1
|
Zacky Ariffin M, Yun Ng S, Nadia H, Koh D, Loh N, Michiko N, Khanna S. Neurokinin1 - cholinergic receptor mechanisms in the medial Septum-Dorsal hippocampus axis mediates experimental neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100162. [PMID: 39224764 PMCID: PMC11367143 DOI: 10.1016/j.ynpai.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The neurokinin-1 receptors (NK1Rs) in the forebrain medial septum (MS) region are localized exclusively on cholinergic neurons that partly project to the hippocampus and the cingulate cortex (Cg), regions implicated in nociception. In the present study, we explored the hypothesis that neurotransmission at septal NK1R and hippocampal cholinergic mechanisms mediate experimental neuropathic pain in the rodent chronic constriction injury model (CCI). Our investigations showed that intraseptal microinjection of substance P (SP) in rat evoked a peripheral hypersensitivity (PH)-like response in uninjured animals that was attenuated by systemic atropine sulphate, a muscarinic-cholinergic receptor antagonist. Conversely, pre-emptive destruction of septal cholinergic neurons attenuated the development of PH in the CCI model that also prevented the expression of cellular markers of nociception in the spinal cord and the forebrain. Likewise, anti-nociception was evoked on intraseptal microinjection of L-733,060, an antagonist at NK1Rs, and on bilateral or unilateral microinjection of the cholinergic receptor antagonists, atropine or mecamylamine, into the different regions of the dorsal hippocampus (dH) or on bilateral microinjection into the Cg. Interestingly, the effect of L-733,060 was accompanied with a widespread decreased in levels of CCI-induced nociceptive cellular markers in forebrain that was not secondary to behaviour, suggesting an active modulation of nociceptive processing by transmission at NK1R in the medial septum. The preceding suggest that the development and maintenance of neuropathic nociception is facilitated by septal NK1R-dH cholinergic mechanisms which co-ordinately affect nociceptive processing in the dH and the Cg. Additionally, the data points to a potential strategy for pain modulation that combines anticholinergics and anti-NKRs.
Collapse
Affiliation(s)
- Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Si Yun Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hamzah Nadia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darrel Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naomi Michiko
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
McCallum RT, Thériault RK, Manduca JD, Russell ISB, Culmer AM, Doost JS, Martino TA, Perreault ML. Nrf2 activation rescues stress-induced depression-like behaviour and inflammatory responses in male but not female rats. Biol Sex Differ 2024; 15:16. [PMID: 38350966 PMCID: PMC10863247 DOI: 10.1186/s13293-024-00589-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a recurring affective disorder that is two times more prevalent in females than males. Evidence supports immune system dysfunction as a major contributing factor to MDD, notably in a sexually dimorphic manner. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of antioxidant signalling during inflammation, is dysregulated in many chronic inflammatory disorders; however, its role in depression and the associated sex differences have yet to be explored. Here, we investigated the sex-specific antidepressant and immunomodulatory effects of the potent Nrf2 activator dimethyl fumarate (DMF), as well as the associated gene expression profiles. METHODS Male and female rats were treated with vehicle or DMF (25 mg/kg) whilst subjected to 8 weeks of chronic unpredictable stress. The effect of DMF treatment on stress-induced depression- and anxiety-like behaviours, as well as deficits in recognition and spatial learning and memory were then assessed. Sex differences in hippocampal (HIP) microglial activation and gene expression response were also evaluated. RESULTS DMF treatment during stress exposure had antidepressant effects in male but not female rats, with no anxiolytic effects in either sex. Recognition learning and memory and spatial learning and memory were impaired in chronically stressed males and females, respectively, and DMF treatment rescued these deficits. DMF treatment also prevented stress-induced HIP microglial activation in males. Conversely, females displayed no HIP microglial activation associated with stress exposure. Last, chronic stress elicited sex-specific alterations in HIP gene expression, many of which were normalized in animals treated with DMF. Of note, most of the differentially expressed genes in males normalized by DMF were related to antioxidant, inflammatory or immune responses. CONCLUSIONS Collectively, these findings support a greater role of immune processes in males than females in a rodent model of depression. This suggests that pharmacotherapies that target Nrf2 have the potential to be an effective sex-specific treatment for depression.
Collapse
Affiliation(s)
- Ryan T McCallum
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Rachel-Karson Thériault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Joshua D Manduca
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Isaac S B Russell
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Angel M Culmer
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Tami A Martino
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Koca RO, Gormus ZIS, Solak H, Koc A, Kılınc İ, İyisoy MS, Kutlu S. How does neurokinin 3 receptor agonism affect pathological and cognitive impairments in an Alzheimer's disease-like rat model? Amino Acids 2023; 55:481-498. [PMID: 36745246 DOI: 10.1007/s00726-023-03241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is accepted as a form of progressive dementia. Cholinergic systems are commonly affected in AD. Neurokinin 3 receptor (NK3R) is involved in learning memory-related processes. It is known that the activation of NK3R affects the release of many neurotransmitters. The aim of this project was to investigate the effects of NK3R agonist senktide administration on neurobehavioral mechanisms in the experimental AD-like rat model. 50 male Wistar albino rats were divided into Control (C), AD, Control + NK3R agonist (CS), AD + NK3R agonist (ADS), AD + NK3Ragonist + antagonist groups (ADSO). We designed AD-like model by intrahippocampal administration of Aβ1-42. After NK3R agonist + antagonist injections, open field (OF), Morris water maze (MWM) tests were applied. Cholinergic mechanism analysis from hippocampus-cortex tissues was performed by ELISA and catecholamine analysis from brain stem tissue were performed by HPLC method. The transitions from edge to center, rearing, grooming parameters were found to be reduced in final values of OF. While the group-time interaction was significant in the OF test findings, there was no significant difference between the groups. In MWM test, ADS group showed a learning level close to control group and animals in AD and ADSO groups could not learn target quadrant in MWM test. The brain stem NA and DA concentrations were not statistically significant. Hippocampal AChE-ChAT levels were supported by positive effects of senktide on learning via the cholinergic mechanisms. As a result, NK3R agonists were found to be effective in improving cognitive functions in rats with AD pathology. In the experimental AD model, positive effects of NK3R on learning memory may be mediated by cholinergic mechanisms.
Collapse
Affiliation(s)
- Raviye Ozen Koca
- Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Z Isik Solak Gormus
- Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Hatice Solak
- Department of Physiology, Faculty of Medicine, Kutahya Health Science University, Kutahya, Turkey
| | - Aynur Koc
- Department of Physiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - İbrahim Kılınc
- Department of Medical Education and Informatics, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Sinan İyisoy
- Department of Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Selim Kutlu
- Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
4
|
Shao YQ, Fan L, Wu WY, Zhu YJ, Xu HT. A developmental switch between electrical and neuropeptide communication in the ventromedial hypothalamus. Curr Biol 2022; 32:3137-3145.e3. [PMID: 35659861 DOI: 10.1016/j.cub.2022.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 12/29/2022]
Abstract
Dissecting neural connectivity patterns within local brain regions is an essential step to understanding the function of the brain.1 Neural microcircuits in brain regions, such as the neocortex and the hippocampus, have been extensively studied.2 By contrast, the microcircuit in the hypothalamus remains largely uncharacterized. The hypothalamus is crucial for animals' survival and reproduction.3 Knowledge of how different hypothalamic nuclei coordinate with each other and outside brain regions for hypothalamus-related functions has been significantly advanced.4-9 Although there are limited studies on the neural microcircuit in the lateral hypothalamus (LHA)10,11 and the suprachiasmatic nucleus (SCN),12,13 the patterns of neural microcircuits in most of the given hypothalamic nuclei remain largely unknown. This study applied combinatory approaches to address the local neural circuit pattern in the ventromedial hypothalamus (VMH) and other hypothalamic nuclei. We discovered a unique neural circuit design in the VMH. Neurons in the VMH were electrically coupled at the early postnatal stage like ones in the neocortex.14 However, unlike neocortical neurons,14,15 they developed very few chemical synapses after the disappearance of electrical synapses. Instead, VMH neurons communicated with neuropeptides. The similar scarceness of synaptic connectivity found in other hypothalamic nuclei further indicated that the lack of synaptic connections is a unique feature for local neural circuits in most adult hypothalamic nuclei. Thus, our findings provide a solid synaptic basis at the cellular level to understand hypothalamic functions better.
Collapse
Affiliation(s)
- Yin-Qi Shao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Fan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen-Yan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Jun Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Tai Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
5
|
Ng SY, Ariffin MZ, Khanna S. Neurokinin receptor mechanisms in forebrain medial septum modulate nociception in the formalin model of inflammatory pain. Sci Rep 2021; 11:24358. [PMID: 34934106 PMCID: PMC8692436 DOI: 10.1038/s41598-021-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
The present study has explored the hypothesis that neurokinin1 receptors (NK1Rs) in medial septum (MS) modulate nociception evoked on hind paw injection of formalin. Indeed, the NK1Rs in MS are localized on cholinergic neurons which have been implicated in nociception. In anaesthetized rat, microinjection of L-733,060, an antagonist at NK1Rs, into MS antagonized the suppression of CA1 population spike (PS) evoked on peripheral injection of formalin or on intraseptal microinjection of substance P (SP), an agonist at NK1Rs. The CA1 PS reflects the synaptic excitability of pyramidal cells in the region. Furthermore, microinjection of L-733,060 into MS, but not LS, attenuated formalin-induced theta activation in both anaesthetized and awake rat, where theta reflects an oscillatory information processing by hippocampal neurons. The effects of L-733,060 on microinjection into MS were nociceptive selective as the antagonist did not block septo-hippocampal response to direct MS stimulation by the cholinergic receptor agonist, carbachol, in anaesthetized animal or on exploration in awake animal. Interestingly, microinjection of L-733,060 into both MS and LS attenuated formalin-induced nociceptive flinches. Collectively, the foregoing novel findings highlight that transmission at NK1R provide an affective valence to septo-hippocampal information processing and that peptidergic transmission in the septum modulates nociceptive behaviours.
Collapse
Affiliation(s)
- Si Yun Ng
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Mohammed Zacky Ariffin
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593, Singapore. .,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Al Abed AS, Reynolds NJ, Dehorter N. A Second Wave for the Neurokinin Tac2 Pathway in Brain Research. Biol Psychiatry 2021; 90:156-164. [PMID: 33867115 DOI: 10.1016/j.biopsych.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Despite promising advances in basic research of the neurokinin B/Tac2 pathway in both animals and humans, clinical applications are yet to be implemented. This is likely because of our limited understanding of the action of the pathway in the brain. While this system controls neuronal activity in multiple regions, the precise impact of Tac2-induced cellular responses on behavior remains unclear. Recently, elegant studies revealed a key contribution to stress-related behaviors and memory. Here, we discuss the crucial importance of bridging the gap between the Tac2 pathway's involvement in cell physiology and cognition to comprehend its role in health and disease. We propose that a better understanding of the Tac2 pathway in the brain could provide an essential perspective for basic investigations, which in turn will feed clinical research.
Collapse
Affiliation(s)
- A Shaam Al Abed
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathan J Reynolds
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
7
|
Borbély É, Hunyady Á, Pohóczky K, Payrits M, Botz B, Mócsai A, Berger A, Szőke É, Helyes Z. Hemokinin-1 as a Mediator of Arthritis-Related Pain via Direct Activation of Primary Sensory Neurons. Front Pharmacol 2021; 11:594479. [PMID: 33519457 PMCID: PMC7839295 DOI: 10.3389/fphar.2020.594479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023] Open
Abstract
The tachykinin hemokinin-1 (HK-1) is involved in immune cell development and inflammation, but little is known about its function in pain. It acts through the NK1 tachykinin receptor, but several effects are mediated by a yet unidentified target. Therefore, we investigated the role and mechanism of action of HK-1 in arthritis models of distinct mechanisms with special emphasis on pain. Arthritis was induced by i.p. K/BxN serum (passive transfer of inflammatory cytokines, autoantibodies), intra-articular mast cell tryptase or Complete Freund's Adjuvant (CFA, active immunization) in wild type, HK-1- and NK1-deficient mice. Mechanical- and heat hyperalgesia determined by dynamic plantar esthesiometry and increasing temperature hot plate, respectively, swelling measured by plethysmometry or micrometry were significantly reduced in HK-1-deleted, but not NK1-deficient mice in all models. K/BxN serum-induced histopathological changes (day 14) were also decreased, but early myeloperoxidase activity detected by luminescent in vivo imaging increased in HK-1-deleted mice similarly to the CFA model. However, vasodilation and plasma protein extravasation determined by laser Speckle and fluorescent imaging, respectively, were not altered by HK-1 deficiency in any models. HK-1 induced Ca2+-influx in primary sensory neurons, which was also seen in NK1-deficient cells and after pertussis toxin-pretreatment, but not in extracellular Ca2+-free medium. These are the first results showing that HK-1 mediates arthritic pain and cellular, but not vascular inflammatory mechanisms, independently of NK1 activation. HK-1 activates primary sensory neurons presumably via Ca2+ channel-linked receptor. Identifying its target opens new directions to understand joint pain leading to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Éva Borbély
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ágnes Hunyady
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Krisztina Pohóczky
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Maja Payrits
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Éva Szőke
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
8
|
Borbély É, Helyes Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017; 64:9-17. [PMID: 27993375 DOI: 10.1016/j.npep.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
Hemokinin-1 (HK-1), the newest tachykinin encoded by the Tac4 gene was discovered in 2000. Its name differs from that of the other members of this peptide family due to its first demonstration in B lymphocytes. Since tachykinins are classically found in the nervous system, the significant expression of HK-1 in blood cells is a unique feature of this peptide. Due to its widespread distribution in the whole body, HK-1 is involved in different physiological and pathophysiological functions involving pain inflammation modulation, immune regulation, respiratory and endocrine functions, as well as tumor genesis. Furthermore, despite the great structural and immunological similarities to substance P (SP), the functions of HK-1 are often different or the opposite. They both have the highest affinity to the tachykinin NK1 receptor, but HK-1 is likely to have a distinct binding site and signalling pathways. Moreover, several actions of HK-1 different from SP have been suggested to be mediated via a presently not identified own receptor/target molecule. Therefore, it is very important to explore its effects at different levels and compare its characteristics with SP to get a deeper insight in the different cellular mechanisms. Since HK-1 has recently been in the focus of intensive research, in the present review we summarize the few clinical data and experimental results regarding HK-1 expression and function in different model systems obtained throughout the 16years of its history. Synthesizing these findings help to understand the complexity of HK-1 actions and determine its biomarker values and/or drug development potentials.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary
| |
Collapse
|
9
|
Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain. Neurobiol Aging 2015; 36:2060-7. [PMID: 25976010 DOI: 10.1016/j.neurobiolaging.2014.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/06/2014] [Accepted: 12/26/2014] [Indexed: 01/23/2023]
Abstract
The neuropeptide neurokinin 3 (NK3) and its receptor modulate cholinergic activity of the basal forebrain (BF) and are implicated in learning and memory. In Alzheimer's disease, the rs2765 single-nucleotide polymorphism (SNP) of the NK3 receptor-coding gene TACR3 was correlated with the right hippocampus volume. Here, we studied the association of the rs2765 SNP with magnetic resonance imaging-based volumes of the BF and hippocampus in a population-based sample of 1967 participants between 21 and 90 years of age. The rs2765 SNP was significantly associated with the most anterior BF volume corresponding to the medial septum/diagonal band, and with a significantly steeper age-related volume decline. The rs2765 SNP was not associated with other BF subvolumes or hippocampus volumes. Apolipoprotein E ε4 showed no correlation with any brain volume or global cognition. Our findings in a large population-based sample suggest an association of an NK3 receptor SNP with age-related decline of rostral cholinergic BF volume.
Collapse
|
10
|
Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. Proc Natl Acad Sci U S A 2013; 110:15097-102. [PMID: 23983264 DOI: 10.1073/pnas.1306884110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Impaired learning and memory performance is often found in aging as an early sign of dementia. It is associated with neuronal loss and reduced functioning of cholinergic networks. Here we present evidence that the neurokinin3 receptors (NK3-R) and their influence on acetylcholine (ACh) release may represent a crucial mechanism that underlies age-related deficits in learning and memory. Repeated pharmacological stimulation of NK3-R in aged rats was found to improve learning in the water maze and in object-place recognition. This treatment also enhanced in vivo acetylcholinergic activity in the frontal cortex, hippocampus, and amygdala but reduced NK3-R mRNA expression in the hippocampus. Furthermore, NK3-R agonism incurred a significantly higher increase in ACh levels in aged animals that showed superior learning than in those that were most deficient in learning. Our findings suggest that the induced activation of ACh, rather than basal ACh activity, is associated with superior learning in the aged. To test whether natural variation in NK3-R function also determines learning and memory performance in aged humans, we investigated 209 elderly patients with cognitive impairments. We found that of the 15 analyzed single single-nucleotide ploymorphism (SNPs) of the NK3-R-coding gene, TACR3, the rs2765 SNP predicted the degree of impairment of learning and memory in these patients. This relationship could be partially explained by a reduced right hippocampus volume in a subsample of 111 tested dementia patients. These data indicate the NK3-R as an important target to predict and improve learning and memory performance in the aged organism.
Collapse
|
11
|
Dittrich L, Heiss JE, Warrier DR, Perez XA, Quik M, Kilduff TS. Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species. Front Neural Circuits 2012; 6:31. [PMID: 22679419 PMCID: PMC3367498 DOI: 10.3389/fncir.2012.00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/06/2012] [Indexed: 11/17/2022] Open
Abstract
We have previously demonstrated that Type I neuronal nitric oxide synthase (nNOS)-expressing neurons are sleep-active in the cortex of mice, rats, and hamsters. These neurons are known to be GABAergic, to express Neuropeptide Y (NPY) and, in rats, to co-express the Substance P (SP) receptor NK1, suggesting a possible role for SP in sleep/wake regulation. To evaluate the degree of co-expression of nNOS and NK1 in the cortex among mammals, we used double immunofluorescence for nNOS and NK1 and determined the anatomical distribution in mouse, rat, and squirrel monkey cortex. Type I nNOS neurons co-expressed NK1 in all three species although the anatomical distribution within the cortex was species-specific. We then performed in vitro patch clamp recordings in cortical neurons in mouse and rat slices using the SP conjugate tetramethylrhodamine-SP (TMR-SP) to identify NK1-expressing cells and evaluated the effects of SP on these neurons. Bath application of SP (0.03–1 μM) resulted in a sustained increase in firing rate of these neurons; depolarization persisted in the presence of tetrodotoxin. These results suggest a conserved role for SP in the regulation of cortical sleep-active neurons in mammals.
Collapse
Affiliation(s)
- Lars Dittrich
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park CA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Schäble S, Huston JP, Barros M, Tomaz C, de Souza Silva MA. The NK3 receptor agonist senktide ameliorates scopolamine-induced deficits in memory for object, place and temporal order. Neurobiol Learn Mem 2012; 97:235-40. [DOI: 10.1016/j.nlm.2011.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 12/12/2022]
|
13
|
Friedrich P, Feulner T, Laws S, Eckart K, Perneczky R, Kurz A, Förstl H, Riemenschneider M. No association of Tachykinin receptor 2 (TACR2) polymorphisms with Alzheimer's disease. Neurobiol Aging 2011; 32:544-5. [DOI: 10.1016/j.neurobiolaging.2009.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/16/2009] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
|
14
|
Schäble S, Huston JP, de Souza Silva MA. Neurokinin2-R in medial septum regulate hippocampal and amygdalar ACh release induced by intraseptal application of neurokinins A and B. Hippocampus 2010; 22:1058-67. [DOI: 10.1002/hipo.20847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2010] [Indexed: 11/07/2022]
|
15
|
Nordquist RE, Delenclos M, Ballard TM, Savignac H, Pauly-Evers M, Ozmen L, Spooren W. Cognitive performance in neurokinin 3 receptor knockout mice. Psychopharmacology (Berl) 2008; 198:211-20. [PMID: 18351324 DOI: 10.1007/s00213-008-1119-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/17/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE The neurokinin 3 (NK(3)) receptor is a novel target under investigation for improvement of the symptoms of schizophrenia due to its ability to modulate dopaminergic signaling. However, research on effects of NK(3) antagonism with animal models has been hindered because of species differences in the receptor between humans, rats, and mice. OBJECTIVES The aim of the present study is to further knowledge on the role of NK(3) in cognitive functioning by testing the effect of knockout of the NK(3) receptor on tests of working memory, spatial memory, and operant responding. MATERIALS AND METHODS NK(3) knockout mice generated on a C57Bl/6 background were tested in delayed matching to position (DMTP), spontaneous alternation, Morris water maze, and active avoidance tasks. RESULTS NK(3) knockout mice showed better performance in the DMTP task, though not delay dependently, which points to an effect on operant performance but not on working memory. No differences were seen between the groups in spontaneous alternation, another indication that working memory is not affected in NK(3) knockouts. There was no impairment in knockout mice in Morris water maze training, and the mice also showed faster response latency in the active avoidance task during training. CONCLUSIONS Collectively, these results support a role for the NK(3) receptor in performance of operant tasks and in spatial learning but not in working memory.
Collapse
Affiliation(s)
- R E Nordquist
- Psychiatry Disease Area, PRBD-N, F. Hoffmann-La Roche, Building 72-148, 4070 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|