1
|
Hartley A, Kavishwar G, Salvato I, Marchini A. A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annu Rev Virol 2020; 7:537-557. [PMID: 32600158 DOI: 10.1146/annurev-virology-012220-023606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Gayatri Kavishwar
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Ilaria Salvato
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany; .,Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
2
|
Akladios C, Aprahamian M. Virotherapy of digestive tumors with rodent parvovirus: overview and perspectives. Expert Opin Biol Ther 2016; 16:645-53. [PMID: 26855087 DOI: 10.1517/14712598.2016.1151492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Toolan's H-1 parvovirus (H-1PV) exerts a cytotoxic/oncolytic effect, predominantly mediated by its non-structural protein (NS1). This rat parvovirus is harmless, unlike other parvoviruses, and its antitumor potential may be useful to clinicians as its oncolytic action appears to be true in numerous non-digestive and digestive cancers. AREAS COVERED After a brief review of parvovirus genus and biology, we summarize the proposed mechanisms to explain the cytotoxicity of H-1PV to tumors which results in dysregulation of cell transcription, cell-cycle arrest, termination of cell replication, activation of cellular stress response and induction of cell death. Viral oncolysis induces a strong tumor-specific immune response leading to the recognition and elimination of minimal residual disease. As the action of H-1PV is not limited to the digestive tract, we initially analyse studies performed in non-digestive cancers such as glioma (as the virus is able to cross the blood brain barrier), and then focused more particularly on the results in digestive cancers. EXPERT OPINION Based on the results of studies showing little H-1PV toxicity to living bodies, we advocate for the use of the parvovirus in cancers such as melanoma, glioma and pancreatic ductal adenocarcinoma in addition to conventional chemotherapy.
Collapse
Affiliation(s)
- Cherif Akladios
- a Institut de Recherche contre les Cancers Digestifs , 1 place de l'hôpital, 67000 Strasbourg , France
| | - Marc Aprahamian
- a Institut de Recherche contre les Cancers Digestifs , 1 place de l'hôpital, 67000 Strasbourg , France
| |
Collapse
|
3
|
Marchini A, Bonifati S, Scott EM, Angelova AL, Rommelaere J. Oncolytic parvoviruses: from basic virology to clinical applications. Virol J 2015; 12:6. [PMID: 25630937 PMCID: PMC4323056 DOI: 10.1186/s12985-014-0223-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022] Open
Abstract
Accumulated evidence gathered over recent decades demonstrated that some members of the Parvoviridae family, in particular the rodent protoparvoviruses H-1PV, the minute virus of mice and LuIII have natural anticancer activity while being nonpathogenic to humans. These studies have laid the foundations for the launch of a first phase I/IIa clinical trial, in which the rat H-1 parvovirus is presently undergoing evaluation for its safety and first signs of efficacy in patients with glioblastoma multiforme. After a brief overview of the biology of parvoviruses, this review focuses on the studies which unraveled the antineoplastic properties of these agents and supported their clinical use as anticancer therapeutics. Furthermore, the development of novel parvovirus-based anticancer strategies with enhanced specificity and efficacy is discussed, in particular the development of second and third generation vectors and the combination of parvoviruses with other anticancer agents. Lastly, we address the key challenges that remain towards a more rational and efficient use of oncolytic parvoviruses in clinical settings, and discuss how a better understanding of the virus life-cycle and of the cellular factors involved in virus infection, replication and cytotoxicity may promote the further development of parvovirus-based anticancer therapies, open new prospects for treatment and hopefully improve clinical outcome.
Collapse
Affiliation(s)
- Antonio Marchini
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Serena Bonifati
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Eleanor M Scott
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Assia L Angelova
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Jean Rommelaere
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Wang YY, Liu J, Zheng Q, Ran ZH, Salomé N, Vogel M, Rommelaere J, Xiao SD, Wang Z. Effect of the parvovirus H-1 non-structural protein NS1 on the tumorigenicity of human gastric cancer cells. J Dig Dis 2012; 13:366-73. [PMID: 22713086 DOI: 10.1111/j.1751-2980.2012.00601.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the in vivo oncosuppressive effect of the non-structural protein NS1 of parvovirus H-1 on human gastric cancer cell lines. METHODS Recombinant plasmid pcDNA3.1-NS1 containing the complete NS1 gene of parvovirus H-1 was constructed and characterized by restriction enzyme digestion and sequence analysis. The human gastric cancer cell lines MKN28, SGC7901 and MKN45 were stably transfected with empty or recombinant plasmids. NS1 gene transcription and protein expression in the latter transfectants were verified by reverse transcriptase polymerase chain reaction and Western blot, respectively. The oncosuppressive effect of the parvoviral protein NS1 on the gastric cancer cell lines was tested by comparing the tumorigenicity of empty and recombinant vector-transfected cells in nude mice. RESULTS Well differentiated gastric cancer cells (MKN28) transfected with either empty plasmid or pcDNA3.1-NS1 were tumorigenic in nude mice. Moderately (SGC7901) and poorly (MKN45) differentiated gastric cancer cells transfected with empty plasmid were also tumorigenic, but no tumor resulted from the injection when they were transfected with pcDNA3.1-NS1. This NS1-associated suppression of SGC7901 and MKN45 tumors correlated with the decreased percentage of CD44 positive cells. CONCLUSIONS NS1 expression in poorly differentiated gastric cancer cells prevents them from forming tumors, perhaps by impairing the stem-like phenotype. The parvoviral NS1 protein warrants further investigation for its therapeutic potential against cancer.
Collapse
Affiliation(s)
- Yuan Yuan Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | |
Collapse
|
6
|
The nuclear localization signal of the NS1 protein is essential for Periplaneta fuliginosa densovirus infection. Virus Res 2009; 145:134-40. [PMID: 19596391 DOI: 10.1016/j.virusres.2009.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022]
Abstract
The regulatory protein NS1 is a key molecule in life cycle of Periplaneta fuliginosa densovirus (PfDNV). When we ectopically expressed the PfDNV NS1 protein in non-P. fuliginosa insect cells, the NS1 protein could not enter the nucleus and remained in the cytosol. However, the NS1 was localized to both the cytosol and nucleus of cockroach hemocyte cells. So we investigated the abilities of the potential nuclear localization signal (NLS) of P. fuliginosa Densovirus non-structural protein 1 (NS1) to translocate NS1 and a carrier protein to the nucleus following transfection into insect cells. Possible nuclear localization sequences were chosen from the NS1 on the basis of the presence of basic residues, which is a common theme in most of the previously identified targeting peptides. Nuclear localization activity was found within the residues 252-257 (RRRRRR) of the NS1, while replacement of a single arginine in this region with glycine abolished it. The targeting activity was enhanced with the arginine residues added.
Collapse
|
7
|
Li CF, Ma Y, Wei YZ, Xue YW. Relationship between VEGF, EGF and invasion, metastasis of gastric cancer cells. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-009-0122-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Nüesch JPF, Rommelaere J. NS1 interaction with CKII alpha: novel protein complex mediating parvovirus-induced cytotoxicity. J Virol 2006; 80:4729-39. [PMID: 16641266 PMCID: PMC1472057 DOI: 10.1128/jvi.80.10.4729-4739.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During a productive infection, the prototype strain of the parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations in permissive A9 fibroblasts, culminating in cell lysis at the end of infection. These cytopathic effects (CPE) result from rearrangements and destruction of the cytoskeletal micro- and intermediate filaments, while other structures such as the nuclear lamina and particularly the microtubule network remain protected throughout the infection (J. P. F. Nüesch et al., Virology 331:159-174, 2005). In order to unravel the mechanism(s) by which parvoviruses trigger CPE, we searched for NS1 interaction partners by differential affinity chromatography, using distinct NS1 mutants debilitated specifically for this function. Thereby, we isolated an NS1 partner polypeptide, whose interaction with NS1 correlated with the competence of the viral product for CPE induction, and further identified it by tandem mass spectrometry and Western blotting analyses to consist of the catalytic subunit of casein kinase II, CKIIalpha. This interaction of NS1 with CKIIalpha suggested interference by the viral protein with intracellular signaling. Using permanent cell lines expressing dominant-negative CKIIalpha mutants, we were able to show that this kinase activity was indeed specifically involved in parvoviral CPE and progeny particle release. Furthermore, the NS1/CKIIalpha complex proved to be able to specifically phosphorylate viral capsids, indicating a mediator function of NS1 for CKII activity and specificity, at least in vitro. Altogether our data suggest that parvovirus-induced CPE is mediated by NS1 interference with intracellular CKII signaling.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program Infection and Cancer, Abt. F010 and INSERM U701, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | |
Collapse
|