered a prophylactic modality for nephrotoxin-induced oxidative renal cell injury and death. Keywords Glycerol; Glyoxalase I; Heat shock protein; N-acetylcysteine; Renal cell injury
Collapse
Affiliation(s)
- Andrew I Fishman
- Department of Urology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | |
Collapse
|
15
|
Wattamwar PP, Hardas SS, Butterfield DA, Anderson KW, Dziubla TD. Tuning of the pro-oxidant and antioxidant activity of trolox through the controlled release from biodegradable poly(trolox ester) polymers. J Biomed Mater Res A 2011; 99:184-91. [PMID: 21976443 DOI: 10.1002/jbm.a.33174] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 11/08/2022]
Abstract
In a variety of biomedical applications (e.g., tissue engineering, drug delivery, etc.), the role of a bioactive material is to serve as a platform by which one can modulate the cellular response into a desired role. Of the methods by which one may achieve this control (e.g., shape, structure, binding, growth factor release), the control of the cellular redox state has been under evaluated. Ideally, the ability to tune the redox state of a cell provides an additional level of control over a variety of cellular responses including, cell differentiation, proliferation, and apoptosis. Yet, in order to achieve such control, it is important to know both the overall oxidative status of the cell and what molecular targets are being oxidized. In this work, poly (trolox ester) nanoparticles were evaluated for their ability to either inhibit or induce cellular oxidative stress in a dose-dependent fashion. This polymer delivery form possessed a unique ability to suppress protein oxidation, a feature not seen in the free drug form, emphasizing the advantage of the delivery/dosage formulation has upon regulating cellular response.
Collapse
Affiliation(s)
- Paritosh P Wattamwar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | |
Collapse
|
16
|
McClung JM, Kavazis AN, Whidden MA, DeRuisseau KC, Falk DJ, Criswell DS, Powers SK. Antioxidant administration attenuates mechanical ventilation-induced rat diaphragm muscle atrophy independent of protein kinase B (PKB Akt) signalling. J Physiol 2007; 585:203-15. [PMID: 17916612 DOI: 10.1113/jphysiol.2007.141119] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oxidative stress promotes controlled mechanical ventilation (MV)-induced diaphragmatic atrophy. Nonetheless, the signalling pathways responsible for oxidative stress-induced muscle atrophy remain unknown. We tested the hypothesis that oxidative stress down-regulates insulin-like growth factor-1-phosphotidylinositol 3-kinase-protein kinase B serine threonine kinase (IGF-1-PI3K-Akt) signalling and activates the forkhead box O (FoxO) class of transcription factors in diaphragm fibres during MV-induced diaphragm inactivity. Sprague-Dawley rats were randomly assigned to one of five experimental groups: (1) control (Con), (2) 6 h of MV, (3) 6 h of MV with infusion of the antioxidant Trolox, (4) 18 h of MV, (5) 18 h of MV with Trolox. Following 6 h and 18 h of MV, diaphragmatic Akt activation decreased in parallel with increased nuclear localization and transcriptional activation of FoxO1 and decreased nuclear localization of FoxO3 and FoxO4, culminating in increased expression of the muscle-specific ubiquitin ligases, muscle atrophy factor (MAFbx) and muscle ring finger-1 (MuRF-1). Interestingly, following 18 h of MV, antioxidant administration was associated with attenuation of MV-induced atrophy in type I, type IIa and type IIb/IIx myofibres. Collectively, these data reveal that the antioxidant Trolox attenuates MV-induced diaphragmatic atrophy independent of alterations in Akt regulation of FoxO transcription factors and expression of MAFbx or MuRF-1. Further, these results also indicate that differential regulation of diaphragmatic IGF-1-PI3K-Akt signalling exists during the early and late stages of MV.
Collapse
Affiliation(s)
- J M McClung
- Department of Applied Physiology and Kinesiology, University of Florida, Room 25 Florida Gym, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|