1
|
Shukla PD, Burke JF, Kunwar N, Presbrey K, Balakid J, Yaroshinsky M, Louie K, Jacques L, Shirvalkar P, Wang DD. Human Cervical Epidural Spinal Electrogram Topographically Maps Distinct Volitional Movements. J Neurosci 2024; 44:e2258232024. [PMID: 38960719 PMCID: PMC11308355 DOI: 10.1523/jneurosci.2258-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Little is known about the electrophysiologic activity of the intact human spinal cord during volitional movement. We analyzed epidural spinal recordings from a total of five human subjects of both sexes during a variety of upper extremity movements and found that these spinal epidural electrograms contain spectral information distinguishing periods of movement, rest, and sensation. Cervical epidural electrograms also contained spectral changes time-locked with movement. We found that these changes were primarily associated with increased power in the theta (4-8 Hz) band and feature increased theta phase to gamma amplitude coupling, and this increase in theta power can be used to topographically map distinct upper extremity movements onto the cervical spinal cord in accordance with established myotome maps of the upper extremity. Our findings have implications for the development of neurostimulation protocols and devices focused on motor rehabilitation for the upper extremity, and the approach presented here may facilitate spatiotemporal mapping of naturalistic movements.
Collapse
Affiliation(s)
- Poojan D Shukla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - John F Burke
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, Oklahoma 73104
| | - Nikhita Kunwar
- School of Medicine, University of California San Diego, San Diego, California 92093
| | - Kara Presbrey
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Jannine Balakid
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Maria Yaroshinsky
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Kenneth Louie
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Line Jacques
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Prasad Shirvalkar
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
- Department of Anesthesia and Pain Management, University of California, San Francisco, California 94143
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Doris D Wang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
2
|
BmK NSPK, a Potent Potassium Channel Inhibitor from Scorpion Buthus martensii Karsch, Promotes Neurite Outgrowth via NGF/TrkA Signaling Pathway. Toxins (Basel) 2021; 13:toxins13010033. [PMID: 33466524 PMCID: PMC7824859 DOI: 10.3390/toxins13010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Scorpion toxins represent a variety of tools to explore molecular mechanisms and cellular signaling pathways of many biological functions. These toxins are also promising lead compounds for developing treatments for many neurological diseases. In the current study, we purified a new scorpion toxin designated as BmK NSPK (Buthus martensii Karsch neurite-stimulating peptide targeting Kv channels) from the BmK venom. The primary structure was determined using Edman degradation. BmK NSPK directly inhibited outward K+ current without affecting sodium channel activities, depolarized membrane, and increased spontaneous calcium oscillation in spinal cord neurons (SCNs) at low nanomolar concentrations. BmK NSPK produced a nonmonotonic increase on the neurite extension that peaked at ~10 nM. Mechanistic studies demonstrated that BmK NSPK increased the release of nerve growth factor (NGF). The tyrosine kinases A (TrkA) receptor inhibitor, GW 441756, eliminated the BmK NSPK-induced neurite outgrowth. BmK NSPK also increased phosphorylation levels of protein kinase B (Akt) that is the downstream regulator of TrkA receptors. These data demonstrate that BmK NSPK is a new voltage-gated potassium (Kv) channel inhibitor that augments neurite extension via NGF/TrkA signaling pathway. Kv channels may represent molecular targets to modulate SCN development and regeneration and to develop the treatments for spinal cord injury.
Collapse
|
3
|
Buntschu S, Tscherter A, Heidemann M, Streit J. Critical Components for Spontaneous Activity and Rhythm Generation in Spinal Cord Circuits in Culture. Front Cell Neurosci 2020; 14:81. [PMID: 32410961 PMCID: PMC7198714 DOI: 10.3389/fncel.2020.00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Neuronal excitability contributes to rhythm generation in central pattern generating networks (CPGs). In spinal cord CPGs, such intrinsic excitability partly relies on persistent sodium currents (INaP), whereas respiratory CPGs additionally depend on calcium-activated cation currents (ICAN). Here, we investigated the contributions of INaP and ICAN to spontaneous rhythm generation in neuronal networks of the spinal cord and whether they mainly involve Hb9 neurons. We used cultures of ventral and transverse slices from the E13-14 embryonic rodent lumbar spinal cord on multielectrode arrays (MEAs). All cultures showed spontaneous bursts of network activity. Blocking synaptic excitation with the AMPA receptor antagonist CNQX suppressed spontaneous network bursts and left asynchronous intrinsic activity at about 30% of the electrodes. Such intrinsic activity was completely blocked at all electrodes by both the INaP blocker riluzole as well as by the ICAN blocker flufenamic acid (FFA) and the more specific TRPM4 channel antagonist 9-phenanthrol. All three antagonists also suppressed spontaneous bursting completely and strongly reduced stimulus-evoked bursts. Also, FFA reduced repetitive spiking that was induced in single neurons by injection of depolarizing current pulses to few spikes. Other antagonists of unspecific cation currents or calcium currents had no suppressing effects on either intrinsic activity (gadolinium chloride) or spontaneous bursting (the TRPC channel antagonists clemizole and ML204 and the T channel antagonist TTA-P2). Combined patch-clamp and MEA recordings showed that Hb9 interneurons were activated by network bursts but could not initiate them. Together these findings suggest that both INaP through Na+-channels and ICAN through putative TRPM4 channels contribute to spontaneous intrinsic and repetitive spiking in spinal cord neurons and thereby to the generation of network bursts.
Collapse
Affiliation(s)
| | | | | | - Jürg Streit
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Heidemann M, Streit J, Tscherter A. Investigating Functional Regeneration in Organotypic Spinal Cord Co-cultures Grown on Multi-electrode Arrays. J Vis Exp 2015. [PMID: 26436646 PMCID: PMC4692611 DOI: 10.3791/53121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adult higher vertebrates have a limited potential to recover from spinal cord injury. Recently, evidence emerged that propriospinal connections are a promising target for intervention to improve functional regeneration. So far, no in vitro model exists that grants the possibility to examine functional recovery of propriospinal fibers. Therefore, a representative model that is based on two organotypic spinal cord sections of embryonic rat, cultured next to each other on multi-electrode arrays (MEAs) was developed. These slices grow and, within a few days in vitro, fuse along the sides facing each other. The design of the used MEAs permits the performance of lesions with a scalpel blade through this fusion site without inflicting damage on the MEAs. The slices show spontaneous activity, usually organized in network activity bursts, and spatial and temporal activity parameters such as the location of burst origins, speed and direction of their propagation and latencies between bursts can be characterized. Using these features, it is also possible to assess functional connection of the slices by calculating the amount of synchronized bursts between the two sides. Furthermore, the slices can be morphologically analyzed by performing immunohistochemical stainings after the recordings. Several advantages of the used techniques are combined in this model: the slices largely preserve the original tissue architecture with intact local synaptic circuitry, the tissue is easily and repeatedly accessible and neuronal activity can be detected simultaneously and non-invasively in a large number of spots at high temporal resolution. These features allow the investigation of functional regeneration of intraspinal connections in isolation in vitro in a sophisticated and efficient way.
Collapse
Affiliation(s)
| | - Jürg Streit
- Department of Physiology, University of Bern
| | | |
Collapse
|
5
|
Functional regeneration of intraspinal connections in a new in vitro model. Neuroscience 2014; 262:40-52. [PMID: 24394955 DOI: 10.1016/j.neuroscience.2013.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/29/2013] [Accepted: 12/23/2013] [Indexed: 11/21/2022]
Abstract
Regeneration in the adult mammalian spinal cord is limited due to intrinsic properties of mature neurons and a hostile environment, mainly provided by central nervous system myelin and reactive astrocytes. Recent results indicate that propriospinal connections are a promising target for intervention to improve functional recovery. To study this functional regeneration in vitro we developed a model consisting of two organotypic spinal cord slices placed adjacently on multi-electrode arrays. The electrodes allow us to record the spontaneously occurring neuronal activity, which is often organized in network bursts. Within a few days in vitro (DIV), these bursts become synchronized between the two slices due to the formation of axonal connections. We cut them with a scalpel at different time points in vitro and record the neuronal activity 3 weeks later. The functional recovery ability was assessed by calculating the percentage of synchronized bursts between the two slices. We found that cultures lesioned at a young age (7-9 DIV) retained the high regeneration ability of embryonic tissue. However, cultures lesioned at older ages (>19 DIV) displayed a distinct reduction of synchronized activity. This reduction was not accompanied by an inability for axons to cross the lesion site. We show that functional regeneration in these old cultures can be improved by increasing the intracellular cAMP level with Rolipram or by placing a young slice next to an old one directly after the lesion. We conclude that co-cultures of two spinal cord slices are an appropriate model to study functional regeneration of intraspinal connections.
Collapse
|
6
|
Corner MA. From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro "model" systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system. Brain Sci 2013; 3:800-20. [PMID: 24961426 PMCID: PMC4061857 DOI: 10.3390/brainsci3020800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, 1071-TC, The Netherlands.
| |
Collapse
|
7
|
Eckle VS, Hauser S, Drexler B, Antkowiak B, Grasshoff C. Opposing actions of sevoflurane on GABAergic and glycinergic synaptic inhibition in the spinal ventral horn. PLoS One 2013; 8:e60286. [PMID: 23565218 PMCID: PMC3614984 DOI: 10.1371/journal.pone.0060286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ventral horn is a major substrate in mediating the immobilizing properties of the volatile anesthetic sevoflurane in the spinal cord. In this neuronal network, action potential firing is controlled by GABA(A) and glycine receptors. Both types of ion channels are sensitive to volatile anesthetics, but their role in mediating anesthetic-induced inhibition of spinal locomotor networks is not fully understood. METHODOLOGY/PRINCIPAL FINDINGS To compare the effects of sevoflurane on GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs) whole-cell voltage-clamp recordings from ventral horn interneurons were carried out in organotypic spinal cultures. At concentrations close to MAC (minimum alveolar concentration), decay times of both types of IPSCs were significantly prolonged. However, at 1.5 MAC equivalents, GABAergic IPSCs were decreased in amplitude and reduced in frequency. These effects counteracted the prolongation of the decay time, thereby decreasing the time-averaged GABAergic inhibition. In contrast, amplitudes and frequency of glycinergic IPSCs were not significantly altered by sevoflurane. Furthermore, selective GABA(A) and glycine receptor antagonists were tested for their potency to reverse sevoflurane-induced inhibition of spontaneous action potential firing in the ventral horn. These experiments confirmed a weak impact of GABA(A) receptors and a prominent role of glycine receptors at a high sevoflurane concentration. CONCLUSIONS At high concentrations, sevoflurane mediates neuronal inhibition in the spinal ventral horn primarily via glycine receptors, and less via GABA(A) receptors. Our results support the hypothesis that the impact of GABA(A) receptors in mediating the immobilizing properties of volatile anesthetics is less essential in comparison to glycine receptors.
Collapse
Affiliation(s)
- Veit-Simon Eckle
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
| | - Sabrina Hauser
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
| | - Berthold Drexler
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
- * E-mail:
| | - Bernd Antkowiak
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
| | - Christian Grasshoff
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
8
|
Mladinic M, Nistri A. Microelectrode arrays in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. FRONTIERS IN NEUROENGINEERING 2013; 6:2. [PMID: 23459694 PMCID: PMC3586932 DOI: 10.3389/fneng.2013.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 12/23/2022]
Abstract
Microelectrode arrays (MEAs) represent an important tool to study the basic characteristics of spinal networks that control locomotion in physiological conditions. Fundamental properties of this neuronal rhythmicity like burst origin, propagation, coordination, and resilience can, thus, be investigated at multiple sites within a certain spinal topography and neighboring circuits. A novel challenge will be to apply this technology to unveil the mechanisms underlying pathological processes evoked by spinal cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks that make up the locomotor central pattern generator (CPG) and to understand their operational rules. In this review, the use of isolated spinal cord preparations from rodents, or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular, this review surveys our recently developed in vitro models of SCI by evoking excitotoxic (or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on rhythmic activity and cell survival. These pathological processes which evolve via different cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed mapping of the functional damage and its time-dependent evolution.
Collapse
Affiliation(s)
- Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA) Trieste, Italy ; Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione Udine, Italy ; Department of Biotechnology, University of Rijeka Rijeka, Croatia
| | | |
Collapse
|
9
|
Sámano C, Nasrabady S, Nistri A. A study of the potential neuroprotective effect of riluzole on locomotor networks of the neonatal rat spinal cord in vitro damaged by excitotoxicity. Neuroscience 2012; 222:356-65. [DOI: 10.1016/j.neuroscience.2012.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
|
10
|
Nasrabady SE, Kuzhandaivel A, Nistri A. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro. Eur J Neurosci 2011; 33:2216-27. [PMID: 21623955 DOI: 10.1111/j.1460-9568.2011.07714.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles.
Collapse
Affiliation(s)
- Sara E Nasrabady
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | | | | |
Collapse
|
11
|
β-pompilidotoxin modulates spontaneous activity and persistent sodium currents in spinal networks. Neuroscience 2010; 172:129-38. [PMID: 20955768 DOI: 10.1016/j.neuroscience.2010.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 02/07/2023]
Abstract
The origin of rhythm generation in mammalian spinal cord networks is still poorly understood. In a previous study, we showed that spontaneous activity in spinal networks takes its origin in the properties of certain intrinsically spiking interneurons based on the persistent sodium current (INaP). We also showed that depolarization block caused by a fast inactivation of the transient sodium current (INaT) contributes to the generation of oscillatory activity in spinal cord cultures. Recently, a toxin called beta-pompilidotoxin (β-PMTX) that slows the inactivation process of tetrodotoxin (TTX)-sensitive sodium channels has been extracted from the solitary wasp venom. In the present study, we therefore investigated the effect of β-PMTX on rhythm generation and on sodium currents in spinal networks. Using intracellular recordings and multielectrode array (MEA) recordings in dissociated spinal cord cultures from embryonic (E14) rats, we found that β-PMTX reduces the number of population bursts and increases the background asynchronous activity. We then uncoupled the network by blocking all synaptic transmission (APV, CNQX, bicuculline and strychnine) and observed that β-PMTX increases both the intrinsic activity at individual channels and the number of intrinsically activated channels. At the cellular level, we found that β-PMTX has two effects: it switches 58% of the silent interneurons into spontaneously active interneurons and increases the firing rate of intrinsically spiking cells. Finally, we investigated the effect of β-PMTX on sodium currents. We found that this toxin not only affects the inactivation of INaT but also increases the peak amplitude of the persistent sodium current (INaP). Altogether, theses findings suggest that β-PMTX acting on INaP and INaT enhances intrinsic activity leading to a profound modulation of spontaneous rhythmic activity in spinal networks.
Collapse
|
12
|
The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Anal Bioanal Chem 2010; 399:2313-29. [DOI: 10.1007/s00216-010-3968-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
|
13
|
Magloire V, Streit J. Intrinsic activity and positive feedback in motor circuits in organotypic spinal cord slice cultures. Eur J Neurosci 2009; 30:1487-97. [DOI: 10.1111/j.1460-9568.2009.06978.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Czarnecki A, Magloire V, Streit J. Modulation of intrinsic spiking in spinal cord neurons. J Neurophysiol 2009; 102:2441-52. [PMID: 19675293 DOI: 10.1152/jn.00244.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The vertebrate spinal cord is equipped with a number of neuronal networks that underlie repetitive patterns of behavior as locomotion. Activity in such networks is mediated not only by intrinsic cellular properties but also by synaptic coupling. In this study, we focused on the modulation of the intrinsic activity by 5-hydroxytryptamine (5-HT, serotonin) and the cholinergic agonist muscarine in spinal cord cultures (embryonic age 14 rats). We investigated theses cultures (slices and dissociated cells) at the network level using multielectrode arrays (MEAs) and at the cellular level using whole cell patch clamp. All cultures showed bursting network activity and intrinsic activity when gamma-aminobutyric acid, glycine, and glutamate transmission was blocked. Using MEAs, we observed an increase of the intrinsic activity in the ventral part of the slices with 5-HT and muscarine. In single-cell recordings we found that 43 and 35% of the cells that were silent in the absence of fast synaptic activity were transformed into intrinsically spiking cells by 5-HT and muscarine, respectively. We tested the hypothesis that these neuromodulators act via modulation of the persistent sodium currents (I(NaP)) in these neurons. We found that 5-HT increased threefold the amplitude of I(NaP), specifically in the nonintrinsically spiking cells, and thus switched these cells into intrinsically spiking cells via activation of 5-HT(2) receptor and the phospholipase C pathway. In contrast, the effect of muscarine on nonintrinsically spiking neurons seems to be independent of I(NaP). We conclude from these findings that serotoninergic and cholinergic modulation can turn silent into spontaneously spiking neurons and thus initiate new sources of activity for rhythm generation in spinal networks.
Collapse
|
15
|
Sibilla S, Fabbro A, Grandolfo M, D'Andrea P, Nistri A, Ballerini L. The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinement. Eur J Neurosci 2009; 29:1543-59. [PMID: 19419420 DOI: 10.1111/j.1460-9568.2009.06708.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Embryonic spinal neurons maintained in organotypic slice culture are known to mimic certain maturation-dependent signalling changes. With such a model we investigated, in embryonic mouse spinal segments, the age-dependent spatio-temporal control of intracellular Ca(2+) signalling generated by neuronal populations in ventral circuits and its relation with electrical activity. We used Ca(2+) imaging to monitor areas located within the ventral spinal horn at 1 and 2 weeks of in vitro growth. Primitive patterns of spontaneous neuronal Ca(2+) transients (detected at 1 week) were typically synchronous. Remarkably, such transients originated from widespread propagating waves that became organized into large-scale rhythmic bursts. These activities were associated with the generation of synaptically mediated inward currents under whole-cell patch-clamp. Such patterns disappeared during longer culture of spinal segments: at 2 weeks in culture, only a subset of ventral neurons displayed spontaneous, asynchronous and repetitive Ca(2+) oscillations dissociated from background synaptic activity. We observed that the emergence of oscillations was a restricted phenomenon arising together with the transformation of ventral network electrophysiological bursting into asynchronous synaptic discharges. This change was accompanied by the appearance of discrete calbindin immunoreactivity against an unchanged background of calretinin-positive cells. It is attractive to assume that periodic oscillations of Ca(2+) confer a summative ability to these cells to shape the plasticity of local circuits through different changes (phasic or tonic) in intracellular Ca(2+).
Collapse
Affiliation(s)
- Sara Sibilla
- Physiology and Pathology Department, Centre for Neuroscience BRAIN, University of Trieste, via Fleming 22, 34127 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Sibilla S, Ballerini L. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs. Prog Neurobiol 2009; 89:46-60. [PMID: 19539686 DOI: 10.1016/j.pneurobio.2009.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/10/2009] [Accepted: 06/09/2009] [Indexed: 11/28/2022]
Abstract
A key objective of neuroscience research is to understand the processes leading to mature neural circuitries in the central nervous system (CNS) that enable the control of different behaviours. During development, network-constitutive neurons undergo dramatic rearrangements, involving their intrinsic properties, such as the blend of ion channels governing their firing activity, and their synaptic interactions. The spinal cord is no exception to this rule; in fact, in the ventral horn the maturation of motor networks into functional circuits is a complex process where several mechanisms cooperate to achieve the development of motor control. Elucidating such a process is crucial in identifying neurons more vulnerable to degenerative or traumatic diseases or in developing new strategies aimed at rebuilding damaged tissue. The focus of this review is on recent advances in understanding the spatio-temporal expression of the glycinergic/GABAergic system and on the contribution of this system to early network function and to motor pattern transformation along with spinal maturation. During antenatal development, the operation of mammalian spinal networks strongly depends on the activity of glycinergic/GABAergic neurons, whose action is often excitatory until shortly before birth when locomotor networks acquire the ability to generate alternating motor commands between flexor and extensor motor neurons. At this late stage of prenatal development, GABA-mediated excitation is replaced by synaptic inhibition mediated by glycine and/or GABA. At this stage of spinal maturation, the large majority of GABAergic neurons are located in the dorsal horn. We propose that elucidating the role of inhibitory systems in development will improve our knowledge on the processes regulating spinal cord maturation.
Collapse
Affiliation(s)
- Sara Sibilla
- Life Science Department, Center for Neuroscience B.R.A.I.N., University of Trieste, via Fleming 22, 34127 Trieste, Italy
| | | |
Collapse
|