1
|
Wälchli T, Bisschop J, Miettinen A, Ulmann-Schuler A, Hintermüller C, Meyer EP, Krucker T, Wälchli R, Monnier PP, Carmeliet P, Vogel J, Stampanoni M. Hierarchical imaging and computational analysis of three-dimensional vascular network architecture in the entire postnatal and adult mouse brain. Nat Protoc 2021; 16:4564-4610. [PMID: 34480130 DOI: 10.1038/s41596-021-00587-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The formation of new blood vessels and the establishment of vascular networks are crucial during brain development, in the adult healthy brain, as well as in various diseases of the central nervous system. Here, we describe a step-by-step protocol for our recently developed method that enables hierarchical imaging and computational analysis of vascular networks in postnatal and adult mouse brains. The different stages of the procedure include resin-based vascular corrosion casting, scanning electron microscopy, synchrotron radiation and desktop microcomputed tomography imaging, and computational network analysis. Combining these methods enables detailed visualization and quantification of the 3D brain vasculature. Network features such as vascular volume fraction, branch point density, vessel diameter, length, tortuosity and directionality as well as extravascular distance can be obtained at any developmental stage from the early postnatal to the adult brain. This approach can be used to provide a detailed morphological atlas of the entire mouse brain vasculature at both the postnatal and the adult stage of development. Our protocol allows the characterization of brain vascular networks separately for capillaries and noncapillaries. The entire protocol, from mouse perfusion to vessel network analysis, takes ~10 d.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arttu Miettinen
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | | | | | - Eric P Meyer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Thomas Krucker
- Novartis Institutes for BioMedical Research Inc, Emeryville, CA, USA
| | - Regula Wälchli
- Department of Dermatology, Pediatric Skin Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Johannes Vogel
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco Stampanoni
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Nguyen L, Fifis T, Christophi C. Vascular disruptive agent OXi4503 and anti-angiogenic agent Sunitinib combination treatment prolong survival of mice with CRC liver metastasis. BMC Cancer 2016; 16:533. [PMID: 27460820 PMCID: PMC4962549 DOI: 10.1186/s12885-016-2568-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background Preclinical research indicate that vascular disrupting agent (VDA) treatment induces extensive tumor death but also a systemic mobilization of bone marrow derived cells including endothelial progenitor cells (EPC) leading to revascularization and renewed growth within the residual tumor. This study investigates if combination of VDA with the anti-angiogenic agent Sunitinib increases the treatment efficacy in a colorectal liver metastases mouse model. Methods CBA mice with established liver metastases were given a single dose of OXi4503 at day 16 post tumor induction, a daily dose of Sunitinib starting at day 14 or day 16 post tumor induction or a combination of Sunitinib given daily from day 14 or day 16 post tumor induction in combination with a single dose of OXi4503 at day 16. Treatment was terminated at day 21 post tumor induction and its effects were assessed using stereological and immunohistochemical techniques. Long term effects were assessed in a survival study. Results Combination with long (7 day) Sunitinib treatment lead to liver toxicity but this was ameliorated in the shorter (5 day) treatment without significantly altering the effects on tumor reduction. Combination treatment resulted in significant reduction of viable tumor, reduction in tumor vasculature, reduction in tumor proliferation, increase in tumor apoptosis and prolonged mouse survival compared to control and single arm treatments. Complete tumor eradication was not achieved. Redistribution of E-cadherin and strong up regulation of ZEB1 and Vimentin were observed in the surviving tumor; indicative of epithelial to mesenchymal transition (EMT), a mechanism that could contribute to tumor resistance. Conclusions Combination treatment significantly reduces viable tumor and prolongs animal survival. EMT in the surviving tumor may prevent total tumor eradication and could provide novel targets for a more lasting treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2568-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linh Nguyen
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Theodora Fifis
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia.
| | - Christopher Christophi
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| |
Collapse
|
3
|
Bothwell KD, Folaron M, Seshadri M. Preclinical Activity of the Vascular Disrupting Agent OXi4503 against Head and Neck Cancer. Cancers (Basel) 2016; 8:cancers8010011. [PMID: 26751478 PMCID: PMC4728458 DOI: 10.3390/cancers8010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Vascular disrupting agents (VDAs) represent a relatively distinct class of agents that target established blood vessels in tumors. In this study, we examined the preclinical activity of the second-generation VDA OXi4503 against human head and neck squamous cell carcinoma (HNSCC). Studies were performed in subcutaneous and orthotopic FaDu-luc HNSCC xenografts established in immunodeficient mice. In the subcutaneous model, bioluminescence imaging (BLI) along with tumor growth measurements was performed to assess tumor response to therapy. In mice bearing orthotopic tumors, a dual modality imaging approach based on BLI and magnetic resonance imaging (MRI) was utilized. Correlative histologic assessment of tumors was performed to validate imaging data. Dynamic BLI revealed a marked reduction in radiance within a few hours of OXi4503 administration compared to baseline levels. However, this reduction was transient with vascular recovery observed at 24 h post treatment. A single injection of OXi4503 (40 mg/kg) resulted in a significant (p < 0.01) tumor growth inhibition of subcutaneous FaDu-luc xenografts. MRI revealed a significant reduction (p < 0.05) in volume of orthotopic tumors at 10 days post two doses of OXi4503 treatment. Corresponding histologic (H&E) sections of Oxi4503 treated tumors showed extensive areas of necrosis and hemorrhaging compared to untreated controls. To the best of our knowledge, this is the first report, on the activity of Oxi4503 against HNSCC. These results demonstrate the potential of tumor-VDAs in head and neck cancer. Further examination of the antivascular and antitumor activity of Oxi4503 against HNSCC alone and in combination with chemotherapy and radiation is warranted.
Collapse
Affiliation(s)
- Katelyn D Bothwell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA.
| | - Margaret Folaron
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Oral Medicine/Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
4
|
Lee JA, Biel NM, Kozikowski RT, Siemann DW, Sorg BS. In vivo spectral and fluorescence microscopy comparison of microvascular function after treatment with OXi4503, Sunitinib and their combination in Caki-2 tumors. BIOMEDICAL OPTICS EXPRESS 2014; 5:1965-79. [PMID: 24940553 PMCID: PMC4052922 DOI: 10.1364/boe.5.001965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 05/16/2023]
Abstract
Vascular targeting agents on their own have been shown to be insufficient for complete treatment of solid tumors, emphasizing the importance of studying the vascular effects of these drugs for their use with conventional therapies in the clinic. First-pass fluorescence imaging combined with hyperspectral imaging of hemoglobin saturation of microvessels in the murine dorsal window chamber model provides an easily implementable, low cost method to analyze tumor vascular response to these agents in real-time. In this study, the authors utilized these methods to spectroscopically demonstrate distinct vessel structure, blood flow and oxygenation changes in human Caki-2 renal cell carcinoma following treatment with OXi4503 alone, Sunitinib alone and both drugs together. We showed that treatment with OXi4503 plus Sunitinib destroyed existing tumor microvessels, inhibited blood vessel recovery and impaired Caki-2 tumor growth significantly more than either treatment alone.
Collapse
Affiliation(s)
- Jennifer A. Lee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building, Gainesville, FL 32610, USA
| | - Nikolett M. Biel
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Cancer and Genetics Research Complex, Gainesville, FL 32610, USA
| | | | - Dietmar W. Siemann
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brian S. Sorg
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20852, USA
| |
Collapse
|
5
|
Spatial morphological and molecular differences within solid tumors may contribute to the failure of vascular disruptive agent treatments. BMC Cancer 2012; 12:522. [PMID: 23153292 PMCID: PMC3583184 DOI: 10.1186/1471-2407-12-522] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 11/07/2012] [Indexed: 01/25/2023] Open
Abstract
Background Treatment of solid tumors with vascular disrupting agent OXi4503 results in over 90% tumor destruction. However, a thin rim of viable cells persists in the tumor periphery following treatment, contributing to subsequent recurrence. This study investigates inherent differences in the microenvironment of the tumor periphery that contribute to treatment resistance. Methods Using a murine colorectal liver metastases model, spatial morphological and molecular differences within the periphery and the center of the tumor that may account for differences in resistance to OXi4503 treatment were investigated. H&E staining and immunostaining were used to examine vessel maturity and stability, hypoxia and HIF1α levels, accumulation of immune cells, expression of proangiogenic factors/receptors (VEGF, TGF-β, b-FGF, and AT1R) and expression of EMT markers (ZEB1, vimentin, E-cadherin and β-catenin) in the periphery and center of established tumors. The effects of OXi4503 on tumor vessels and cell kinetics were also investigated. Results Significant differences were found between tumor periphery and central regions, including association of the periphery with mature vessels, higher accumulation of immune cells, increased growth factor expression, minimal levels of hypoxia and increased evidence of EMT. OXi4503 treatment resulted in collapse of vessels in the tumor center; however vasculature in the periphery remained patent. Similarly, tumor apoptosis and proliferation were differentially modulated between centre and periphery after treatment. Conclusions The molecular and morphological differences between tumor periphery and center may account for the observed differential resistance to OXi4503 treatment and could provide targets for drug development to totally eliminate metastases.
Collapse
|
6
|
Serial monitoring of human systemic and xenograft models of leukemia using a novel vascular disrupting agent. Leukemia 2012; 26:1771-8. [PMID: 22343591 DOI: 10.1038/leu.2012.48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Advances in the treatment of acute leukemia have resulted in significantly improved remission rates, although disease relapse poses a significant risk. By utilizing sensitive, non-invasive imaging guidance, detection of early leukemic infiltration and the extent of residual tumor burden after targeted therapy can be expedited, leading to more efficient treatment planning. We demonstrated marked survival benefit and therapeutic efficacy of a new-generation vascular disrupting agent, combretastatin-A1-diphosphate (OXi4503), using reporter gene-imaging technologies and mice systemically administered luc+ and GFP+ human leukemic cells (LCs). Before treatment, homing of double-transduced cells was serially monitored and whole-body cellular distributions were mapped using bioluminescence imaging (BLI). Imaging findings strongly correlated with quantitative GFP expression levels in solid organs/tissues, suggesting that the measured BLI signal provides a highly sensitive and reliable biomarker of tumor tissue burden in systemic leukemic models. Such optical technologies can thereby serve as robust non-invasive imaging tools for preclinical drug discovery and for rapidly screening promising therapeutic agents to establish potency, treatment efficacy and survival advantage. We further show that GFP+ HL-60 cells reside in close proximity to VE-cadherin- and CD31-expressing endothelial cells, suggesting that the perivascular niche may have a critical role in the maintenance and survival of LCs.
Collapse
|
7
|
Burns CJ, Fantino E, Powell AK, Shnyder SD, Cooper PA, Nelson S, Christophi C, Malcontenti-Wilson C, Dubljevic V, Harte MF, Joffe M, Phillips ID, Segal D, Wilks AF, Smith GD. The microtubule depolymerizing agent CYT997 causes extensive ablation of tumor vasculature in vivo. J Pharmacol Exp Ther 2011; 339:799-806. [PMID: 21917561 DOI: 10.1124/jpet.111.186965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The orally active microtubule-disrupting agent (S)-1-ethyl-3-(2-methoxy-4-(5-methyl-4-((1-(pyridin-3-yl)butyl)amino)pyrimidin-2-yl)phenyl)urea (CYT997), reported previously by us (Bioorg Med Chem Lett 19:4639-4642, 2009; Mol Cancer Ther 8:3036-3045, 2009), is potently cytotoxic to a variety of cancer cell lines in vitro and shows antitumor activity in vivo. In addition to its cytotoxic activity, CYT997 possesses antivascular effects on tumor vasculature. To further characterize the vascular disrupting activity of CYT997 in terms of dose and temporal effects, we studied the activity of the compound on endothelial cells in vitro and on tumor blood flow in vivo by using a variety of techniques. In vitro, CYT997 is shown to potently inhibit the proliferation of vascular endothelial growth factor-stimulated human umbilical vein endothelial cells (IC(50) 3.7 ± 1.8 nM) and cause significant morphological changes at 100 nM, including membrane blebbing. Using the method of corrosion casting visualized with scanning electron microscopy, a single dose of CYT997 (7.5 mg/kg i.p.) in a metastatic cancer model was shown to cause destruction of tumor microvasculature in metastatic lesions. Furthermore, repeat dosing of CYT997 at 10 mg/kg and above (intraperitoneally, b.i.d.) was shown to effectively inhibit development of liver metastases. The time and dose dependence of the antivascular effects were studied in a DLD-1 colon adenocarcinoma xenograft model using the fluorescent dye Hoechst 33342. CYT997 demonstrated rapid and dose-dependent vascular shutdown, which persists for more than 24 h after a single oral dose. Together, the data demonstrate that CYT997 possesses potent antivascular activity and support continuing development of this promising compound.
Collapse
|
8
|
Abstract
Background Angiogenesis is a critical component of tumor development and proliferation, and increased angiogenesis has been associated with a worse clinical outcome in a number of solid tumors, including ovarian cancer. Therefore, agents that target the angiogenic process are of considerable interest in the treatment of ovarian cancer. Methods Studies evaluating the efficacy of antiangiogenic agents in ovarian cancer are reported. Antiangiogenic agents examined include vascular endothelial growth factor (VEGF) pathway inhibitors, including monoclonal antibodies, tyrosine kinase inhibitors (TKIs), and a soluble receptor decoy, as well as inhibitors of other angiogenic factors and vascular disrupting agents. Results The VEGF inhibitor bevacizumab has been shown to have efficacy in ovarian cancer in phase II trials and a progression-free survival advantage in one phase III trial. TKIs block the VEGF receptors and secondary angiogenic pathways and have shown activity in phase I and II trials. Alternative angiogenesis inhibitors include EphA2 inhibitors and a selective angiopoietin 1/2-neutralizing peptibody. Another strategy is to destroy the existing tumor vasculature, and a number of vascular disrupting agents are being studied in preclinical and phase I trials. Antiangiogenic agents have a unique side effect profile, likely due to inhibition of normal physiologic angiogenesis. Conclusions Phase II and early phase III trials have demonstrated that antiangiogenic therapies have significant activity in ovarian cancer. The results of phase III trials in the front-line and recurrent settings will determine the extent of clinical benefit of antiangiogenic therapies in combination with chemotherapy. Antiangiogenic agents have a distinct side effect profile, and further studies are necessary to evaluate how to minimize the incidence of these events and to identify women most likely to benefit from these therapies.
Collapse
Affiliation(s)
- Deanna G. K. Teoh
- Division of Gynecologic Oncology at Duke Comprehensive Cancer Center, Durham, North Carolina
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology at Duke Comprehensive Cancer Center, Durham, North Carolina
| |
Collapse
|
9
|
Ferlin MG, Conconi MT, Urbani L, Oselladore B, Guidolin D, Di Liddo R, Parnigotto PP. Synthesis, in vitro and in vivo preliminary evaluation of anti-angiogenic properties of some pyrroloazaflavones. Bioorg Med Chem 2010; 19:448-57. [PMID: 21145750 DOI: 10.1016/j.bmc.2010.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/27/2010] [Accepted: 11/04/2010] [Indexed: 11/28/2022]
Abstract
This work investigated the in vitro and in vivo anti-angiogenic activity of some pyrroloazaflavones, exactly 2-phenyl-1H-pyrrolo[2,3-h]quinolin-4(7H)ones, with vinblastine as reference compound. Growth inhibitory activity, migration, and capillary-like structures formation were determined in human umbilical vein endothelial cell cultures, and Matrigel plug assay was carried out to evaluate in vivo effects on angiogenesis. Collectively, our results indicate that some pyrroloazaflavone derivatives, at non-cytotoxic concentrations and like vinblastine are able: (i) to exert in vitro anti-angiogenic activity and (ii) to counteract in vitro and in vivo the pro-angiogenic effects of fibroblast growth factor-2 (FGF-2).
Collapse
Affiliation(s)
- Maria Grazia Ferlin
- Department of Pharmaceutical Sciences, University of Padova, via F. Marzolo, 5, 35131 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kanthou C, Tozer GM. Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies. Int J Exp Pathol 2009; 90:284-94. [PMID: 19563611 DOI: 10.1111/j.1365-2613.2009.00651.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Vascular disrupting agents (VDAs) are a relatively new group of 'vascular targeting' agents that exhibit selective activity against established tumour vascular networks, causing severe interruption of tumour blood flow and necrosis to the tumour mass. Microtubule depolymerizing agents form by far the largest group of small molecular weight VDAs many of which, including lead compound disodium combretastatin A-4 3-O-phosphate (CA-4-P), are under clinical development for cancer. Although distinct from the angiogenesis inhibitors, VDAs can also interfere with angiogenesis and therefore constitute a potential group of novel drugs for the treatment of pathological conditions characterized by excessive angiogenesis, in addition to cancer. The endothelial cytoskeleton is the primary cellular target of this family of drugs, and some progress in understanding the molecular and signalling mechanisms associated with their endothelial disrupting activity has been made in the last few years. Susceptibility of tumour vessels to VDA damage is ascribed to their immature pericyte-defective nature, although the exact molecular mechanisms involved have not been clearly defined. Despite causing profound damage to tumours, VDAs fail to halt tumour growth unless used together with conventional treatments. This failure is attributed to resistance mechanisms, primarily associated with cells that remain viable within the tumour rim, and enhanced angiogenesis. The focus is now to understand mechanisms of susceptibility and resistance to identify novel molecular targets and develop strategies that are more effective.
Collapse
Affiliation(s)
- Chryso Kanthou
- Cancer Research-UK Tumour Microcirculation Group, Section of Oncology, School of Medicine & Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|