1
|
Wang Z, Zhang J, Ye M, Zhu M, Zhang B, Roy M, Liu J, An X. Tumor suppressor role of protein 4.1B/DAL-1. Cell Mol Life Sci 2014; 71:4815-30. [PMID: 25183197 PMCID: PMC11113756 DOI: 10.1007/s00018-014-1707-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/21/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
Abstract
Protein 4.1B/DAL-1 is a membrane skeletal protein that belongs to the protein 4.1 family. Protein 4.1B/DAL-1 is localized to sites of cell-cell contact and functions as an adapter protein, linking the plasma membrane to the cytoskeleton or associated cytoplasmic signaling effectors and facilitating their activities in various pathways. Protein 4.1B/DAL-1 is involved in various cytoskeleton-associated processes, such as cell motility and adhesion. Moreover, protein 4.1B/DAL-1 also plays a regulatory role in cell growth, differentiation, and the establishment of epithelial-like cell structures. Protein 4.1B/DAL-1 is normally expressed in multiple human tissues, but loss of its expression or prominent down-regulation of its expression is frequently observed in corresponding tumor tissues and tumor cell lines, suggesting that protein 4.1B/DAL-1 is involved in the molecular pathogenesis of these tumors and acts as a potential tumor suppressor. This review will focus on the structure of protein 4.1B/DAL-1, 4.1B/DAL-1-interacting molecules, 4.1B/DAL-1 inactivation and tumor progression, and anti-tumor activity of the 4.1B/DAL-1.
Collapse
Affiliation(s)
- Zi Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang, 421001 China
| | - Mao Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082 China
| | - Min Zhu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School Medicine, Central South University, Changsha, 410083 China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 E 67th Street, New York, 10065 USA
| |
Collapse
|
2
|
Systems genetics implicates cytoskeletal genes in oocyte control of cloned embryo quality. Genetics 2013; 193:877-96. [PMID: 23307892 DOI: 10.1534/genetics.112.148866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cloning by somatic cell nuclear transfer is an important technology, but remains limited due to poor rates of success. Identifying genes supporting clone development would enhance our understanding of basic embryology, improve applications of the technology, support greater understanding of establishing pluripotent stem cells, and provide new insight into clinically important determinants of oocyte quality. For the first time, a systems genetics approach was taken to discover genes contributing to the ability of an oocyte to support early cloned embryo development. This identified a primary locus on mouse chromosome 17 and potential loci on chromosomes 1 and 4. A combination of oocyte transcriptome profiling data, expression correlation analysis, and functional and network analyses yielded a short list of likely candidate genes in two categories. The major category-including two genes with the strongest genetic associations with the traits (Epb4.1l3 and Dlgap1)-encodes proteins associated with the subcortical cytoskeleton and other cytoskeletal elements such as the spindle. The second category encodes chromatin and transcription regulators (Runx1t1, Smchd1, and Chd7). Smchd1 promotes X chromosome inactivation, whereas Chd7 regulates expression of pluripotency genes. Runx1t1 has not been associated with these processes, but acts as a transcriptional repressor. The finding that cytoskeleton-associated proteins may be key determinants of early clone development highlights potential roles for cytoplasmic components of the oocyte in supporting nuclear reprogramming. The transcriptional regulators identified may contribute to the overall process as downstream effectors.
Collapse
|