1
|
Vernes SC, Devanna P, Hörpel SG, Alvarez van Tussenbroek I, Firzlaff U, Hagoort P, Hiller M, Hoeksema N, Hughes GM, Lavrichenko K, Mengede J, Morales AE, Wiesmann M. The pale spear-nosed bat: A neuromolecular and transgenic model for vocal learning. Ann N Y Acad Sci 2022; 1517:125-142. [PMID: 36069117 PMCID: PMC9826251 DOI: 10.1111/nyas.14884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.
Collapse
Affiliation(s)
- Sonja C. Vernes
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Paolo Devanna
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Stephen Gareth Hörpel
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ine Alvarez van Tussenbroek
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Uwe Firzlaff
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Peter Hagoort
- Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Nienke Hoeksema
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Graham M. Hughes
- School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Ariadna E. Morales
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Maximilian Wiesmann
- Department of Medical ImagingAnatomyRadboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer CenterNijmegenThe Netherlands
| |
Collapse
|
2
|
Pastyrik JD, Firzlaff U. Object specific adaptation in the auditory cortex of bats. J Neurophysiol 2022; 128:556-567. [PMID: 35946795 DOI: 10.1152/jn.00151.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify behaviourally relevant sounds is an important function of the auditory system. Echolocating bats have to negotiate a wealth of sounds in the context of navigation and foraging. They must be able to detect relatively rare but behaviourally important echoes and segregate them from a large number of unimportant background echoes. For this, the bat auditory system might rely on neural deviance detection, a process influencing the excitability of a neuron depending on the frequency of occurrence of a stimulus. To investigate neural deviance detection in the auditory cortex (AC) of anaesthetised bats (Phyllostomus discolor), we designed sequences of repetitive naturalistic virtual echoes differing in spectro-temporal envelope, resembling those bats might perceive in their natural environment. In these sequences, one echo (standard) was repeated ten times and another echo (deviant) was presented at the end. Temporal intervals between echoes within the sequences varied. Our results show, that neurons in the AC of the bat P. discolor are sensitive to novel virtual echoes presented at the end of these repetitive sequences: In 49 % (62/126) of cortical neurons, extracellularly recorded responses adapted to the standard echo, but showed a strong response to the finally presented deviant echo. This effect depended strongly on the temporal intervals between echoes, with stronger adaptation at shorter intervals. This type of response behavior might represent a form of neuronal deviance detection in the AC that could help the bats to detect echoes of novel and potentially important objects within a stream of homogeneous background echoes.
Collapse
Affiliation(s)
- Jan David Pastyrik
- Chair of Zoology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Uwe Firzlaff
- Chair of Zoology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Macias S, Bakshi K, Garcia-Rosales F, Hechavarria JC, Smotherman M. Temporal coding of echo spectral shape in the bat auditory cortex. PLoS Biol 2020; 18:e3000831. [PMID: 33170833 PMCID: PMC7678962 DOI: 10.1371/journal.pbio.3000831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/20/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023] Open
Abstract
Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. However, the acoustic modulations required to do this are extremely brief, raising questions about how their auditory cortex encodes and processes such rapid and fine spectrotemporal details. Here, we tested the hypothesis that biosonar target shape representation in the primary auditory cortex (A1) is more reliably encoded by changes in spike timing (latency) than spike rates and that latency is sufficiently precise to support a synchronization-based ensemble representation of this critical auditory object feature space. To test this, we measured how the spatiotemporal activation patterns of A1 changed when naturalistic spectral notches were inserted into echo mimic stimuli. Neurons tuned to notch frequencies were predicted to exhibit longer latencies and lower mean firing rates due to lower signal amplitudes at their preferred frequencies, and both were found to occur. Comparative analyses confirmed that significantly more information was recoverable from changes in spike times relative to concurrent changes in spike rates. With this data, we reconstructed spatiotemporal activation maps of A1 and estimated the level of emerging neuronal spike synchrony between cortical neurons tuned to different frequencies. The results support existing computational models, indicating that spectral interference patterns may be efficiently encoded by a cascading tonotopic sequence of neural synchronization patterns within an ensemble of network activity that relates to the physical features of the reflecting object surface. Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. This study shows that the latency shifts induced by spectral notch patterns can provide the foundation for an avalanche of neuronal synchrony that is sufficient to support encoding of auditory object shape features during active biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | | | - Julio C. Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
4
|
Radtke-Schuller S, Fenzl T, Peremans H, Schuller G, Firzlaff U. Cyto- and myeloarchitectural brain atlas of the pale spear-nosed bat (Phyllostomus discolor) in CT Aided Stereotaxic Coordinates. Brain Struct Funct 2020; 225:2509-2520. [PMID: 32936343 PMCID: PMC7544721 DOI: 10.1007/s00429-020-02138-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022]
Abstract
The pale spear-nosed bat Phyllostomus discolor, a microchiropteran bat, is well established as an animal model for research on the auditory system, echolocation and social communication of species-specific vocalizations. We have created a brain atlas of Phyllostomus discolor that provides high-quality histological material for identification of brain structures in reliable stereotaxic coordinates to strengthen neurobiological studies of this key species. The new atlas combines high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) at 49 rostrocaudal levels, at intervals of 350 µm. To facilitate comparisons with other species, brain structures were named according to the widely accepted Paxinos nomenclature and previous neuroanatomical studies of other bat species. Outlines of auditory cortical fields, as defined in earlier studies, were mapped onto atlas sections and onto the brain surface, together with the architectonic subdivisions of the neocortex. X-ray computerized tomography (CT) of the bat's head was used to establish the relationship between coordinates of brain structures and the skull. We used profile lines and the occipital crest as skull landmarks to line up skull and brain in standard atlas coordinates. An easily reproducible protocol allows sectioning of experimental brains in the standard frontal plane of the atlas. An electronic version of the atlas plates and supplementary material is available from https://doi.org/10.12751/g-node.8bbcxy.
Collapse
Affiliation(s)
- Susanne Radtke-Schuller
- Lehrstuhl für Zoologie, Technical University Munich, Freising, Germany.
- Department of Psychiatry, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Thomas Fenzl
- Klinikum für Anästhesiologie und Intensivmedizin am Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Gerd Schuller
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Lehrstuhl für Zoologie, Technical University Munich, Freising, Germany
| |
Collapse
|
5
|
Müller R. Quantitative approaches to sensory information encoding by bat noseleaves and pinnae. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biosonar systems of horseshoe bats (Rhinolophidae) and Old World round leaf-nosed bats (Hipposideridae) incorporate a pervasive dynamic at the interfaces for ultrasound emission (noseleaves) and reception (pinnae). Changes in the shapes of these structures alter the acoustic characteristics of the biosonar system and could hence influence the encoding of sensory information. The focus of the present work is on approaches that can be used to investigate the hypothesis that the interface dynamic effects sensory information encoding. Mutual information can be used as a metric to quantify the extent to which the different ultrasonic emission and reception characteristics (beampatterns) provide independent views of the environment. Two different quantitative approaches have been taken to evaluate the relationship between dynamically encoded additional sensory information and sensing performance in finding the direction of a biosonar target. The first approach is to determine an upper bound on the number of different directions that can be distinguished by virtue of distinct spectral signatures. The second approach is based on a lower bound (Cramér–Rao) on the variance of direction estimates. All these different metrics demonstrate that the peripheral dynamics seen in bats result in the encoding of additional sensory information that is suitable for enhancing biosonar performance.
Collapse
Affiliation(s)
- Rolf Müller
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Shandong University – Virginia Tech International Laboratory, Shandong University, Jinan, People’s Republic of China
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Shandong University – Virginia Tech International Laboratory, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
6
|
Rodenas-Cuadrado P, Chen XS, Wiegrebe L, Firzlaff U, Vernes SC. A novel approach identifies the first transcriptome networks in bats: a new genetic model for vocal communication. BMC Genomics 2015; 16:836. [PMID: 26490347 PMCID: PMC4618519 DOI: 10.1186/s12864-015-2068-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/13/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bats are able to employ an astonishingly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vocal bat species, Phyllostomus discolor. RESULTS Gene network analysis typically needs large sample sizes for correct clustering, this can be prohibitive where samples are limited, such as in this study. To overcome this, we developed a novel bioinformatics methodology for identifying robust co-expression gene networks using few samples (N=6). Using this approach, we identified tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalisation. The most highly connected network identified represented a cluster of genes involved in glutamatergic synaptic transmission. Glutamatergic receptors play a significant role in vocalisation from the PAG, suggesting that this gene network may be mechanistically important for vocal-motor control in mammals. CONCLUSION We have developed an innovative approach to cluster co-expressing gene networks and show that it is highly effective in detecting robust functional gene networks with limited sample sizes. Moreover, this work represents the first gene network analysis performed in a bat brain and establishes bats as a novel, tractable model system for understanding the genetics of vocal mammalian communication.
Collapse
Affiliation(s)
- Pedro Rodenas-Cuadrado
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands.
| | - Xiaowei Sylvia Chen
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands.
| | - Lutz Wiegrebe
- Ludwig-Maximilians-Universität, Division of Neurobiology, Department Biology II, Großhaderner Straße 2, Planegg-Martinsried, Munich, D-82152, Germany.
| | - Uwe Firzlaff
- Lehrstuhl für Zoologie, TU München, Liesel-Beckmann-Str. 4, Freising-Weihenstephan, Munich, 85350, Germany.
| | - Sonja C Vernes
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands. .,Donders Centre for Cognitive Neuroimaging, Kapittelweg 29, Nijmegen, 6525 EN, The Netherlands.
| |
Collapse
|
7
|
Abstract
As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.
Collapse
|
8
|
O'Connor KN, Yin P, Petkov CI, Sutter ML. Complex spectral interactions encoded by auditory cortical neurons: relationship between bandwidth and pattern. Front Syst Neurosci 2010; 4:145. [PMID: 21152347 PMCID: PMC2998047 DOI: 10.3389/fnsys.2010.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/09/2010] [Indexed: 11/13/2022] Open
Abstract
The focus of most research on auditory cortical neurons has concerned the effects of rather simple stimuli, such as pure tones or broad-band noise, or the modulation of a single acoustic parameter. Extending these findings to feature coding in more complex stimuli such as natural sounds may be difficult, however. Generalizing results from the simple to more complex case may be complicated by non-linear interactions occurring between multiple, simultaneously varying acoustic parameters in complex sounds. To examine this issue in the frequency domain, we performed a parametric study of the effects of two global features, spectral pattern (here ripple frequency) and bandwidth, on primary auditory (A1) neurons in awake macaques. Most neurons were tuned for one or both variables and most also displayed an interaction between bandwidth and pattern implying that their effects were conditional or interdependent. A spectral linear filter model was able to qualitatively reproduce the basic effects and interactions, indicating that a simple neural mechanism may be able to account for these interdependencies. Our results suggest that the behavior of most A1 neurons is likely to depend on multiple parameters, and so most are unlikely to respond independently or invariantly to specific acoustic features.
Collapse
Affiliation(s)
- Kevin N O'Connor
- Center for Neuroscience, University of California Davis Davis, CA, USA
| | | | | | | |
Collapse
|
9
|
Perception and neural representation of size-variant human vowels in the Mongolian gerbil (Meriones unguiculatus). Hear Res 2009; 261:1-8. [PMID: 20004713 DOI: 10.1016/j.heares.2009.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 11/23/2022]
Abstract
Humans reliably recognize spoken vowels despite the variability of the sounds caused by the across-subject variability of the speakers' vocal tract. The vocal tract serves as a resonator which imprints a spectral envelope onto the sounds generated by the vocal folds. This spectral envelope contains not only information about the type of vocalization but also about the size of the speaker: the larger the speaker, the lower the formant frequencies of the spoken vowels. In a combined psychophysical and electrophysiological study in the Mongolian gerbil (Meriones unguiculatus), we investigated the perception and neural representation of human vowels spoken by speakers of different sizes. Gerbils trained to discriminate two standard vowels, correctly assigned vowels spoken from different-sized human speakers. Complementary electrophysiological recordings from neurons in the auditory brainstem, midbrain, and primary auditory cortex show that the auditory brainstem retains a truthful representation of the frequency content of the presented vowel sounds. A small percentage of neurons in the midbrain and auditory cortex, however, showed selectivity for a certain vowel type or vocal tract length which is not related to the pure-tone, frequency response area, indicative of a preprocessing stage for auditory segregation of size and structure information.
Collapse
|
10
|
Hoffmann S, Firzlaff U, Radtke-Schuller S, Schwellnus B, Schuller G. The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties. BMC Neurosci 2008; 9:65. [PMID: 18625034 PMCID: PMC2483289 DOI: 10.1186/1471-2202-9-65] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat Phyllostomus discolor (family: Phyllostomidae). RESULTS The auditory cortical area of P. discolor is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 mum and a medio-lateral distance of about 7000 mum on the flattened cortical surface. The auditory cortices of ten adult P. discolor were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons) to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions. Based on neurophysiological and neuroanatomical criteria, the auditory cortex of P. discolor could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only. CONCLUSION The auditory cortex of P. discolor resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The tonotopically organized posterior ventral field might represent the primary auditory cortex and the tonotopically organized anterior ventral field seems to be similar to the anterior auditory field of other mammals. As most energy of the echolocation pulse of P. discolor is contained in the high-frequency range, the non-tonotopically organized high-frequency dorsal region seems to be particularly important for echolocation.
Collapse
Affiliation(s)
- Susanne Hoffmann
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| | | | | | | | | |
Collapse
|
11
|
Olkowicz S, Turlejski K, Bartkowska K, Wielkopolska E, Djavadian RL. Thalamic nuclei in the opossum Monodelphis domestica. J Chem Neuroanat 2008; 36:85-97. [PMID: 18571895 DOI: 10.1016/j.jchemneu.2008.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 11/27/2022]
Abstract
We investigated nuclear divisions of the thalamus in the gray short-tailed opossum (Monodelphis domestica) to gain detailed information for further developmental and comparative studies. Nissl and myelin staining, histochemistry for acetylcholinesterase and immunohistochemistry for calretinin and parvalbumin were performed on parallel series of sections. Many features of the Monodelphis opossum thalamus resemble those in Didelphis and small eutherians showing no particular sensory specializations, particularly in small murid rodents. However, several features of thalamic organization in Monodelphis were distinct from those in rodents. In the opossum the anterior and midline nuclear groups are more clearly separated from adjacent structures than in eutherians. The dorsal lateral geniculate nucleus (LGNd) starts more rostrally and occupies a large part of the lateral wall of the thalamus. As in other marsupials, two cytoarchitectonically different parts, alpha and beta are discernible in the LGNd of the opossum. Each of them may be subdivided into two additional bands in acetylcholinesterase staining, while in murid rodents the LGNd consists of a homogeneous mass of cells. Therefore, differentiation of the LGNd of the Monodelphis opossum is more advanced than in murid rodents. The medial geniculate body consists of three nuclei (medial, dorsal and ventral) that are cytoarchitectonically distinct and stain differentially for parvalbumin. The relatively large size of the MG and LGNd points to specialization of the visual and auditory systems in the Monodelphis opossum. In contrast to rodents, the lateral dorsal and lateral posterior nuclei in the opossum are poorly differentiated cytoarchitectonically.
Collapse
Affiliation(s)
- Seweryn Olkowicz
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, 3 Pasteur Street, Poland
| | | | | | | | | |
Collapse
|