1
|
Klein SR, Blum K, Gold MS, Thanos PK. Chronic Methylphenidate Effects on Brain Gene Expression: An Exploratory Review. Psychol Res Behav Manag 2024; 17:577-592. [PMID: 38379637 PMCID: PMC10876479 DOI: 10.2147/prbm.s445719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Methylphenidate (MP) is a psychostimulant commonly prescribed for individuals with attention deficit hyperactivity disorder (ADHD) but it is also taken with and without a prescription for performance enhancement. Prior research has characterized the effects of MP on behavior, cognition, and neurochemistry. This exploratory review covers the uses of MP and examined the effects of MP on gene expression in the brain following exposure. Overall, MP causes a wide-spread potentiation of genes, in a region-specific manner; consequently, inducing neuronal alterations, such as synaptic plasticity and transmission, resulting in observed behaviors and affects. Monoamine neurotransmitters and post-synaptic density protein genes generally had a potentiating effect in gene expression after exposure to MP.
Collapse
Affiliation(s)
- Shannon Rae Klein
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Center for Sports, Exercise, & Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
2
|
Lamoureux L, Beverley JA, Marinelli M, Steiner H. Fluoxetine potentiates methylphenidate-induced behavioral responses: Enhanced locomotion or stereotypies and facilitated acquisition of cocaine self-administration. ADDICTION NEUROSCIENCE 2023; 9:100131. [PMID: 38222942 PMCID: PMC10785378 DOI: 10.1016/j.addicn.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The medical psychostimulant methylphenidate (MP) is used to treat attention-deficit hyperactivity disorder and recreationally as a "cognitive enhancer". MP is a dopamine reuptake inhibitor, but does not affect serotonin. Serotonin contributes to addiction-related gene regulation and behavior. Previously, we showed that enhancing serotonin action by adding a selective serotonin reuptake inhibitor, fluoxetine (FLX), to MP potentiates MP-induced gene regulation in striatum and nucleus accumbens, mimicking cocaine effects. Here, we investigated the behavioral consequences of MP+FLX treatment. Young adult male rats received MP (5 mg/kg, i.p.) or MP+FLX (5 mg/kg each) daily for 6-8 days. Behavioral effects were assessed in an open-field test during the repeated treatment. Two weeks later the motor response to a cocaine challenge (25 mg/kg) and the rate of acquisition of cocaine self-administration behavior were determined. Our results demonstrate that FLX potentiates effects of MP on open-field behavior. However, we found differential behavioral responses to MP+FLX treatment, as approximately half of the rats developed high rates of focal stereotypies (termed "MP+FLX/high reactivity" group), whereas the other half did not, and only showed increased locomotion ("MP+FLX/low reactivity" group). Two weeks later, cocaine-induced locomotion and stereotypies were positively correlated with MP+FLX-induced behavior seen at the end of the repeated MP+FLX treatment. Moreover, the MP+FLX/high reactivity group, but not the low reactivity group, showed facilitated acquisition of cocaine self-administration. These results demonstrate that repeated MP+FLX treatment can facilitate subsequent cocaine taking behavior in a subpopulation of rats. These findings suggest that MP+FLX exposure in some individuals may increase the risk for psychostimulant use later in life.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Present address: Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joel A. Beverley
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Michela Marinelli
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Present address: Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Heinz Steiner
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
3
|
Pedron S, Beverley J, Haffen E, Andrieu P, Steiner H, Van Waes V. Transcranial direct current stimulation produces long-lasting attenuation of cocaine-induced behavioral responses and gene regulation in corticostriatal circuits. Addict Biol 2017; 22:1267-1278. [PMID: 27265728 DOI: 10.1111/adb.12415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive method to modulate cortical excitability. This technique is a promising emerging tool to treat several neuropathologies, including addiction. We have previously shown in mice that repeated tDCS normalizes pathological behaviors associated with chronic nicotine exposure. Here, we evaluated, in adult female mice, the impact of tDCS on cocaine-induced behavior and gene regulation in corticostriatal circuits implicated in psychostimulant addiction. Anodal tDCS was applied transcranially over the frontal cortex. Three weeks after repeated tDCS, we investigated the induction of a gene expression marker (Zif268) by cocaine (25 mg/kg) in 26 cortical and 23 striatal regions using in situ hybridization histochemistry. We also assessed place preference conditioning by cocaine (5, 10 and 25 mg/kg). tDCS pretreatment increased basal expression and attenuated cocaine (25 mg/kg)-induced expression of Zif268 in specific corticostriatal circuits. Cocaine-induced locomotor activation (25 mg/kg) and place preference conditioning (5 and 25 mg/kg) were also reduced. These results demonstrate that tDCS can attenuate molecular and behavioral responses to cocaine for several weeks. Together, our findings provide pre-clinical evidence that such electrical brain stimulation may be useful to modify the psychostimulant addiction risk.
Collapse
Affiliation(s)
- Solène Pedron
- EA 481 Laboratory of Integrative and Clinical Neuroscience; University of Franche-Comté/SFR FED 4234, COMUE Bourgogne/Franche-Comté; France
| | - Joel Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Emmanuel Haffen
- EA 481 Laboratory of Integrative and Clinical Neuroscience; University of Franche-Comté/SFR FED 4234, COMUE Bourgogne/Franche-Comté; France
- INSERM CIC-IT 808 Clinical Investigation Centre for Innovative Technology; University Hospital of Besançon; France
| | - Patrice Andrieu
- EA 481 Laboratory of Integrative and Clinical Neuroscience; University of Franche-Comté/SFR FED 4234, COMUE Bourgogne/Franche-Comté; France
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Vincent Van Waes
- EA 481 Laboratory of Integrative and Clinical Neuroscience; University of Franche-Comté/SFR FED 4234, COMUE Bourgogne/Franche-Comté; France
| |
Collapse
|
4
|
Alter D, Beverley JA, Patel R, Bolaños-Guzmán CA, Steiner H. The 5-HT1B serotonin receptor regulates methylphenidate-induced gene expression in the striatum: Differential effects on immediate-early genes. J Psychopharmacol 2017; 31:1078-1087. [PMID: 28720013 PMCID: PMC5540766 DOI: 10.1177/0269881117715598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Drug combinations that include a psychostimulant such as methylphenidate (Ritalin) and a selective serotonin reuptake inhibitor such as fluoxetine are indicated in several medical conditions. Co-exposure to these drugs also occurs with "cognitive enhancer" use by individuals treated with selective serotonin reuptake inhibitors. Methylphenidate, a dopamine reuptake inhibitor, by itself produces some addiction-related gene regulation in the striatum. We have demonstrated that co-administration of selective serotonin reuptake inhibitors potentiates these methylphenidate-induced molecular effects, thus producing a more "cocaine-like" profile. There is evidence that the 5-HT1B serotonin receptor subtype mediates some of the cocaine-induced gene regulation. We thus investigated whether the 5-HT1B receptor also modifies methylphenidate-induced gene regulation, by assessing effects of a selective 5-HT1B receptor agonist (CP94253) on immediate-early gene markers ( Zif268, c- Fos, Homer1a) in adolescent male rats. Gene expression was measured by in situ hybridization histochemistry. Our results show that CP94253 (3, 10 mg/kg) produced a dose-dependent potentiation of methylphenidate (5 mg/kg)-induced expression of Zif268 and c- Fos. This potentiation was widespread in the striatum and was maximal in lateral (sensorimotor) sectors, thus mimicking the effects seen after cocaine alone, or co-administration of fluoxetine. However, in contrast to fluoxetine, this 5-HT1B agonist did not influence methylphenidate-induced expression of Homer1a. CP94253 also potentiated methylphenidate-induced locomotor activity. These findings indicate that stimulation of the 5-HT1B receptor can enhance methylphenidate (dopamine)-induced gene regulation. This receptor may thus participate in the potentiation induced by fluoxetine (serotonin) and may serve as a pharmacological target to attenuate methylphenidate + selective serotonin reuptake inhibitor-induced "cocaine-like" effects.
Collapse
Affiliation(s)
- David Alter
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joel A. Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ronak Patel
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
5
|
Beverley JA, Piekarski C, Van Waes V, Steiner H. Potentiated gene regulation by methylphenidate plus fluoxetine treatment: Long-term gene blunting ( Zif268, Homer1a) and behavioral correlates. BASAL GANGLIA 2014; 4:109-116. [PMID: 25530939 PMCID: PMC4267118 DOI: 10.1016/j.baga.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Use of psychostimulants such as methylphenidate (Ritalin) in medical treatments and as cognitive enhancers in the healthy is increasing. Methylphenidate produces some addiction-related gene regulation in animal models. Recent findings show that combining selective serotonin reuptake inhibitor (SSRI) antidepressants such as fluoxetine with methylphenidate potentiates methylphenidate-induced gene regulation. We investigated the endurance of such abnormal gene regulation by assessing an established marker for altered gene regulation after drug treatments - blunting (repression) of immediate-early gene (IEG) inducibility - 14 days after repeated methylphenidate+fluoxetine treatment in adolescent rats. Thus, we measured the effects of a 6-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or their combination on the inducibility (by cocaine) of neuroplasticity-related IEGs (Zif268, Homer1a) in the striatum, by in situ hybridization histochemistry. Repeated methylphenidate treatment alone produced modest gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine given in conjunction with methylphenidate produced pronounced potentiation of methylphenidate-induced blunting for both genes. This potentiation was seen in many functional domains of the striatum, but was most robust in the lateral, sensorimotor striatum. These enduring molecular changes were associated with potentiated induction of behavioral stereotypies in an open-field test. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs such as fluoxetine may increase the addiction liability of methylphenidate. Key words: cognitive enhancer, dopamine, serotonin, gene expression, psychostimulant, SSRI antidepressant, striatum.
Collapse
Affiliation(s)
- Joel A Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Cassandra Piekarski
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
6
|
Van Waes V, Vandrevala M, Beverley J, Steiner H. Selective serotonin re-uptake inhibitors potentiate gene blunting induced by repeated methylphenidate treatment: Zif268 versus Homer1a. Addict Biol 2014; 19:986-95. [PMID: 23763573 DOI: 10.1111/adb.12067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a growing use of psychostimulants, such as methylphenidate (Ritalin; dopamine re-uptake inhibitor), for medical treatments and as cognitive enhancers in the healthy. Methylphenidate is known to produce some addiction-related gene regulation. Recent findings in animal models show that selective serotonin re-uptake inhibitors (SSRIs), including fluoxetine, can potentiate acute induction of gene expression by methylphenidate, thus indicating an acute facilitatory role for serotonin in dopamine-induced gene regulation. We investigated whether repeated exposure to fluoxetine, in conjunction with methylphenidate, in adolescent rats facilitated a gene regulation effect well established for repeated exposure to illicit psychostimulants such as cocaine-blunting (repression) of gene inducibility. We measured, by in situ hybridization histochemistry, the effects of a 5-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or a combination on the inducibility (by cocaine) of neuroplasticity-related genes (Zif268, Homer1a) in the striatum. Repeated methylphenidate treatment alone produced minimal gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine added to methylphenidate robustly potentiated methylphenidate-induced blunting for both genes. This potentiation was widespread throughout the striatum, but was most robust in the lateral, sensorimotor striatum, thus mimicking cocaine effects. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs, such as fluoxetine, may increase the addiction liability of methylphenidate.
Collapse
Affiliation(s)
- Vincent Van Waes
- Department of Cellular and Molecular Pharmacology; The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Malcolm Vandrevala
- Department of Cellular and Molecular Pharmacology; The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Joel Beverley
- Department of Cellular and Molecular Pharmacology; The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology; The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| |
Collapse
|
7
|
Steiner H, Warren BL, Van Waes V, Bolaños-Guzmán CA. Life-long consequences of juvenile exposure to psychotropic drugs on brain and behavior. PROGRESS IN BRAIN RESEARCH 2014; 211:13-30. [PMID: 24968775 DOI: 10.1016/b978-0-444-63425-2.00002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Psychostimulants such as methylphenidate (MPH) and antidepressants such as fluoxetine (FLX) are widely used in the treatment of various mental disorders or as cognitive enhancers. These medications are often combined, for example, to treat comorbid disorders. There is a considerable body of evidence from animal models indicating that individually these psychotropic medications can have detrimental effects on the brain and behavior, especially when given during sensitive periods of brain development. However, almost no studies investigate possible interactions between these drugs. This is surprising given that their combined neurochemical effects (enhanced dopamine and serotonin neurotransmission) mimic some effects of illicit drugs such as cocaine and amphetamine. Here, we summarize recent studies in juvenile rats on the molecular effects in the mid- and forebrain and associated behavioral changes, after such combination treatments. Our findings indicate that these combined MPH+FLX treatments can produce similar molecular changes as seen after cocaine exposure while inducing behavioral changes indicative of dysregulated mood and motivation, effects that often endure into adulthood.
Collapse
Affiliation(s)
- Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Brandon L Warren
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
8
|
Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol 2012; 100:60-80. [PMID: 23085425 DOI: 10.1016/j.pneurobio.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023]
Abstract
The psychostimulants methylphenidate (Ritalin, Concerta), amphetamine (Adderall), and modafinil (Provigil) are widely used in the treatment of medical conditions such as attention-deficit hyperactivity disorder and narcolepsy and, increasingly, as "cognitive enhancers" by healthy people. The long-term neuronal effects of these drugs, however, are poorly understood. A substantial amount of research over the past two decades has investigated the effects of psychostimulants such as cocaine and amphetamines on gene regulation in the brain because these molecular changes are considered critical for psychostimulant addiction. This work has determined in some detail the neurochemical and cellular mechanisms that mediate psychostimulant-induced gene regulation and has also identified the neuronal systems altered by these drugs. Among the most affected brain systems are corticostriatal circuits, which are part of cortico-basal ganglia-cortical loops that mediate motivated behavior. The neurotransmitters critical for such gene regulation are dopamine in interaction with glutamate, while other neurotransmitters (e.g., serotonin) play modulatory roles. This review presents (1) an overview of the main findings on cocaine- and amphetamine-induced gene regulation in corticostriatal circuits in an effort to provide a cellular framework for (2) an assessment of the molecular changes produced by methylphenidate, medical amphetamine (Adderall), and modafinil. The findings lead to the conclusion that protracted exposure to these cognitive enhancers can induce gene regulation effects in corticostriatal circuits that are qualitatively similar to those of cocaine and other amphetamines. These neuronal changes may contribute to the addiction liability of the psychostimulant cognitive enhancers.
Collapse
|
9
|
Van Waes V, Carr B, Beverley JA, Steiner H. Fluoxetine potentiation of methylphenidate-induced neuropeptide expression in the striatum occurs selectively in direct pathway (striatonigral) neurons. J Neurochem 2012; 122:1054-64. [PMID: 22738672 DOI: 10.1111/j.1471-4159.2012.07852.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Concomitant therapies combining psychostimulants such as methylphenidate and selective serotonin reuptake inhibitors (SSRIs) are used to treat several mental disorders, including attention-deficit hyperactivity disorder/depression comorbidity. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone induces gene regulation that mimics partly effects of cocaine, consistent with some addiction liability. We previously showed that the SSRI fluoxetine potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers. Results demonstrate that fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of substance P and dynorphin, markers for direct pathway neurons. In contrast, no drug effects on the indirect pathway marker enkephalin were found. Because methylphenidate alone has minimal effects on dynorphin, the potentiation of dynorphin induction represents a more cocaine-like effect for the drug combination. On the other hand, the lack of an effect on enkephalin suggests a greater selectivity for the direct pathway compared with psychostimulants such as cocaine. Overall, the fluoxetine potentiation of gene regulation by methylphenidate occurs preferentially in sensorimotor striatal circuits, similar to other addictive psychostimulants. These results suggest that SSRIs may enhance the addiction liability of methylphenidate.
Collapse
Affiliation(s)
- Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
10
|
Carrey N, Wilkinson M. A review of psychostimulant-induced neuroadaptation in developing animals. Neurosci Bull 2011; 27:197-214. [PMID: 21614102 DOI: 10.1007/s12264-011-1004-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The effects of clinically relevant doses of commonly prescribed stimulants methylphenidate (MPH), d-amphetamine (d-AMPH), and dl-AMPH or mixed amphetamine salts (MAS) such as Adderall, on short- and long-term gene neuroadaptations in developing animals have not been widely investigated. In the present review, the effects of oral stimulant administration were compared with those of the subcutaneous or intra-peritoneal route. A selective set of studies between 1979 and 2010, which incorporated in their design developmental period, clinically relevant doses of stimulants, and repeated daily doses were reviewed. These studies indicate that neuroadaptation to chronic stimulants includes blunting of stimulated immediate early gene expression, sensitivity of younger (prepubertal) brain to smaller dosages of stimulants, and the persistence of some effects, especially behavioral neuroadaptations, into adulthood. In addition, oral amphetamines (MAS) have more profound effects than does oral MPH. Further animal developmental studies are required to understand potential long-term neuroadaptations to low, daily oral doses of stimulants. Implications for clinical practice were also discussed.
Collapse
Affiliation(s)
- Normand Carrey
- Department of Psychiatry, IWK Health Centre, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
11
|
Alburges ME, Hoonakker AJ, Horner KA, Fleckenstein AE, Hanson GR. Methylphenidate alters basal ganglia neurotensin systems through dopaminergic mechanisms: a comparison with cocaine treatment. J Neurochem 2011; 117:470-8. [DOI: 10.1111/j.1471-4159.2011.07215.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Dela Pena IC, Ahn HS, Shin CY, Cheong JH. Neuroadaptations Involved in Long-Term Exposure to ADHD Pharmacotherapies: Alterations That Support Dependence Liability of These Medications. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.1.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Van Waes V, Beverley J, Marinelli M, Steiner H. Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum. Eur J Neurosci 2010; 32:435-47. [PMID: 20704593 DOI: 10.1111/j.1460-9568.2010.07294.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The psychostimulant methylphenidate (Ritalin) is used in conjunction with selective serotonin reuptake inhibitors (SSRIs) in the treatment of medical conditions such as attention-deficit hyperactivity disorder with anxiety/depression comorbidity and major depression. Co-exposure also occurs in patients on SSRIs who use psychostimulant 'cognitive enhancers'. Methylphenidate is a dopamine/norepinephrine reuptake inhibitor that produces altered gene expression in the forebrain; these effects partly mimic gene regulation by cocaine (dopamine/norepinephrine/serotonin reuptake inhibitor). We investigated whether the addition of SSRIs (fluoxetine or citalopram; 5 mg/kg) modified gene regulation by methylphenidate (2-5 mg/kg) in the striatum and cortex of adolescent rats. Our results show that SSRIs potentiate methylphenidate-induced expression of the transcription factor genes zif268 and c-fos in the striatum, rendering these molecular changes more cocaine-like. Present throughout most of the striatum, this potentiation was most robust in its sensorimotor parts. The methylphenidate + SSRI combination also enhanced behavioral stereotypies, consistent with dysfunction in sensorimotor striatal circuits. In so far as such gene regulation is implicated in psychostimulant addiction, our findings suggest that SSRIs may enhance the addiction potential of methylphenidate.
Collapse
Affiliation(s)
- Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
14
|
Iasevoli F, Tomasetti C, Marmo F, Bravi D, Arnt J, de Bartolomeis A. Divergent acute and chronic modulation of glutamatergic postsynaptic density genes expression by the antipsychotics haloperidol and sertindole. Psychopharmacology (Berl) 2010; 212:329-44. [PMID: 20652539 DOI: 10.1007/s00213-010-1954-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE A pivotal role for glutamate in the pathophysiology and treatment of schizophrenia has been suggested. Few reports have investigated the impact of antipsychotics on postsynaptic density (PSD) molecules involved in glutamatergic transmission and synaptic remodeling. Homer is a key PSD molecule putatively implicated in schizophrenia. OBJECTIVES We studied the effect, in acute and chronic paradigms, of a first and a second generation antipsychotic (haloperidol and sertindole, respectively) on the expression of Homer1a and Homer-interacting PSD molecules. RESULTS In the acute paradigm, Homer1a expression was induced by haloperidol but not sertindole in the striatum, consistent with the less propensity of sertindole to affect nigrostriatal neurotransmission. The profile of expression of two other inducible genes, Ania3 and Arc, was highly similar to Homer1a. In the cortex, haloperidol reduced Homer1a and induced Ania3. In the chronic paradigm, striatal expression of Homer1a and Ania3 resembled that observed in the acute paradigm. In the cortex, haloperidol induced Homer1a, while sertindole did not. Homer1b expression was increased by haloperidol in the striatum and cortex whereas sertindole selectively induced Homer1b in the cortex. The expression of mGluR5 was increased by both antipsychotics. A modulation by haloperidol was also seen for PSD-95 and αCaMKII. CONCLUSIONS These results suggest that haloperidol and sertindole may significantly modulate glutamatergic transcripts of the postsynaptic density. Sertindole induces constitutive genes in the cortex predominantly, which may correlate with its propensity to improve cognitive functions. Haloperidol preferentially modulates gene expression in the striatum, consistent with its action at nigrostriatal projections and its propensity to give motor side effects.
Collapse
Affiliation(s)
- Felice Iasevoli
- Laboratory of Molecular Psychiatry and Psychopharmacotherapeutics, Section of Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Edificio 18, Via Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Unal CT, Beverley JA, Willuhn I, Steiner H. Long-lasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: effects on zif 268 and homer 1a. Eur J Neurosci 2009; 29:1615-26. [PMID: 19419424 DOI: 10.1111/j.1460-9568.2009.06691.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human imaging studies show that psychostimulants such as cocaine produce functional changes in several areas of cortex and striatum. These may reflect neuronal changes related to addiction. We employed gene markers (zif 268 and homer 1a) that offer a high anatomical resolution to map cocaine-induced changes in 22 cortical areas and 23 functionally related striatal sectors, in order to determine the corticostriatal circuits altered by repeated cocaine exposure (25 mg/kg, 5 days). Effects were investigated 1 day and 21 days after repeated treatment to assess their longevity. Repeated cocaine treatment increased basal expression of zif 268 predominantly in sensorimotor areas of the cortex. This effect endured for 3 weeks in some areas. These changes were accompanied by attenuated gene induction by a cocaine challenge. In the insular cortex, the cocaine challenge produced a decrease in zif 268 expression after the 21-day, but not 1-day, withdrawal period. In the striatum, cocaine also affected mostly sensorimotor sectors. Repeated cocaine resulted in blunted inducibility of both zif 268 and homer 1a, changes that were still very robust 3 weeks later. Thus, our findings demonstrate that cocaine produces robust and long-lasting changes in gene regulation predominantly in sensorimotor corticostriatal circuits. These neuronal changes were associated with behavioral stereotypies, which are thought to reflect dysfunction in sensorimotor corticostriatal circuits. Future studies will have to elucidate the role of such neuronal changes in psychostimulant addiction.
Collapse
Affiliation(s)
- Cagri T Unal
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
16
|
Lee MJ, Yang PB, Wilcox VT, Burau KD, Swann AC, Dafny N. Does repetitive Ritalin injection produce long-term effects on SD female adolescent rats? Neuropharmacology 2009; 57:201-7. [PMID: 19540860 DOI: 10.1016/j.neuropharm.2009.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 12/26/2022]
Abstract
Methylphenidate (MPD), or Ritalin, is a psychostimulant that is prescribed for an extended period of time to children and adolescents with attention deficit hyperactivity disorder. Adolescence is a time of critical brain maturation and development, and the drug exposure during this time could lead to lasting changes in the brain that endure into the adulthood. Circadian rhythms are 24 h rhythms of physiological processes that are synchronized by the master-clock, the suprachiasmatic nucleus, to keep the body stable in a changing environment. The aim of present study is to observe the effect of repeated MPD exposure on the locomotor diurnal rhythm activity patterns of female adolescent Sprague-Dawley (SD) rats using the open field assay. 31 female adolescent SD rats were divided into four groups: control, 0.6 mg/kg, 2.5 mg/kg, and 10 mg/kg MPD group. On experimental day 1, all groups were given an injection of saline. On experimental days 2-7, animals were injected once a day with either saline, 0.6 mg/kg, 2.5 mg/kg, or 10 mg/kg MPD, and experimental days 8-10 were the washout period. A re-challenge injection was given to each animal on experimental day 11 with the similar dose as the experimental days 2-7. The locomotor movements were counted by the computerized animal activity monitoring system. The data were analyzed statistically to find out whether the diurnal rhythm activity patterns were altered. The obtained data showed that repeated administrations of 2.5 mg/kg and 10 mg/kg MPD were able to change the locomotor diurnal rhythm patterns, which suggests that these MPD doses exerts long-term effects.
Collapse
Affiliation(s)
- Min J Lee
- Department of Neurobiology and Anatomy, The University of Texas, Medical School at Houston, Houston, TX 77225, United States
| | | | | | | | | | | |
Collapse
|
17
|
Banerjee PS, Aston J, Khundakar AA, Zetterström TSC. Differential regulation of psychostimulant-induced gene expression of brain derived neurotrophic factor and the immediate-early gene Arc in the juvenile and adult brain. Eur J Neurosci 2009; 29:465-76. [PMID: 19222557 DOI: 10.1111/j.1460-9568.2008.06601.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Psychostimulant drugs are widely used in children for the treatment of attention-deficit/hyperactivity disorder. Recent animal studies have suggested that exposure to these agents in early life could be detrimental to brain development. Here, for the first time, the effect of methylphenidate (MPH) and D-amphetamine (AMPH) on the expression of two key genes for neuronal development and plasticity, brain-derived neurotrophic factor (bdnf) and the effector immediate early gene activity-regulated, cytoskeletal-associated protein (Arc), was examined in both juvenile and adult rats. Both MPH [2 mg/kg, intraperitoneal (i.p.)] and AMPH (0.5 mg/kg, i.p.) induced marked decreases of bdnf mRNA in hippocampal and cortical brain regions of juveniles, whereas effects in adults were significantly less (hippocampus) or opposite (frontal cortex). In comparison, Arc mRNA was decreased (hippocampus and parietal cortex), largely unaffected (frontal cortex) or increased (striatum) in juveniles, whereas in adults, Arc mRNA increased in most brain regions. MPH-induced locomotion was also measured, and showed a much smaller increase in juveniles than in adults. In summary, our data show that the effects of MPH and AMPH on expression of the neurodevelopmentally important genes, bdnf and Arc, differ markedly in juvenile and adult rats, with juveniles showing evidence of brain region-specific decreases in both genes. These age-dependent effects on gene expression may be linked with the reported long-term harmful effects of psychostimulants in animal models.
Collapse
Affiliation(s)
- Partha S Banerjee
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, UK
| | | | | | | |
Collapse
|