1
|
Calpains as mechanistic drivers and therapeutic targets for ocular disease. Trends Mol Med 2022; 28:644-661. [PMID: 35641420 PMCID: PMC9345745 DOI: 10.1016/j.molmed.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Ophthalmic neurodegenerative diseases encompass a wide array of molecular pathologies unified by calpain dysregulation. Calpains are calcium-dependent proteases that perpetuate cellular death and inflammation when hyperactivated. Calpain inhibition trials in other organs have faced pharmacological challenges, but the eye offers many advantages for the development and testing of targeted molecular therapeutics, including small molecules, peptides, engineered proteins, drug implants, and gene-based therapies. This review highlights structural mechanisms underlying calpain activation, distinct cellular expression patterns, and in vivo models that link calpain hyperactivity to human retinal and developmental disease. Optimizing therapeutic approaches for calpain-mediated eye diseases can help accelerate clinically feasible strategies for treating calpain dysregulation in other diseased tissues.
Collapse
|
2
|
Thrimawithana TR, Rupenthal ID, Räsch SS, Lim JC, Morton JD, Bunt CR. Drug delivery to the lens for the management of cataracts. Adv Drug Deliv Rev 2018; 126:185-194. [PMID: 29604375 DOI: 10.1016/j.addr.2018.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
Cataracts are one of the most prevalent diseases of the lens, affecting its transparency and are the leading cause of reversible blindness in the world. The clarity of the lens is essential for its normal physiological function of refracting light onto the retina. Currently there is no pharmaceutical treatment for prevention or cure of cataracts and surgery to replace the affected lens remains the gold standard in the management of cataracts. Pharmacological treatment for prevention of cataracts is hindered by many physiological barriers that must be overcome by a therapeutic agent to reach the avascular lens. Various therapeutic agents and formulation strategies are currently being investigated to prevent cataract formation as access to surgery is limited. This review provides a summary of recent research in the field of drug delivery to the lens for the management of cataracts including models used to study cataract treatments and discusses the future perspectives in the field.
Collapse
Affiliation(s)
- Thilini R Thrimawithana
- Discipline of Pharmacy, School Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Simon S Räsch
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Julie C Lim
- Department of Physiology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James D Morton
- Faculty of Agricultural Sciences, Lincoln University, P O Box 85084, New Zealand
| | - Craig R Bunt
- Faculty of Agricultural Sciences, Lincoln University, P O Box 85084, New Zealand
| |
Collapse
|
3
|
Eaton JS, Miller PE, Bentley E, Thomasy SM, Murphy CJ. Slit Lamp-Based Ocular Scoring Systems in Toxicology and Drug Development: A Literature Survey. J Ocul Pharmacol Ther 2017; 33:707-717. [DOI: 10.1089/jop.2017.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Joshua Seth Eaton
- Ocular Services On Demand (OSOD), LLC, Madison, Wisconsin
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, California
| | - Paul E. Miller
- Ocular Services On Demand (OSOD), LLC, Madison, Wisconsin
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Ellison Bentley
- Ocular Services On Demand (OSOD), LLC, Madison, Wisconsin
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Sara M. Thomasy
- Ocular Services On Demand (OSOD), LLC, Madison, Wisconsin
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, California
| | - Christopher J. Murphy
- Ocular Services On Demand (OSOD), LLC, Madison, Wisconsin
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, California
- Department of Ophthalmology & Vision Science, School of Medicine, University of California–Davis, Sacramento, California
| |
Collapse
|
4
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
5
|
Kantserova NP, Lysenko LA, Ushakova NV, Krylov VV, Nemova NN. [Modulation of Ca(2+)-Dependent Proteiolysis under the Action of Weak Low-Frequency Magnetic Fields]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:725-30. [PMID: 27125027 DOI: 10.1134/s1068162015060060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study aimed to determine the molecular targets of magnetic fields in living objects. Time-dependent effects of weak low-frequency magnetic field tuned to the parametric resonance for calcium ions were studied on model organisms (fish, whelk). The dynamics of Ca(2+)-dependent proteinase activity under the exposure to magnetic fields with given parameters was determined and minimal time of exposure in order to achieve inactivation of these proteinases was find out as well. As hyperactivation of Ca(2+)-dependent proteinases is a basis of degenerative pathology development the therapeutic potential of weak low-frequency magnetic fields enabling to modulate Ca(2+)-dependent proteinase activity is supported.
Collapse
|
6
|
Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci 2011; 366:1219-33. [PMID: 21402582 DOI: 10.1098/rstb.2010.0324] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The programmed removal of organelles from differentiating lens fibre cells contributes towards lens transparency through formation of an organelle-free zone (OFZ). Disruptions in OFZ formation are accompanied by the persistence of organelles in lens fibre cells and can contribute towards cataract. A great deal of work has gone into elucidating the nature of the mechanisms and signalling pathways involved. It is apparent that multiple, parallel and redundant pathways are involved in this process and that these pathways form interacting networks. Furthermore, it is possible that the pathways can functionally compensate for each other, for example in mouse knockout studies. This makes sense given the importance of lens clarity in an evolutionary context. Apoptosis signalling and proteolytic pathways have been implicated in both lens fibre cell differentiation and organelle loss, including the Bcl-2 and inhibitor of apoptosis families, tumour necrosis factors, p53 and its regulators (such as Mdm2) and proteolytic enzymes, including caspases, cathepsins, calpains and the ubiquitin-proteasome pathway. Ongoing approaches being used to dissect the molecular pathways involved, such as transgenics, lens-specific gene deletion and zebrafish mutants, are discussed here. Finally, some of the remaining unresolved issues and potential areas for future studies are highlighted.
Collapse
Affiliation(s)
- Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, Republic of Ireland.
| |
Collapse
|
7
|
Lentini A, Tabolacci C, Mattioli P, Provenzano B, Beninati S. Spermidine delays eye lens opacification in vitro by suppressing transglutaminase-catalyzed crystallin cross-linking. Protein J 2011; 30:109-14. [PMID: 21287398 DOI: 10.1007/s10930-011-9311-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A Ca(2+)-dependent TG activity, identified in the eye lens of several mammalian species, has long been implicated in cataract formation. The precise mechanism of the involvement of this enzyme in this process remains unclear. The purpose of this work was to investigate the modulatory effect of polyamines on TG activity during rabbit eye lens in vitro opacification. We observed, in an in vitro Ca(2+)-induced cataract model, a rapid decrease of the endogenous levels of SPD with the progression of opacification, paralleled by an increase of crystallin cross-linking by bis(γ-glutamyl)SPD. This pattern was reversed adding exogenous SPD to the incubation medium. Indeed, endogenous SPD levels were restored and cross-linking by bis(γ-glutamyl)SPD were drastically reduced. Surprisingly, under this experimental condition, the loss of transparency of lens was delayed. We found that exogenous SPD incubation led to a remarkable increase of mono(γ-glutamyl)SPD, likely responsible of the inhibition of cross-linking of lens crystallins and of the transparency persistence.
Collapse
Affiliation(s)
- Alessandro Lentini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
8
|
Donkor IO. Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat 2011; 21:601-36. [DOI: 10.1517/13543776.2011.568480] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Ovat A, Li ZZ, Hampton CY, Asress SA, Fernández FM, Glass JD, Powers JC. Peptidyl alpha-ketoamides with nucleobases, methylpiperazine, and dimethylaminoalkyl substituents as calpain inhibitors. J Med Chem 2010; 53:6326-36. [PMID: 20690647 DOI: 10.1021/jm901221v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of peptidyl alpha-ketoamides with the general structure Cbz-L-Leu-D,L-AA-CONH-R were synthesized and evaluated as inhibitors for the cysteine proteases calpain I, calpain II, and cathepsin B. Nucleobases, methylpiperazine, and dimethylaminoalkyl groups were incorporated into the primed region of the inhibitors to generate compounds that potentially cross the blood-brain barrier. Two of these compounds (Cbz-Leu-D,L-Abu-CONH-(CH(2))(3)-adenin-9-yl and Cbz-Leu-D,L-Abu-CONH-(CH(2))(3)-(4-methylpiperazin-1-yl) have been shown to have useful concentrations in the brain in animals. The best inhibitor for calpain I was Cbz-Leu-D,L-Abu-CONH-(CH(2))(3)-2-methoxyadenin-9-yl (K(i) = 23 nM), and the best inhibitor for calpain II was Cbz-Leu-D,L-Phe-CONH-(CH(2))(3)-adenin-9-yl (K(i) = 68 nM). On the basis of the crystal structure obtained with heterocyclic peptidyl alpha-ketoamides, we have improved inhibitor potency by introducing a small hydrophobic group on the adenine ring. These inhibitors have good potential to be used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Asli Ovat
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | |
Collapse
|