1
|
Kaur G, Sohanur Rahman M, Shaikh S, Panda K, Chinnapaiyan S, Santiago Estevez M, Xia L, Unwalla H, Rahman I. Emerging roles of senolytics/senomorphics in HIV-related co-morbidities. Biochem Pharmacol 2024; 228:116179. [PMID: 38556028 PMCID: PMC11410549 DOI: 10.1016/j.bcp.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few. Interestingly, cellular senescence is known to play a critical role in the pathophysiology of these comorbidities as well. It is therefore important to understand the role of cellular senescence in the disease progression and co-morbidity development in HIV-infected individuals. In this respect, use of senolytic/senomorphic drugs as combination therapy with ART would be beneficial for HIV patients. This review provides a critical analysis of the current literature to determine the potential and efficacy of using senolytics/senotherapeutics in managing HIV infection, latency, and associated co-morbidities in humans. The various classes of senolytics have been studied in detail to focus on their potential to combat against HIV infections and associated pathologies with advancing age.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Maria Santiago Estevez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Li Xia
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Shi ZE, Zhang MY, Liu JY, Zhang WD, Hu DM, Wang QX, Ji XL, Jiang YY, Qu YQ. Autophagy Induced by BCL2-Related ceRNA Network Participates in the Occurrence of COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:791-808. [PMID: 35431545 PMCID: PMC9005473 DOI: 10.2147/copd.s347733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a predominant cause of mortality worldwide. Autophagy, which depends on a lysosomal degradation pathway, plays an essential role in the occurrence of COPD. The aim of our study was to identify the potential function of autophagy and construct a BCL2-related competing endogenous RNA (ceRNA) network that induces autophagy in COPD. Methods Blood sample data from GSE31568, GSE24709, and GSE61741 were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs in COPD and controls were identified via GEO2R. Transcription factors were obtained from FunRich. DIANA, miRDB, miRTarBase, and TargetScan were used to predict target genes of miRNAs. Autophagy genes were collected from the Human Autophagy Database (HADb). The GSE151052 dataset was used to identify autophagy-related differentially expressed genes in tissues. Functional enrichment and protein–protein interaction (PPI) network analyses were conducted via Metascape and the STRING network. Spearman correlation analysis was used to analyze the relationship between autophagy-related differentially expressed genes and lung function. The BCL2-related ceRNA network was modeled by Cytoscape. Results We obtained 41 differentially expressed miRNAs and 10 significantly different transcription factors. We identified 19 autophagy-related differentially expressed genes that were significantly different (P<0.05) in tissue samples. The most significant enrichment in Metascape was an autophagy item, which further confirmed autophagy participation in the occurrence of COPD. PPI network analysis found four genes (BCL2, BECN1, MAPK8, and ITPR1), among which BCL2 was correlated with both FEV1/FVC and FEV1 prediction. Finally, the BCL2-related ceRNA network was constructed to clarify the interaction of RNAs and occurrence of autophagy, including 18 miRNAs and 65 lncRNAs. Conclusion We identified 19 autophagy-related differentially expressed genes that participated in COPD; among them, BCL2 was correlated with lung function, and a BCL2-related ceRNA network was constructed, which further revealed the potential mechanism of autophagy involvement in COPD.
Collapse
Affiliation(s)
- Zhuang-E Shi
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Wen-Di Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Dong-Mei Hu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Qing-Xiang Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, People’s Republic of China
| | - Yuan-Yuan Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
- Correspondence: Yi-Qing Qu, Department of pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China, Tel +86 531 8216 9335, Fax +86 531 8296 7544, Email
| |
Collapse
|
3
|
Yang D, Yan Y, Hu F, Wang T. CYP1B1, VEGFA, BCL2, and CDKN1A Affect the Development of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:167-175. [PMID: 32158203 PMCID: PMC6986178 DOI: 10.2147/copd.s220675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by poor airflow. The purpose of this study was to explore the mechanisms involved in the development of COPD. Patients and Methods The mRNA expression profile GSE100281, consisting of 79 COPD and 16 healthy samples, was acquired from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between COPD samples and healthy samples were analyzed using the limma package. Functional enrichment analysis for the DEGs was carried out using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool. Furthermore, DEG-compound pairs were predicted using the Comparative Toxicogenomics Database. The KEGG metabolite IDs corresponding to the compounds were also obtained through the MetaboAnalyst pipeline. Based on the diffusion algorithm, the metabolite network was constructed. Finally, the expression levels of key genes were determined using quantitative PCR (qPCR). Results There were 594 DEGs identified between the COPD and healthy samples, including 242 upregulated and 352 downregulated genes. A total of 696 DEG-compound pairs, such as BCL2-C00469 (ethanol) and BCL2-C00389 (quercetin) pairs, were predicted. CYP1B1, VEGFA, BCL2, and CDKN1A were included in the top 10 DEG-compound pairs. Additionally, 57 metabolites were obtained. In particular, hsa04750 (inflammatory mediator regulation of TRP channels)-C00469 (ethanol) and hsa04152 (AMPK signaling pathway)-C00389 (quercetin) pairs were found in the metabolite network. The results of qPCR showed that the expression of CYP1B1, VEGFA, BCL2, and CDKN1A was consistent with that predicted using bioinformatic analysis. Conclusion CYP1B1, VEGFA, BCL2, and CDKN1A may play important functions in the development and progression of COPD.
Collapse
Affiliation(s)
- Danlei Yang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ying Yan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan 750002, People's Republic of China
| | - Fen Hu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
4
|
Pulmonary Endothelial Cell Apoptosis in Emphysema and Acute Lung Injury. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2019; 228:63-86. [PMID: 29288386 DOI: 10.1007/978-3-319-68483-3_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis plays an essential role in homeostasis and pathogenesis of a variety of human diseases. Endothelial cells are exposed to various environmental and internal stress and endothelial apoptosis is a pathophysiological consequence of these stimuli. Pulmonary endothelial cell apoptosis initiates or contributes to progression of a number of lung diseases. This chapter will focus on the current understanding of the role of pulmonary endothelial cell apoptosis in the development of emphysema and acute lung injury (ALI) and the factors controlling pulmonary endothelial life and death.
Collapse
|
5
|
Guillem V, Amat P, Collado M, Cervantes F, Alvarez-Larrán A, Martínez J, Tormo E, Eroles P, Solano C, Hernández-Boluda JC. BCL2 gene polymorphisms and splicing variants in chronic myeloid leukemia. Leuk Res 2015; 39:S0145-2126(15)30367-2. [PMID: 26344465 DOI: 10.1016/j.leukres.2015.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 11/24/2022]
Abstract
Recent data suggest that constitutional genetic variation in the antiapoptotic BCL2 gene could be associated with the susceptibility to develop chronic myeloid leukemia (CML) and the clinical outcome in several hematological malignancies. The present study examines whether BCL2 single nucleotide polymorphisms (SNPs) predispose to CML or may potentially influence the disease characteristics at diagnosis. Notably, no association was observed between the four candidate BCL2 SNPs and the risk of developing CML. Instead, the 4777C>A (rs2279115) and the 5735A>G (rs1801018) SNPs were significantly associated with the disease risk profile as determined by the Sokal score. We found that such polymorphisms correlated with the expression of BCL2 alternative splicing transcripts (BCL2-α, BCL2-β) in healthy donors, but not in CML patients, although the relative levels of BCL2 mRNA splicing variants were shown to change during the clinical course of CML. Our findings suggest that BCL2 polymorphisms could influence the clinical features of CML patients at diagnosis. However, the pathogenic mechanisms involved in such association remain to be ascertained.
Collapse
Affiliation(s)
- Vicent Guillem
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Paula Amat
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - María Collado
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | | | | | - Eduardo Tormo
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Pilar Eroles
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos Solano
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Juan Carlos Hernández-Boluda
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
6
|
Inoue S, Shibata Y, Kishi H, Hasegawa H, Nitobe J, Iwayama T, Yashiro Y, Nemoto T, Sato K, Nakano H, Sato M, Nunomiya K, Aida Y, Yamauchi K, Igarashi A, Abe S, Kubota I. Low arterial blood oxygenation is associated with calcification of the coronary arteries in patients with chronic obstructive pulmonary disease. Respir Investig 2015; 53:111-116. [PMID: 25951097 DOI: 10.1016/j.resinv.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/26/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cigarette smoking is a well-known major cause of both chronic obstructive pulmonary disease (COPD) and atherosclerosis. However, few studies have investigated the correlation between COPD and coronary atherosclerosis. METHODS We recruited 54 patients with stable COPD (51 men, 3 women) but without angina symptoms. Arterial blood gas analyses were performed, pulmonary function was assessed, and calcification of the coronary arteries was evaluated by computed tomography (CT). RESULTS Calcification of the coronary arteries was noted in 25 patients. There were no significant differences in age, body mass index, respiratory function, and levels of low-density lipoprotein cholesterol, hemoglobin A1c, glucose, or C-reactive protein between patients with or without calcification of the coronary arteries. Arterial blood oxygenation was significantly lower in patients with calcification of the coronary arteries. On both univariate and multivariate analyses, low arterial blood oxygenation was an independent risk factor for calcification of the coronary arteries. CONCLUSIONS In patients with COPD, low arterial blood oxygenation was strongly associated with calcification of the coronary arteries and may be a significant predictor of cardiovascular disease.
Collapse
Affiliation(s)
- Sumito Inoue
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Yoko Shibata
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Hiroyuki Kishi
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Hiromasa Hasegawa
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Joji Nitobe
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Tadateru Iwayama
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Yoshinori Yashiro
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Takako Nemoto
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Kento Sato
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Hiroshi Nakano
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Masamichi Sato
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Keiko Nunomiya
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Yasuko Aida
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Keiko Yamauchi
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Akira Igarashi
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Shuichi Abe
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | - Isao Kubota
- Yamagata University School of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
7
|
Abstract
A genetic contribution to develop chronic obstructive pulmonary disease (COPD) is well established. However, the specific genes responsible for enhanced risk or host differences in susceptibility to smoke exposure remain poorly understood. The goal of this review is to provide a comprehensive literature overview on the genetics of COPD, highlight the most promising findings during the last few years, and ultimately provide an updated COPD gene list. Candidate gene studies on COPD and related phenotypes indexed in PubMed before January 5, 2012 are tabulated. An exhaustive list of publications for any given gene was looked for. This well-documented COPD candidate-gene list is expected to serve many purposes for future replication studies and meta-analyses as well as for reanalyzing collected genomic data in the field. In addition, this review summarizes recent genetic loci identified by genome-wide association studies on COPD, lung function, and related complications. Assembling resources, integrative genomic approaches, and large sample sizes of well-phenotyped subjects is part of the path forward to elucidate the genetic basis of this debilitating disease.
Collapse
Affiliation(s)
- Yohan Bossé
- Centre de recherche Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.
| |
Collapse
|
8
|
Zhang J, He J, Xia J, Chen Z, Chen X. Delayed apoptosis by neutrophils from COPD patients is associated with altered Bak, Bcl-xl, and Mcl-1 mRNA expression. Diagn Pathol 2012; 7:65. [PMID: 22686245 PMCID: PMC3488503 DOI: 10.1186/1746-1596-7-65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/30/2012] [Indexed: 01/13/2023] Open
Abstract
Background Delayed neutrophil apoptosis may be an important factor in the persistent inflammation associated with chronic obstructive pulmonary disease (COPD). Bcl-2 family proteins are important regulators of neutrophil apoptosis. We determined the mRNA levels of pro-apoptotic Bak and anti-aptototic Bcl-xl and Mcl-1 members of the Bcl-2 family in unstimulated peripheral blood neutrophils from patients with mild to moderate COPD and compared these to neutrophils from healthy controls. Methods Neutrophils were isolated from peripheral blood samples of 47 COPD patients (smokers: N = 24) and 47 healthy controls (smokers: N = 24). Percentages of apoptotic cells were determined at 4, 24, and 36 h for unstimulated neutrophils cultured in vitro. Neutrophil mRNA expression of Bak, Bcl-xl, and Mcl-1 was determined by real-time polymerase chain reaction (PCR). FEV1 (% predicted) and FVC were determined by spirometry and correlations between mRNA levels and lung function parameters were determined. Results The percentages of apoptotic cells among unstimulated neutrophils from COPD patients were significantly lower compared to cells from controls after 4, 24, and 36 h in culture; smoking history had only a minimal effect on these differences. Unstimulated neutrophils from COPD patients had significantly lower Bak mRNA expression and higher expressions of Bcl-xl and Mcl-1 mRNA than cells from healthy controls. Again, smoking history had only a minimal effect on these trends. Bak mRNA expression was significantly positively correlated with both % predicted FEV1 and the FEV1/FVC ratio, while Bcl-xl and Mcl-1 mRNA expressions were significantly negatively correlated with %predicted FEV1 and the FEV1/FVC ratio. Conclusions The genes for pro-apoptotic Bak, and anti-apoptotic Bcl-xl and Mcl-1 may be important in regulating the delayed neutrophil apoptosis observed in COPD, which may contribute to COPD pathogenesis. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1605269445677066
Collapse
|
9
|
Naylor MG, Weiss ST, Lange C. Recommendations for using standardised phenotypes in genetic association studies. Hum Genomics 2009; 3:308-19. [PMID: 19706362 PMCID: PMC3525193 DOI: 10.1186/1479-7364-3-4-308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Genetic association studies of complex traits often rely on standardised quantitative phenotypes, such as percentage of predicted forced expiratory volume and body mass index to measure an underlying trait of interest (eg lung function, obesity). These phenotypes are appealing because they provide an easy mechanism for comparing subjects, although such standardisations may not be the best way to control for confounders and other covariates. We recommend adjusting raw or standardised phenotypes within the study population via regression. We illustrate through simulation that optimal power in both population- and family-based association tests is attained by using the residuals from within-study adjustment as the complex trait phenotype. An application of family-based association analysis of forced expiratory volume in one second, and obesity in the Childhood Asthma Management Program data, illustrates that power is maintained or increased when adjusted phenotype residuals are used instead of typical standardised quantitative phenotypes.
Collapse
Affiliation(s)
- Melissa G Naylor
- Department of Biostatistics, Harvard University, Boston, MA, USA.
| | | | | |
Collapse
|
10
|
Young RP, Hopkins RJ, Hay BA, Epton MJ, Mills GD, Black PN, Gardner HD, Sullivan R, Gamble GD. Lung cancer susceptibility model based on age, family history and genetic variants. PLoS One 2009; 4:e5302. [PMID: 19390575 PMCID: PMC2668761 DOI: 10.1371/journal.pone.0005302] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 03/19/2009] [Indexed: 01/20/2023] Open
Abstract
Background Epidemiological and pedigree studies suggest that lung cancer results from the combined effects of age, smoking, impaired lung function and genetic factors. In a case control association study of healthy smokers and lung cancer cases, we identified genetic markers associated with either susceptibility or protection to lung cancer. Methodology/Principal Findings We screened 157 candidate single nucleotide polymorphisms (SNP) in a discovery cohort of 439 subjects (200 controls and 239 lung cancer cases) and identified 30 SNPs associated with either the healthy smokers (protective) or lung cancer (susceptibility) phenotype. After genotyping this 30 SNP panel in a validation cohort of 491 subjects (248 controls and 207 lung cancers) and, using the same protective and susceptibility genotypes from our discovery cohort, a 20 SNP panel was selected based on replication of SNP associations in the validation cohort. Following multivariate logistic regression analyses, including the selected SNPs from runs 1 and 2, we found age and family history of lung cancer to be significantly and independently associated with lung cancer. Numeric scores were assigned to both the SNP and demographic data, and combined to form a simple algorithm of risk. Conclusions/Significance Significant differences in the distribution of the lung cancer susceptibility score was found between normal controls and lung cancer cases, which remained after accounting for differences in lung function. Validation in other case-control and prospective cohorts are underway to further define the potential clinical utility of this model.
Collapse
Affiliation(s)
- Robert P Young
- Department of Medicine, Auckland Hospital, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|