1
|
Bezafibrate Prevents Glycine-Induced Increase of Antioxidant Enzyme Activities in Rat Striatum. Mol Neurobiol 2018; 56:29-38. [DOI: 10.1007/s12035-018-1074-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/10/2018] [Indexed: 02/03/2023]
|
2
|
Takagi S, Kono Y, Nagase M, Mochio S, Kato F. Facilitation of distinct inhibitory synaptic inputs by chemical anoxia in neurons in the oculomotor, facial and hypoglossal motor nuclei of the rat. Exp Neurol 2017; 290:95-105. [PMID: 28110076 DOI: 10.1016/j.expneurol.2017.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the brainstem and spinal cord. Clinical studies have indicated that there is a distinct region-dependent difference in the vulnerability of motor neurons. For example, the motor neurons in the facial and hypoglossal nuclei are more susceptible to neuronal death than those in the oculomotor nucleus. To understand the mechanism underlying the differential susceptibility to cell death of the neurons in different motor nuclei, we compared the effects of chemical anoxia on the membrane currents and postsynaptic currents in different motor nuclei. The membrane currents were recorded from neurons in the oculomotor, facial and hypoglossal nuclei in brain slices of juvenile Wistar rats by using whole-cell recording in the presence of tetrodotoxin that prevents action potential-dependent synaptic transmission. NaCN consistently induced an inward current and a significant increase in the frequency of spontaneous synaptic inputs in neurons from these three nuclei. However, this increase in the synaptic input frequency was abolished by strychnine, a glycine receptor antagonist, but not by picrotoxin in neurons from the hypoglossal and facial nuclei, whereas that in neurons from the oculomotor nucleus was abolished by picrotoxin, but not by strychnine. Blocking ionotropic glutamate receptors did not significantly affect the NaCN-induced release facilitation in any of the three motor nuclei. These results suggest that anoxia selectively facilitates glycine release in the hypoglossal and facial nuclei and GABA release in the oculomotor nucleus. The region-dependent differences in the neurotransmitters involved in the anoxia-triggered release facilitation might provide a basis for the selective vulnerability of motor neurons in the neurodegeneration associated with ALS.
Collapse
Affiliation(s)
- Satoshi Takagi
- Department of Neurology, The Jikei University School of Medicine, Japan; Department of Neuroscience, The Jikei University School of Medicine, Japan
| | - Yu Kono
- Department of Neurology, The Jikei University School of Medicine, Japan.
| | - Masashi Nagase
- Department of Neuroscience, The Jikei University School of Medicine, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Japan
| | - Soichiro Mochio
- Department of Neurology, The Jikei University School of Medicine, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Japan
| |
Collapse
|
3
|
Moura AP, Parmeggiani B, Gasparotto J, Grings M, Fernandez Cardoso GM, Seminotti B, Moreira JCF, Gelain DP, Wajner M, Leipnitz G. Glycine Administration Alters MAPK Signaling Pathways and Causes Neuronal Damage in Rat Brain: Putative Mechanisms Involved in the Neurological Dysfunction in Nonketotic Hyperglycinemia. Mol Neurobiol 2017; 55:741-750. [PMID: 28050793 DOI: 10.1007/s12035-016-0319-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022]
Abstract
High glycine (GLY) levels have been suggested to induce neurotoxic effects in the central nervous system of patients with nonketotic hyperglycinemia (NKH). Since the mechanisms involved in the neuropathophysiology of NKH are not totally established, we evaluated the effect of a single intracerebroventricular administration of GLY on the content of proteins involved in neuronal damage and inflammatory response, as well as on the phosphorylation of the MAPK p38, ERK1/2, and JNK in rat striatum and cerebral cortex. We also examined glial fibrillary acidic protein (GFAP) staining, a marker of glial reactivity. The parameters were analyzed 30 min or 24 h after GLY administration. GLY decreased Tau phosphorylation in striatum and cerebral cortex 30 min and 24 h after its administration. On the other hand, synaptophysin levels were decreased in striatum at 30 min and in cerebral cortex at 24 h after GLY injection. GLY also decreased the phosphorylation of p38, ERK1/2, and JNK 30 min after its administration in both brain structures. Moreover, GLY-induced decrease of p38 phosphorylation in striatum was attenuated by N-methyl-D-aspartate receptor antagonist MK-801. In contrast, synuclein, NF-κB, iκB, inducible nitric oxide synthase and nitrotyrosine content, and GFAP immunostaining were not altered by GLY infusion. It may be presumed that the decreased phosphorylation of MAPK associated with alterations of markers of neuronal injury induced by GLY may contribute to the neurological dysfunction observed in NKH.
Collapse
Affiliation(s)
- Alana Pimentel Moura
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juciano Gasparotto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Miranda Fernandez Cardoso
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Daniel Pens Gelain
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil.
| |
Collapse
|
4
|
Kono Y, Hülsmann S. Presynaptic facilitation of glycinergic mIPSC is reduced in mice lacking α3 glycine receptor subunits. Neuroscience 2016; 320:1-7. [PMID: 26851771 DOI: 10.1016/j.neuroscience.2016.01.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 01/03/2023]
Abstract
Glycinergic neurons provide an important mechanism to control excitation of motoneurons in the brainstem and a reduction or loss of glycinergic inhibition can be deleterious by leading to hyperexcitation such as in hyperekplexia or neurodegeneration and neuronal death as in amyotrophic lateral sclerosis (ALS). Second messenger systems that change cyclic AMP and lead to phosphorylation of the α3 subunit of the glycine receptor (GlyR α3) have been shown to be potent modulators of synaptic inhibition in the spinal cord and brain stem. In this study we analyzed the role of GlyR α3 in synaptic inhibition to the hypoglossal nucleus using Glra3 (the gene encoding the glycine receptor α3 subunit) knockout mice. We observed that baseline glycinergic synaptic transmission to nucleus of hypoglossal motoneurons is rather normal in Glra3 knockout mice. Interestingly, we found that the modulation of synaptic transmission by cAMP-mediated pathways appeared to be reduced in Glra3 knockout mice. In the second postnatal week the forskolin-induced increase of miniature inhibitory postsynaptic potential (mIPSC) frequency was significantly larger in control as compared to Glra3 knockout mice suggesting that presynaptic glycine release in the hypoglossal nucleus is partially depending on GlyR α3.
Collapse
Affiliation(s)
- Y Kono
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - S Hülsmann
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
5
|
Moura AP, Parmeggiani B, Grings M, Alvorcem LDM, Boldrini RM, Bumbel AP, Motta MM, Seminotti B, Wajner M, Leipnitz G. Intracerebral Glycine Administration Impairs Energy and Redox Homeostasis and Induces Glial Reactivity in Cerebral Cortex of Newborn Rats. Mol Neurobiol 2015; 53:5864-5875. [PMID: 26497039 DOI: 10.1007/s12035-015-9493-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/15/2015] [Indexed: 01/05/2023]
Abstract
Accumulation of glycine (GLY) is the biochemical hallmark of glycine encephalopathy (GE), an aminoacidopathy characterized by severe neurological dysfunction that may lead to early death. In the present study, we evaluated the effect of a single intracerebroventricular administration of GLY on bioenergetics, redox homeostasis, and histopathology in brain of neonatal rats. Our results demonstrated that GLY decreased the activities of the respiratory chain complex IV and creatine kinase, induced reactive species generation, and diminished glutathione (GSH) levels 1, 5, and 10 days after GLY injection in cerebral cortex of 1-day-old rats. GLY also increased malondialdehyde (MDA) levels 5 days after GLY infusion in this brain region. Furthermore, GLY differentially modulated the activities of superoxide dismutase, catalase, and glutathione peroxidase depending on the period tested after GLY administration. In contrast, bioenergetics and redox parameters were not altered in brain of 5-day-old rats. Regarding the histopathological analysis, GLY increased S100β staining in cerebral cortex and striatum, and GFAP in corpus callosum of 1-day-old rats 5 days after injection. Finally, we verified that melatonin prevented the decrease of complex IV and CK activities and GSH concentrations, and the increase of MDA levels and S100β staining caused by GLY. Based on our findings, it may be presumed that impairment of redox and energy homeostasis and glial reactivity induced by GLY may contribute to the neurological dysfunction observed in GE.
Collapse
Affiliation(s)
- Alana Pimentel Moura
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Leonardo de Moura Alvorcem
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Rafael Mello Boldrini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Anna Paula Bumbel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Marcela Moreira Motta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil.,Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Evidence that glycine induces lipid peroxidation and decreases glutathione concentrations in rat cerebellum. Mol Cell Biochem 2014; 395:125-34. [PMID: 24939360 DOI: 10.1007/s11010-014-2118-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
Patients with non-ketotic hyperglycinemia (NKH) present severe neurological symptoms and brain abnormalities involving cerebellum. Although the pathomechanisms underlying the cerebellum damage have not been studied, high tissue levels of glycine (GLY), the biochemical hallmark of this disorder have been suggested to contribute to the neuropathology of this disease. We investigated the in vitro effects of GLY on important parameters of oxidative stress and energy metabolism in cerebellum of 30-day-old rats. Our results show that GLY increased 2',7'-dichlorofluorescin oxidation, suggesting that reactive species production are augmented by GLY in the cerebellum. However, hydrogen peroxide generation was not altered by GLY. GLY also increased thiobarbituric acid-reactive substances (TBA-RS) levels and reduced the glutathione (GSH) content, indicating that this amino acid provokes lipid oxidative damage and compromises the non-enzymatic antioxidant defenses, respectively, in cerebellum. The antioxidants melatonin and trolox (the hydrosoluble analog of vitamin E) prevented the GLY-induced increase of TBA-RS and decrease of GSH in cerebellum, indicating the involvement of hydroxyl and peroxyl radicals in these effects. The NMDA receptor antagonist MK-801 also attenuated GLY-induced decrease of GSH, suggesting that this effect is mediated through NMDA receptor. In contrast, GLY did not alter the protein carbonyl formation and total and protein-bound sulfhydryl group content, as well as catalase and superoxide dismutase activities. Furthermore, GLY did not alter the activities of the respiratory chain complexes and creatine kinase. Our present data indicate that oxidative stress elicited by GLY in vitro may be a potential pathomechanism involved in the cerebellar dysfunction observed in NKH.
Collapse
|
7
|
Paul P, de Belleroche J. The role of D-serine and glycine as co-agonists of NMDA receptors in motor neuron degeneration and amyotrophic lateral sclerosis (ALS). Front Synaptic Neurosci 2014; 6:10. [PMID: 24795623 PMCID: PMC3997022 DOI: 10.3389/fnsyn.2014.00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/29/2014] [Indexed: 12/11/2022] Open
Abstract
The fundamental role of D-serine as a co-agonist at the N-methyl-D-aspartate receptor (NMDAR), mediating both physiological actions of glutamate in long term potentiation and nociception and also pathological effects mediated by excitotoxicty, are well-established. More recently, a direct link to a chronic neurodegenerative disease, amyotrophic lateral sclerosis/motor neuron disease (ALS) has been suggested by findings that D-serine levels are elevated in sporadic ALS and the G93A SOD1 model of ALS (Sasabe et al., 2007, 2012) and that a pathogenic mutation (R199W) in the enzyme that degrades D-serine, D-amino acid oxidase (DAO), co-segregates with disease in familial ALS (Mitchell et al., 2010). Moreover, D-serine, its biosynthetic enzyme, serine racemase (SR) and DAO are abundant in human spinal cord and severely depleted in ALS. Using cell culture models, we have defined the effects of R199W-DAO, and shown that it activates autophagy, leads to the formation of ubiquitinated aggregates and promotes apoptosis, all of which processes are attenuated by a D-serine/glycine site NMDAR antagonist. These studies provide considerable insight into the crosstalk between neurons and glia and also into potential therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Praveen Paul
- Neurogenetics Group, Division of Brain Sciences, Department of Medicine, Imperial College London London, UK
| | - Jackie de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Department of Medicine, Imperial College London London, UK
| |
Collapse
|
8
|
Glycine Intracerebroventricular Administration Disrupts Mitochondrial Energy Homeostasis in Cerebral Cortex and Striatum of Young Rats. Neurotox Res 2013; 24:502-11. [DOI: 10.1007/s12640-013-9396-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/17/2013] [Accepted: 04/23/2013] [Indexed: 01/17/2023]
|
9
|
Glycine intrastriatal administration induces lipid and protein oxidative damage and alters the enzymatic antioxidant defenses in rat brain. Life Sci 2011; 89:276-81. [DOI: 10.1016/j.lfs.2011.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 11/17/2022]
|
10
|
Busanello ENB, Moura AP, Viegas CM, Zanatta Â, da Costa Ferreira G, Schuck PF, Wajner M. Neurochemical evidence that glycine induces bioenergetical dysfunction. Neurochem Int 2010; 56:948-54. [DOI: 10.1016/j.neuint.2010.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
|
11
|
Luccini E, Romei C, Di Prisco S, Raiteri M, Raiteri L. Ionic dysregulations typical of ischemia provoke release of glycine and GABA by multiple mechanisms. J Neurochem 2010; 114:1074-84. [PMID: 20524963 DOI: 10.1111/j.1471-4159.2010.06829.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Energy deprivation during ischemia causes dysregulations of ions, particularly sodium, potassium and calcium. Under these conditions, release of neurotransmitters is often enhanced and can occur by multiple mechanisms. The aim of this work was to characterize the modes of exit of glycine and GABA from nerve endings exposed to stimuli known to reproduce some of the ionic changes typical of ischemic conditions. Their approach was chosen instead of application of ischemic conditions because the release evoked during ischemia is mechanistically too heterogeneous. Mouse hippocampus and spinal cord synaptosomes, pre-labeled with [(3)H]glycine or [(3)H]GABA, were exposed in superfusion to 50 mM KCl or to 10 microM veratridine. The evoked overflows differed greatly between the two transmitters and between the two regions examined. Significant portions of the K(+)- and the veratridine-evoked overflows occurred by classical exocytosis. Carrier-mediated release of GABA, but not of glycine, was evoked by high K(+); GABA and, less so, glycine were released through transporter reversal by veratridine. External calcium-dependent overflows were only in part sensitive to omega-conotoxins; significant portions occurred following reversal of the plasmalemmal Na(+)/Ca(2+) exchanger. Finally, a relevant contribution to the overall transmitter overflows came from cytosolic calcium originating through the mitochondrial Na(+)/Ca(2+) exchanger. To conclude, ionic dysregulations typical of ischemia cause neurotransmitter release by heterogeneous mechanisms that differ depending on the transmitters and the CNS regions examined.
Collapse
Affiliation(s)
- Elisa Luccini
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | |
Collapse
|
12
|
Ohi Y, Ishii Y, Sasahara M, Haji A. Involvement of platelet-derived growth factor-BB and its receptor-beta in hypoxia-induced depression of excitatory synaptic transmission in the nucleus tractus solitarius of mice. J Pharmacol Sci 2010; 112:477-81. [PMID: 20308801 DOI: 10.1254/jphs.09345sc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The role of platelet-derived growth factor (PDGF)-BB / PDGF receptor (PDGFR)-beta signal in inhibition of synaptic transmission by hypoxia is unclear. In the nucleus tractus solitarius neurons, hypoxia with N(2) or NaCN decreased the amplitude of excitatory postsynaptic currents (EPSCs) similarly in wild type (WT) and PDGFR-beta gene-knockout (KO) mice. Recovery of EP SCs after a high concentration of NaCN in KO mice was significantly faster than that in WT mice, while recovery after a low concentration of NaCN or N(2) was not different between both mice. These results suggest that the PDGF-BB / PDGFR-beta signal modulates the excitatory synaptic transmission during hypoxia.
Collapse
Affiliation(s)
- Yoshiaki Ohi
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University, Japan
| | | | | | | |
Collapse
|
13
|
Leipnitz G, Solano AF, Seminotti B, Amaral AU, Fernandes CG, Beskow AP, Dutra Filho CS, Wajner M. Glycine provokes lipid oxidative damage and reduces the antioxidant defenses in brain cortex of young rats. Cell Mol Neurobiol 2009; 29:253-61. [PMID: 18830815 PMCID: PMC11506203 DOI: 10.1007/s10571-008-9318-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 09/15/2008] [Indexed: 11/26/2022]
Abstract
Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 – Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Alexandre F. Solano
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 – Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Bianca Seminotti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 – Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Alexandre U. Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 – Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Carolina G. Fernandes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 – Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Ana Paula Beskow
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 – Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Carlos S. Dutra Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 – Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 – Anexo, CEP 90035-003 Porto Alegre, RS Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
- Universidade Luterana do Brasil, Canoas, RS Brazil
| |
Collapse
|
14
|
Neuromodulatory effect of creatine on extracellular action potentials in rat hippocampus: Role of NMDA receptors. Neurochem Int 2008; 53:33-7. [DOI: 10.1016/j.neuint.2008.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 04/25/2008] [Indexed: 11/23/2022]
|