1
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Cornejo-García JA, Perkins JR, Jurado-Escobar R, García-Martín E, Agúndez JA, Viguera E, Pérez-Sánchez N, Blanca-López N. Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Front Pharmacol 2016; 7:316. [PMID: 27708579 PMCID: PMC5030812 DOI: 10.3389/fphar.2016.00316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
Individual genetic background together with environmental effects are thought to be behind many human complex diseases. A number of genetic variants, mainly single nucleotide polymorphisms (SNPs), have been shown to be associated with various pathological and inflammatory conditions, representing potential therapeutic targets. Prostaglandins (PTGs) and leukotrienes (LTs) are eicosanoids derived from arachidonic acid and related polyunsaturated fatty acids that participate in both normal homeostasis and inflammatory conditions. These bioactive lipid mediators are synthesized through two major multistep enzymatic pathways: PTGs by cyclooxygenase and LTs by 5-lipoxygenase. The main physiological effects of PTGs include vasodilation and vascular leakage (PTGE2); mast cell maturation, eosinophil recruitment, and allergic responses (PTGD2); vascular and respiratory smooth muscle contraction (PTGF2), and inhibition of platelet aggregation (PTGI2). LTB4 is mainly involved in neutrophil recruitment, vascular leakage, and epithelial barrier function, whereas cysteinyl LTs (CysLTs) (LTC4, LTD4, and LTE4) induce bronchoconstriction and neutrophil extravasation, and also participate in vascular leakage. PTGs and LTs exert their biological functions by binding to cognate receptors, which belong to the seven transmembrane, G protein-coupled receptor superfamily. SNPs in genes encoding these receptors may influence their functionality and have a role in disease susceptibility and drug treatment response. In this review we summarize SNPs in PTGs and LTs receptors and their relevance in human diseases. We also provide information on gene expression. Finally, we speculate on future directions for this topic.
Collapse
Affiliation(s)
- José A Cornejo-García
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain; Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain
| | - James R Perkins
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | - Raquel Jurado-Escobar
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | | - José A Agúndez
- Department of Pharmacology, University of Extremadura Caceres, Spain
| | - Enrique Viguera
- Genetics Unit, Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga Malaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | |
Collapse
|
3
|
Tanimoto J, Fujino H, Takahashi H, Murayama T. Human EP2 prostanoid receptors exhibit more constraints to mutations than human DP prostanoid receptors. FEBS Lett 2015; 589:766-72. [DOI: 10.1016/j.febslet.2015.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 01/25/2023]
|
4
|
Yang M, Fu X, Zhang Y, Zhang J, He J, Tian C, Huang J, Fan H. The +252A/G polymorphism in the lymphotoxin-α gene increases the risk of asthma: a meta-analysis. Respirology 2013; 17:1229-36. [PMID: 22882567 DOI: 10.1111/j.1440-1843.2012.02243.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE A number of studies have shown that the +252A/G polymorphism (rs909253) in the lymphotoxin-α (LT-α) gene is implicated in susceptibility to asthma. However, the findings have been inconclusive. The aim of this study was to investigate the association between the +252A/G polymorphism in the LT-α gene and the risk of asthma by performing a meta-analysis. METHODS The Pubmed and Embase databases were searched for all studies relating to this polymorphism and the risk of asthma. Statistical analyses were performed using the Revman4.2 and STATA 10.0 software. RESULTS Thirteen case-control studies that included a total of 2220 cases and 6428 controls were included in the meta-analysis. There was no significant association between this polymorphism and the risk of asthma in the all-combined analysis (odds ratio (OR) 1.14, 95% confidence interval (CI): 0.89-1.45 for GG+GA vs AA). In a subgroup analysis by ethnicity, no significant association with asthma risk was identified in Asians (OR 1.31, 95% CI: 0.97-1.77) or Europeans (OR 1.08, 95% CI: 0.77-1.53). In a subgroup analysis by age, a significantly increased risk was identified among adults (OR 1.25, 95% CI: 1.03-1.50) but not children (OR 1.04, 95% CI: 0.28-3.89). In a subgroup analysis by atopic status, a significantly elevated risk was identified among atopic (OR 1.55, 95% CI: 1.28-1.87) but not non-atopic individuals (OR 0.94, 95% CI: 0.53-1.68). CONCLUSIONS This meta-analysis suggested that the +252A/G polymorphism in the LT-α gene is a risk factor for asthma in adults and atopic populations.
Collapse
Affiliation(s)
- Min Yang
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The aim of this study was to explore whether prostaglandin D2 receptor (PTGDR) polymorphisms confer susceptibility to asthma. A meta-analysis was conducted on the associations between the PTGDR -549 C/T, -441 C/T, and -197 C/T polymorphisms and asthma using: (1) allele contrast, (2) the recessive model, (3) the dominant model, and (4) the additive model. Three polymorphism haplotypes were constructed in the order -549/-441/-179. Meta-analysis was performed on the haplotype CCC (high transcriptional activity) and of TCT (low transcriptional activity). A total of 13 separate comparative studies in 9 articles involving 7,155 patients with asthma and 7,285 control subjects were included in this meta-analysis. An association between asthma and the PTGDR -549 C/T polymorphism was found by allele contrast (OR = 1.133, 95 % CI = 1.004-1.279, P = 0.043). Ethnicity-specific meta-analysis showed an association between asthma and the PTGDR -549 C allele in Europeans (OR = 1.192, 95 % CI = 1.032-1.377, P = 0.017). Furthermore, stratifying subjects by age indicated an association between the PTGDR -549 C allele and asthma in adults (OR = 1.248, 95 % CI = 1.076-1.447, P = 0.003), but no association in children (OR = 0.933, 95 % CI = 0.756-1.154, P = 0.324). Analyses using the dominant and additive models showed the similar pattern as that observed for the PTGDR -549 C allele, that is, a significant association in Europeans and adults, but not in children. No association was found between asthma and the PTGDR -441 C/T or -197 C/T polymorphisms, and meta-analysis stratified by ethnicity and age also revealed no association between asthma and these polymorphisms. Furthermore, no association was found between asthma and the CCC and TCT haplotypes of PTGDR, and meta-analysis stratified by ethnicity and age revealed no association between asthma and the CCC and TCT PTGDR haplotypes. This meta-analysis demonstrates that the PTGDR -549 C/T polymorphism confers susceptibility to asthma in Europeans and adults. However, no association was found between the PTGDR 441 C/T and -197 C/T polymorphisms or the CCC and TCT haplotypes and asthma susceptibility.
Collapse
|
6
|
Knight DA, Yang IA, Ko FWS, Lim TK. Year in review 2011: asthma, chronic obstructive pulmonary disease and airway biology. Respirology 2012; 17:563-72. [PMID: 22248232 DOI: 10.1111/j.1440-1843.2012.02126.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Darryl A Knight
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
7
|
Isidoro-García M, Sanz C, García-Solaesa V, Pascual M, Pescador DB, Lorente F, Dávila I. PTGDR gene in asthma: a functional, genetic, and epigenetic study. Allergy 2011; 66:1553-62. [PMID: 21883277 DOI: 10.1111/j.1398-9995.2011.02685.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Asthma affects more than 300 million individuals in the world. Several studies have demonstrated the importance of the genetic component. The aim of this study is to develop a holistic approach, including genetic, epigenetic, and expression analysis to study the Prostaglandin D2 receptor gene (PTGDR) in asthmatic patients. METHODS In this study, 637 Caucasian individuals were included. Genetic variants were characterized by sequencing, and haplotype and diplotype combinations were established. Electrophoretic mobility shift assays (EMSAs) were performed with different promoter variants. An epigenetic analysis of PTGDR was for the first time developed by MassArray assays, and gene expression was determined by real-time polymerase chain reaction. RESULTS The -197T > C (Fisher's P = 0.028) and -613C > T (Fisher's P < 0.001) polymorphisms were found to be significantly associated with allergic asthma and allergy to pollen and mites, respectively. In addition, several haplotype and diplotype combinations were associated with different allergy and asthma phenotypes. The presence of the -613C > T SNP determined variations in the EMSAs. Moreover, consistent differences in the methylation and expression patterns were observed between asthmatic patients and controls determining a 2.34-fold increase of PTGDR gene expression in asthmatic patients. CONCLUSIONS Genetic combinations described have functional implications in the PTGDR promoter activity by changing the transcription factors affinity that will help characterize different risk groups. The differences observed in the transcription factors affinity and in the methylation pattern bring insight into different transcription regulation in these patients. To the best of our knowledge, this is the first work in which the implication of genetic and epigenetic factors of PTGDR has been characterized pointing to putative therapeutic targets.
Collapse
Affiliation(s)
- M Isidoro-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yang J, Lin S. Likelihood approach for detecting imprinting and in utero maternal effects using general pedigrees from prospective family-based association studies. Biometrics 2011; 68:477-85. [PMID: 22008205 DOI: 10.1111/j.1541-0420.2011.01695.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic imprinting and in utero maternal effects are causes of parent-of-origin effect but they are confounded with each other. Tests attempting to detect only one of these effects would have a severely inflated type I error rate if the assumption of the absence of the other effect is violated. Some existing methods avoid the potential confounding by modeling imprinting and in utero maternal effect simultaneously. However, these methods are not amendable to extended families, which are commonly recruited in family-based studies. In this article, we propose a likelihood approach for detecting imprinting and maternal effects (LIME) using general pedigrees from prospective family-based association studies. LIME formulates the probability of familial genotypes without the Hardy-Weinberg equilibrium assumption by introducing a novel concept called conditional mating type between marry-in founders and their nonfounder spouses. Further, a logit link is used to model the penetrance. To deal with the issue of incomplete pedigree genotypic data, LIME imputes the unobserved genotypes implicitly by considering all compatible ones conditional on the observed genotypes. We carried out a simulation study to evaluate the relative power and type I error of LIME and two existing methods. The results show that the use of extended pedigree data, even with incomplete information, can achieve much greater power than using nuclear families for detecting imprinting and in utero maternal effects without leading to inflated type I error rates.
Collapse
Affiliation(s)
- Jingyuan Yang
- Department of Statistics, The Ohio State University, 404 Cockins Hall, 1958 Neil Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
9
|
Current world literature. Curr Opin Allergy Clin Immunol 2011; 11:497-502. [PMID: 21878753 DOI: 10.1097/aci.0b013e32834bbdcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|