1
|
Biancotti JC, Walker KA, Jiang G, Di Bernardo J, Shea LD, Kunisaki SM. Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair. J Tissue Eng 2020; 11:2041731420943833. [PMID: 32782773 PMCID: PMC7383650 DOI: 10.1177/2041731420943833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Studying how the fetal spinal cord regenerates in an ex vivo model of spina bifida repair may provide insights into the development of new tissue engineering treatment strategies to better optimize neurologic function in affected patients. Here, we developed hydrogel surgical patches designed for prenatal repair of myelomeningocele defects and demonstrated viability of both human and rat neural progenitor donor cells within this three-dimensional scaffold microenvironment. We then established an organotypic slice culture model using transverse lumbar spinal cord slices harvested from retinoic acid–exposed fetal rats to study the effect of fibrin hydrogel patches ex vivo. Based on histology, immunohistochemistry, gene expression, and enzyme-linked immunoabsorbent assays, these experiments demonstrate the biocompatibility of fibrin hydrogel patches on the fetal spinal cord and suggest this organotypic slice culture system as a useful platform for evaluating mechanisms of damage and repair in children with neural tube defects.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kendal A Walker
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Guihua Jiang
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Julie Di Bernardo
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA.,Fetal Program, Johns Hopkins Children's Center, Baltimore, MD, USA
| |
Collapse
|
2
|
Persistent Firing and Adaptation in Optic-Flow-Sensitive Descending Neurons. Curr Biol 2020; 30:2739-2748.e2. [PMID: 32470368 DOI: 10.1016/j.cub.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
A general principle of sensory systems is that they adapt to prolonged stimulation by reducing their response over time. Indeed, in many visual systems, including higher-order motion sensitive neurons in the fly optic lobes and the mammalian visual cortex, a reduction in neural activity following prolonged stimulation occurs. In contrast to this phenomenon, the response of the motor system controlling flight maneuvers persists following the offset of visual motion. It has been suggested that this gap is caused by a lingering calcium signal in the output synapses of fly optic lobe neurons. However, whether this directly affects the responses of the post-synaptic descending neurons, leading to the observed behavioral output, is not known. We use extracellular electrophysiology to record from optic-flow-sensitive descending neurons in response to prolonged wide-field stimulation. We find that, as opposed to most sensory and visual neurons, and in particular to the motion vision sensitive neurons in the brains of both flies and mammals, the descending neurons show little adaption during stimulus motion. In addition, we find that the optic-flow-sensitive descending neurons display persistent firing, or an after-effect, following the cessation of visual stimulation, consistent with the lingering calcium signal hypothesis. However, if the difference in after-effect is compensated for, subsequent presentation of stimuli in a test-adapt-test paradigm reveals adaptation to visual motion. Our results thus show a combination of adaptation and persistent firing in the neurons that project to the thoracic ganglia and thereby control behavioral output.
Collapse
|
3
|
Buntschu S, Tscherter A, Heidemann M, Streit J. Critical Components for Spontaneous Activity and Rhythm Generation in Spinal Cord Circuits in Culture. Front Cell Neurosci 2020; 14:81. [PMID: 32410961 PMCID: PMC7198714 DOI: 10.3389/fncel.2020.00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Neuronal excitability contributes to rhythm generation in central pattern generating networks (CPGs). In spinal cord CPGs, such intrinsic excitability partly relies on persistent sodium currents (INaP), whereas respiratory CPGs additionally depend on calcium-activated cation currents (ICAN). Here, we investigated the contributions of INaP and ICAN to spontaneous rhythm generation in neuronal networks of the spinal cord and whether they mainly involve Hb9 neurons. We used cultures of ventral and transverse slices from the E13-14 embryonic rodent lumbar spinal cord on multielectrode arrays (MEAs). All cultures showed spontaneous bursts of network activity. Blocking synaptic excitation with the AMPA receptor antagonist CNQX suppressed spontaneous network bursts and left asynchronous intrinsic activity at about 30% of the electrodes. Such intrinsic activity was completely blocked at all electrodes by both the INaP blocker riluzole as well as by the ICAN blocker flufenamic acid (FFA) and the more specific TRPM4 channel antagonist 9-phenanthrol. All three antagonists also suppressed spontaneous bursting completely and strongly reduced stimulus-evoked bursts. Also, FFA reduced repetitive spiking that was induced in single neurons by injection of depolarizing current pulses to few spikes. Other antagonists of unspecific cation currents or calcium currents had no suppressing effects on either intrinsic activity (gadolinium chloride) or spontaneous bursting (the TRPC channel antagonists clemizole and ML204 and the T channel antagonist TTA-P2). Combined patch-clamp and MEA recordings showed that Hb9 interneurons were activated by network bursts but could not initiate them. Together these findings suggest that both INaP through Na+-channels and ICAN through putative TRPM4 channels contribute to spontaneous intrinsic and repetitive spiking in spinal cord neurons and thereby to the generation of network bursts.
Collapse
Affiliation(s)
| | | | | | - Jürg Streit
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Machado CB, Pluchon P, Harley P, Rigby M, Gonzalez Sabater V, Stevenson DC, Hynes S, Lowe A, Burrone J, Viasnoff V, Lieberam I. In Vitro Modelling of Nerve-Muscle Connectivity in a Compartmentalised Tissue Culture Device. ADVANCED BIOSYSTEMS 2019; 3:1800307. [PMID: 31428672 PMCID: PMC6699992 DOI: 10.1002/adbi.201800307] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Indexed: 01/02/2023]
Abstract
Motor neurons project axons from the hindbrain and spinal cord to muscle, where they induce myofibre contractions through neurotransmitter release at neuromuscular junctions. Studies of neuromuscular junction formation and homeostasis have been largely confined to in vivo models. In this study we have merged three powerful tools - pluripotent stem cells, optogenetics and microfabrication - and designed an open microdevice in which motor axons grow from a neural compartment containing embryonic stem cell-derived motor neurons and astrocytes through microchannels to form functional neuromuscular junctions with contractile myofibers in a separate compartment. Optogenetic entrainment of motor neurons in this reductionist neuromuscular circuit enhanced neuromuscular junction formation more than two-fold, mirroring the activity-dependence of synapse development in vivo. We incorporated an established motor neuron disease model into our system and found that coculture of motor neurons with SOD1G93A astrocytes resulted in denervation of the central compartment and diminished myofiber contractions, a phenotype which was rescued by the Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) inhibitor Necrostatin. This coculture system replicates key aspects of nerve-muscle connectivity in vivo and represents a rapid and scalable alternative to animal models of neuromuscular function and disease.
Collapse
Affiliation(s)
- Carolina Barcellos Machado
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK
| | - Perrine Pluchon
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK; Mechanobiology Institute, National
University of Singapore, Singapore 117411
| | - Peter Harley
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK; Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | | | - Victoria Gonzalez Sabater
- Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | | | - Stephanie Hynes
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK; Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Andrew Lowe
- Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore,
Singapore 117411
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK
| |
Collapse
|
5
|
CNS repurposing - Potential new uses for old drugs: Examples of screens for Alzheimer's disease, Parkinson's disease and spasticity. Neuropharmacology 2018; 147:4-10. [PMID: 30165077 DOI: 10.1016/j.neuropharm.2018.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/10/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Drug repurposing is recently gaining increasing attention, not just from pharmaceutical companies but also from government agencies in an attempt to generate new medications to address increasing unmet medical needs in a cost effective and expedite manner. There are several approaches to identify novel indications for known drugs. Many are based on rational selection e.g. the known or a new mechanism of action of a drug. This review will focus rather on phenotypic or high content screening of compounds in models that are believed to be predictive of effectiveness of compounds irrespective of their mechanism of action. Three short cases studies of screens for Alzheimer's disease, Parkinson's disease and spasticity will be given as examples. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
|
6
|
Bucchia M, Merwin SJ, Re DB, Kariya S. Limitations and Challenges in Modeling Diseases Involving Spinal Motor Neuron Degeneration in Vitro. Front Cell Neurosci 2018; 12:61. [PMID: 29559895 PMCID: PMC5845677 DOI: 10.3389/fncel.2018.00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic conditions involving degeneration of spinal motor neurons (MNs), such as amyotrophic lateral sclerosis, sarcopenia, and spinal cord injury, mostly occur in individuals whose spinal MNs are fully mature. There is currently no effective treatment to prevent death or promote axonal regeneration of the spinal MNs affected in these patients. To increase our understanding and find a cure for such conditions, easily controllable and monitorable cell culture models allow for a better dissection of certain molecular and cellular events that cannot be teased apart in whole organism models. To date, various types of spinal MN cultures have been described. Yet these models are all based on the use of immature neurons or neurons uncharacterized for their degree of maturity after being isolated and cultured. Additionally, studying only MNs cannot give a comprehensive and complete view of the neurodegenerative processes usually involving other cell types. To date, there is no confirmed in vitro model faithfully emulating disease or injury of the mature spinal MNs. In this review, we summarize the different limitations of currently available culture models, and discuss the challenges that have to be overcome for developing more reliable and translational platforms for the in vitro study of spinal MN degeneration.
Collapse
Affiliation(s)
- Monica Bucchia
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Samantha J Merwin
- Department of Environmental Health Sciences, Columbia University Medical Center, New York, NY, United States
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University Medical Center, New York, NY, United States
| | - Shingo Kariya
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. SCIENCE CHINA-LIFE SCIENCES 2017; 61:559-568. [DOI: 10.1007/s11427-017-9217-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/05/2017] [Indexed: 12/23/2022]
|
8
|
Mis K, Grubic Z, Lorenzon P, Sciancalepore M, Mars T, Pirkmajer S. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle. Molecules 2017; 22:molecules22091418. [PMID: 28846617 PMCID: PMC6151842 DOI: 10.3390/molecules22091418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Acetylcholinesterase (AChE) and agrin, a heparan-sulfate proteoglycan, reside in the basal lamina of the neuromuscular junction (NMJ) and play key roles in cholinergic transmission and synaptogenesis. Unlike most NMJ components, AChE and agrin are expressed in skeletal muscle and α-motor neurons. AChE and agrin are also expressed in various other types of cells, where they have important alternative functions that are not related to their classical roles in NMJ. In this review, we first focus on co-cultures of embryonic rat spinal cord explants with human skeletal muscle cells as an experimental model to study functional innervation in vitro. We describe how this heterologous rat-human model, which enables experimentation on highly developed contracting human myotubes, offers unique opportunities for AChE and agrin research. We then highlight innovative approaches that were used to address salient questions regarding expression and alternative functions of AChE and agrin in developing human skeletal muscle. Results obtained in co-cultures are compared with those obtained in other models in the context of general advances in the field of AChE and agrin neurobiology.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Zoran Grubic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Tomaz Mars
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Heidemann M, Streit J, Tscherter A. Investigating Functional Regeneration in Organotypic Spinal Cord Co-cultures Grown on Multi-electrode Arrays. J Vis Exp 2015. [PMID: 26436646 PMCID: PMC4692611 DOI: 10.3791/53121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adult higher vertebrates have a limited potential to recover from spinal cord injury. Recently, evidence emerged that propriospinal connections are a promising target for intervention to improve functional regeneration. So far, no in vitro model exists that grants the possibility to examine functional recovery of propriospinal fibers. Therefore, a representative model that is based on two organotypic spinal cord sections of embryonic rat, cultured next to each other on multi-electrode arrays (MEAs) was developed. These slices grow and, within a few days in vitro, fuse along the sides facing each other. The design of the used MEAs permits the performance of lesions with a scalpel blade through this fusion site without inflicting damage on the MEAs. The slices show spontaneous activity, usually organized in network activity bursts, and spatial and temporal activity parameters such as the location of burst origins, speed and direction of their propagation and latencies between bursts can be characterized. Using these features, it is also possible to assess functional connection of the slices by calculating the amount of synchronized bursts between the two sides. Furthermore, the slices can be morphologically analyzed by performing immunohistochemical stainings after the recordings. Several advantages of the used techniques are combined in this model: the slices largely preserve the original tissue architecture with intact local synaptic circuitry, the tissue is easily and repeatedly accessible and neuronal activity can be detected simultaneously and non-invasively in a large number of spots at high temporal resolution. These features allow the investigation of functional regeneration of intraspinal connections in isolation in vitro in a sophisticated and efficient way.
Collapse
Affiliation(s)
| | - Jürg Streit
- Department of Physiology, University of Bern
| | | |
Collapse
|
10
|
Pandamooz S, Nabiuni M, Miyan J, Ahmadiani A, Dargahi L. Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening. Mol Neurobiol 2015; 53:4659-74. [PMID: 26310972 DOI: 10.1007/s12035-015-9403-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Recent improvements in organotypic slice culturing and its accompanying technological innovations have made this biological preparation increasingly useful ex vivo experimental model. Among organotypic slice cultures obtained from various central nervous regions, spinal cord slice culture is an absorbing model that represents several unique advantages over other current in vitro and in vivo models. The culture of developing spinal cord slices, as allows real-time observation of embryonic cells behaviors, is an instrumental platform for developmental investigation. Importantly, due to the ability of ex vivo models to recapitulate different aspects of corresponding in vivo conditions, these models have been subject of various manipulations to derive disease-relevant slice models. Moreover spinal cord slice cultures represent a potential platform for screening of different pharmacological agents and evaluation of cell transplantation and neuroregenerative materials. In this review, we will focus on studies carried out using the ex vivo model of spinal cord slice cultures and main advantages linked to practicality of these slices in both normal and neuropathological diseases and summarize them in different categories based on application.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jaleel Miyan
- Neurobiology Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Eckle VS, Balk M, Thiermann H, Antkowiak B, Grasshoff C. Botulinum toxin B increases intrinsic muscle activity in organotypic spinal cord-skeletal muscle co-cultures. Toxicol Lett 2015; 244:167-171. [PMID: 26260118 DOI: 10.1016/j.toxlet.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
In organotypic spinal cord-skeletal muscle co-cultures, motoneurons are driven by locomotor commands and induce contractions in surrounding muscle fibres. Using these co-cultures, it has been shown that effects of organophosphorus compounds on neuromuscular synapses can be determined in vitro. In the present study we aimed to extend this in vitro tool for pharmacologic testing of botulinum toxin B. This neurotoxin is widely used for the treatment of dystonia. Besides its effects on the neuromuscular junction, botulinum toxins may also act at centrally located synapses. Incubation with botulinum toxin B (Neurobloc(®)) induced a significant increase in muscular activity after 24, 48 and 72h. Application of the NMDA- and AMPA-receptor antagonists AP5 (20μM) and CNQX (15μM) induced a similar augmentation of muscle activity after 48 and 72h, respectively. Administration of the glycine- and GABA(A)-receptor antagonists strychnine (1μM) and bicuculline (100μM) did not alter intrinsic muscle activity. In contrast, application of a non-depolarizing muscle relaxant rocuronium bromide reduced the muscle activity in a dose-dependent manner. Our findings suggest that glutamatergic synapses in the spinal cord are more sensitive to botulinum toxin B than synaptic contacts between spinal motoneurons and muscle fibres.
Collapse
Affiliation(s)
- Veit-Simon Eckle
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Tübingen, Germany.
| | - Monika Balk
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Tübingen, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Bernd Antkowiak
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Tübingen, Germany
| | - Christian Grasshoff
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
12
|
The organotypic longitudinal spinal cord slice culture for stem cell study. Stem Cells Int 2015; 2015:471216. [PMID: 25802530 PMCID: PMC4329758 DOI: 10.1155/2015/471216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 01/05/2023] Open
Abstract
The objective of this paper is to describe in detail the method of organotypic longitudinal spinal cord slice culture and the scientific basis for its potential utility. The technique is based on the interface method, which was described previously and thereafter was modified in our laboratory. The most important advantage of the presented model is the preservation of the intrinsic spinal cord fiber tract and the ventrodorsal polarity of the spinal cord. All the processes occurring during axonal growth, regeneration, synapse formation, and myelination could be visualized while being cultured in vitro for up to 4-5 weeks after the slices had been isolated. Both pups and adult animals can undergo the same, equally efficient procedures when going by the protocol in question. The urgent need for an appropriate in vitro model for spinal cord regeneration results from a greater number of clinical trials concerning regenerative medicine in the spinal cord injury and from still insufficient knowledge of the molecular mechanisms involved in the neuroreparative processes. The detailed method of organotypic longitudinal spinal cord slice culture is accompanied by examples of its application to studying biological processes to which both the CNS inhabiting and grafted cells are subjected.
Collapse
|
13
|
Drexler B, Thiermann H, Antkowiak B, Grasshoff C. Effects of succinylcholine in an organotypic spinal cord-skeletal muscle coculture of embryonic mice. Chem Biol Interact 2013; 206:555-60. [DOI: 10.1016/j.cbi.2013.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/20/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
14
|
Mladinic M, Nistri A. Microelectrode arrays in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. FRONTIERS IN NEUROENGINEERING 2013; 6:2. [PMID: 23459694 PMCID: PMC3586932 DOI: 10.3389/fneng.2013.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 12/23/2022]
Abstract
Microelectrode arrays (MEAs) represent an important tool to study the basic characteristics of spinal networks that control locomotion in physiological conditions. Fundamental properties of this neuronal rhythmicity like burst origin, propagation, coordination, and resilience can, thus, be investigated at multiple sites within a certain spinal topography and neighboring circuits. A novel challenge will be to apply this technology to unveil the mechanisms underlying pathological processes evoked by spinal cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks that make up the locomotor central pattern generator (CPG) and to understand their operational rules. In this review, the use of isolated spinal cord preparations from rodents, or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular, this review surveys our recently developed in vitro models of SCI by evoking excitotoxic (or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on rhythmic activity and cell survival. These pathological processes which evolve via different cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed mapping of the functional damage and its time-dependent evolution.
Collapse
Affiliation(s)
- Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA) Trieste, Italy ; Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione Udine, Italy ; Department of Biotechnology, University of Rijeka Rijeka, Croatia
| | | |
Collapse
|
15
|
Cifra A, Mazzone GL, Nani F, Nistri A, Mladinic M. Postnatal developmental profile of neurons and glia in motor nuclei of the brainstem and spinal cord, and its comparison with organotypic slice cultures. Dev Neurobiol 2012; 72:1140-60. [PMID: 22021114 DOI: 10.1002/dneu.20991] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/18/2011] [Indexed: 01/31/2023]
Abstract
In vitro preparations of the neonatal rat spinal cord or brainstem are useful to investigate the organization of motor networks and their dysfunction in neurological disease models. Long-term spinal cord organotypic cultures can extend our understanding of such pathophysiological processes over longer times. It is, however, surprising that detailed descriptions of the type (and number) of neurons and glia in such preparations are currently unavailable to evaluate cell-selectivity of experimental damage. The focus of the present immunohistochemical study is the novel characterization of the cell population in the lumbar locomotor region of the rat spinal cord and in the brainstem motor nucleus hypoglossus at 0-4 postnatal days, and its comparison with spinal organotypic cultures at 2-22 days in vitro. In the nucleus hypoglossus, neurons were 40% of all cells and 80% of these were motoneurons. Astrocytes (35% of total cells) were the main glial cells, while microglia was <10%. In the spinal gray matter, the highest neuronal density was in the dorsal horn (>80%) and the lowest in the ventral horn (≤57%) with inverse astroglia numbers and few microglia. The number of neurons (including motoneurons) and astrocytes was stable after birth. Like in the spinal cord, motoneurons in organotypic spinal culture were <10% of ventral horn cells, with neurons <40%, and the rest made up by glia. The present report indicates a comparable degree of neuronal and glial maturation in brainstem and spinal motor nuclei, and that this condition is also observed in 3-week-old organotypic cultures.
Collapse
Affiliation(s)
- Alessandra Cifra
- Neurobiology Sector and IIT Unit, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | |
Collapse
|
16
|
Nasrabady SE, Kuzhandaivel A, Nistri A. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro. Eur J Neurosci 2011; 33:2216-27. [PMID: 21623955 DOI: 10.1111/j.1460-9568.2011.07714.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles.
Collapse
Affiliation(s)
- Sara E Nasrabady
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | | | | |
Collapse
|
17
|
Drexler B, Seeger T, Grasshoff C, Thiermann H, Antkowiak B. Long-term evaluation of organophosphate toxicity and antidotal therapy in co-cultures of spinal cord and muscle tissue. Toxicol Lett 2011; 206:89-93. [PMID: 21530620 DOI: 10.1016/j.toxlet.2011.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Victims of nerve agents basically require antidotal treatment. There is need for novel antidotes and for therapeutic procedures that are specifically adapted to these patients. To cope with this challenge, in vitro test systems which are easy to handle and allow for conducting long-term studies would be of great benefit. The present work introduces co-cultures of spinal cord and muscle tissue as ex vivo testing systems meeting these criteria. Cell cultures in which functional neuromuscular synapses formed ex vivo were prepared from embryonic mice. Spontaneous muscle activity was recorded by video microscopy. Muscle contractions involved intact neuromuscular transmission as indicated by the effect of succinylcholine, a muscle relaxant that completely abolished muscle activity. At a concentration of 0.75 μM the nerve agent VX reduced the frequency of spontaneous muscle contractions by about 75%. Subsequent application of obidoxime re-established muscle movements. After 24 h of antidotal treatment, muscle activity approached the level of sham-treated cultures and remained stable over the following week. In summary, co-cultures of spinal cord and muscle tissue are promising tools for evaluating the success of antidotal treatment following organophosphate intoxication over a period of at least seven days.
Collapse
Affiliation(s)
- Berthold Drexler
- Department of Anaesthesiology, Experimental Anaesthesiology Section, Eberhard-Karls-University, Schaffhausenstr. 113, 72072 Tuebingen, Germany
| | | | | | | | | |
Collapse
|
18
|
Maccione A, Gandolfo M, Tedesco M, Nieus T, Imfeld K, Martinoia S, Berdondini L. Experimental Investigation on Spontaneously Active Hippocampal Cultures Recorded by Means of High-Density MEAs: Analysis of the Spatial Resolution Effects. FRONTIERS IN NEUROENGINEERING 2010; 3:4. [PMID: 20485465 PMCID: PMC2871691 DOI: 10.3389/fneng.2010.00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/06/2010] [Indexed: 11/14/2022]
Abstract
Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs) coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (interelectrode separation of 21 μm) from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially downsampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR), mean firing rate (MFR) and mean bursting rate (MBR). Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signaling at both local and global neuronal circuitries.
Collapse
Affiliation(s)
- Alessandro Maccione
- Neuroscience and Brain Technologies, Italian Institute of Technology Genova, Italy
| | | | | | | | | | | | | |
Collapse
|