1
|
Ralevski E, Newcomb J, Pisani E, DeNegre D, Peltier M, Jane JS, Yoon G, Petrakis I. Progesterone Attenuates the Stress Response in Individuals with Alcohol Dependence and Post-Traumatic Stress Disorder - A Pilot Study. J Dual Diagn 2024; 20:39-51. [PMID: 38147491 PMCID: PMC11214330 DOI: 10.1080/15504263.2023.2294989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
OBJECTIVE Evidence from laboratory studies suggests that progesterone may be effective in reducing stress and craving, and may improve cognitive performance in smokers and individuals with cocaine dependence. The objective of this study was to examine if progesterone would attenuate stress-induced craving, anxiety, affect and physiological measures, as well as improve stress-induced cognitive performance (processing speed and selective attention) in individuals diagnosed with alcohol use disorder (AUD) and post traumatic stress disorder (PTSD). METHODS This laboratory study included (n = 13) participants who were diagnosed with current AUD and PTSD who were randomly assigned to recive either progesterone (200mg bid) or placebo in identical looking capsules for 3 days. On the fourth day they completed a laboratory session. In the morning of the test session, they received the last dose of medication and completed the rest of the laboratory procedures. The procedures included presentation in random order of personalized trauma and neutral scripts with relaxation in between. Main outcomes included measure of craving, anxiety, affect and cognitive performance. RESULTS Consistent with other research, trauma scripts produced significantly greater increases in craving, anxiety and negative affect when compared with neutral scripts. Progesterone significantly reduced stress-induced symptoms of craving, anxiety, fear, anger and sadness but had no effect on positive emotions (joy, relaxation). Progesterone was effective in ameliorating stress-induced decreases in cognitive performance. CONCLUSIONS The findings from this study demonstrate that progesterone can be effective in reducing stress-induced craving, anxiety and negative affect in a laboratory setting in individuals with comorbid AUD and PTSD. Interestingly, progesterone also improved cognitive performance. These findings require replication in a larger clinical trial and may have implications for treatment among individuals with AUD and PTSD.This study was registered as NCT02187224, at www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Elizabeth Ralevski
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Mental Illness Research and Clinical Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Jenelle Newcomb
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Emily Pisani
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Diana DeNegre
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Mental Illness Research and Clinical Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - MacKenzie Peltier
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Jane Serrita Jane
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Gihyun Yoon
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Mental Illness Research and Clinical Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ismene Petrakis
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Mental Illness Research and Clinical Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
2
|
Ma JC, Zhang HL, Huang HP, Ma ZL, Chen SF, Qiu ZK, Chen JS. Antidepressant-like effects of Z-ligustilide on chronic unpredictable mild stress-induced depression in rats. Exp Ther Med 2021; 22:677. [PMID: 33986842 PMCID: PMC8112151 DOI: 10.3892/etm.2021.10109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Depression is a significant public health issue and its neuropathogenesis is associated with the dysfunction of progesterone and allopregnanolone biosynthesis. Z-ligustilide (LIG), one of the main components of the herb Angelica sinensis (Oliv.) Diels (AS), is reported to have antidepressant activities. The present study aimed to evaluate the antidepressant-like effects of LIG via behavioral tests and to measure the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus. The results demonstrated that LIG (20 and 40 mg/kg) exerted antidepressant-like effects, confirmed by increased mobility, locomotion, rearing frequency and preference to sucrose. Furthermore, the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus were markedly increased following treatment with LIG (20 and 40 mg/kg), indicating that both neurosteroids could serve a significant role in the antidepressant-like effects of LIG.
Collapse
Affiliation(s)
- Jian-Chun Ma
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Hao-Liang Zhang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui-Ping Huang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Zao-Liang Ma
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Su-Fang Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Ji-Sheng Chen, Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, 19 Nonlinxia Road, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
3
|
Cai H, Zhou X, Dougherty GG, Reddy RD, Haas GL, Montrose DM, Keshavan M, Yao JK. Pregnenolone-progesterone-allopregnanolone pathway as a potential therapeutic target in first-episode antipsychotic-naïve patients with schizophrenia. Psychoneuroendocrinology 2018; 90:43-51. [PMID: 29433072 PMCID: PMC5864547 DOI: 10.1016/j.psyneuen.2018.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/29/2017] [Accepted: 02/04/2018] [Indexed: 11/23/2022]
Abstract
Neurosteroids are both endogenous and exogenous steroids that rapidly alter neuronal excitability through interactions with ligand-gated ion channels and other cell surface receptors. They are originated from cholesterol and have important implications for schizophrenia (SZ) pathophysiology and treatment strategies. Specifically, pregnenolone (PREG), progesterone (PROG) and allopregnanolone (ALLO) exhibit similar psychotropic properties. Using enzyme immunoassay, we compared the neurosteroids in PREG downstream pathways in plasma between healthy controls (HC, n = 43) and first-episode antipsychotic-naïve patients with SZ (FEAN-SZ, n = 53) before antipsychotic drug (APD) treatment. Comparisons were also made particularly along PREG-PROG-ALLO pathway in the same FEAN-SZ patients across multiple time points following initiation of treatment for 12 months (m). Firstly, at baseline, levels of PREG were significantly higher and those of ALLO were lower in FEAN-SZ than in HC, whereas PROG, cortisol, dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) were not different. Consequently, the molar ratios of ALLO/PREG and ALLO/PROG in FEAN-SZ were significantly reduced. Secondly, in response to APD at 1 month, ALLO levels in FEAN-SZ were markedly elevated, whereas PREG and PROG levels decreased. Thirdly, among FEAN-SZ, lower levels of PROG (reflecting higher conversion to ALLO) at baseline may predict better therapeutic outcome after 1 month of APD treatment. These findings point to the perturbations of the PREG-PROG-ALLO pathway early in psychosis, and further study of this pathway may inform alternative and innovative therapeutic targets for SZ.
Collapse
Affiliation(s)
- HuaLin Cai
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; Departments of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15216, USA; The Second Xiangya Hospital and Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Xiang Zhou
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; Departments of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - George G Dougherty
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ravinder D Reddy
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Gretchen L Haas
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Debra M Montrose
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matcheri Keshavan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; Departments of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. Neurosteroids and oxysterols as potential therapeutic agents for glaucoma and Alzheimer's disease. ACTA ACUST UNITED AC 2018; 8:344-359. [PMID: 30774720 DOI: 10.4172/neuropsychiatry.1000356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glaucoma is one of the most frequent causes of visual impairment worldwide and involves selective damage to retinal ganglion cells (RGCs) resulting in degeneration of neural pathways connecting retina to visual cortex. It is of interest that similarities in pathological changes have been described in Alzheimer's disease (AD), the most common cause of progressive memory loss and dementia in older people. Accumulation of amyloid-beta (Abeta) and hyperphosphorylated tau is thought to contribute to apoptotic neuronal death in Alzheimer's disease, and similar changes have been linked to apoptotic RGC death in glaucoma. Both glaucoma and Alzheimer's disease also suffer from a lack of effective treatments prompting a search for novel therapeutic interventions. Neurosteroids (NSs) (including oxysterols) are endogenous molecules synthesized in the nervous system from cholesterol that can modulate glutamate and GABA receptors, the primary mediators of fast excitatory and inhibitory neurotransmission in the brain, respectively. Because changes in the glutamate and GABA neurotransmitter systems contribute to the pathogenesis of AD and glaucoma, NSs are possible therapeutic targets for these disorders. In this review, we present recent evidence supporting pathological links between Alzheimer's disease and glaucoma, and focus on the possible role of NSs in these diseases and how NSs might be developed for therapeutic purposes.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Douglas F Covey
- Department of Developmental Biology, Akita University Graduate School of Medicine, Akita, Japan.,Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan
| | - Charles F Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| |
Collapse
|
5
|
Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 2015; 146:48-61. [PMID: 25196185 DOI: 10.1016/j.jsbmb.2014.09.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
Progesterone is a well-known steroid hormone, synthesized by ovaries and placenta in females, and by adrenal glands in both males and females. Several tissues are targets of progesterone and the nervous system is a major one. Progesterone is also locally synthesized by the nervous system and qualifies, therefore, as a neurosteroid. In addition, the nervous system has the capacity to bio-convert progesterone into its active metabolite allopregnanolone. The enzymes required for progesterone and allopregnanolone synthesis are widely distributed in brain and spinal cord. Increased local biosynthesis of pregnenolone, progesterone and 5α-dihydroprogesterone may be a part of an endogenous neuroprotective mechanism in response to nervous system injuries. Progesterone and allopregnanolone neuroprotective effects have been widely recognized. Multiple receptors or associated proteins may contribute to the progesterone effects: classical nuclear receptors (PR), membrane progesterone receptor component 1 (PGRMC1), membrane progesterone receptors (mPR), and γ-aminobutyric acid type A (GABAA) receptors after conversion to allopregnanolone. In this review, we will succinctly describe progesterone and allopregnanolone biosynthetic pathways and enzyme distribution in brain and spinal cord. Then, we will summarize our work on progesterone receptor distribution and cellular expression in brain and spinal cord; neurosteroid stimulation after nervous system injuries (spinal cord injury, traumatic brain injury, and stroke); and on progesterone and allopregnanolone neuroprotective effects in different experimental models including stroke and spinal cord injury. We will discuss in detail the neuroprotective effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABAA receptors.
Collapse
Affiliation(s)
- R Guennoun
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France.
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | | | - P Liere
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - M Schumacher
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y. Neurosteroids are endogenous neuroprotectants in an ex vivo glaucoma model. Invest Ophthalmol Vis Sci 2014; 55:8531-41. [PMID: 25406290 DOI: 10.1167/iovs.14-15624] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Allopregnanolone is a neurosteroid and powerful modulator of neuronal excitability. The neuroprotective effects of allopregnanolone involve potentiation of γ-aminobutyric acid (GABA) inhibitory responses. Although glutamate excitotoxicity contributes to ganglion cell death in glaucoma, the role of GABA in glaucoma remains uncertain. The aim of this study was to determine whether allopregnanolone synthesis is induced by high pressure in the retina and whether allopregnanolone modulates pressure-mediated toxicity. METHODS Ex vivo rat retinas were exposed to hydrostatic pressure (10, 35, and 75 mm Hg) for 24 hours. Endogenous allopregnanolone production was determined by liquid chromatography and tandem mass spectrometry (LC-MS/MS) and immunochemistry. We also examined the effects of allopregnanolone, finasteride, and dutasteride (inhibitors of 5α-reductase), picrotoxin (a GABA(A) receptor antagonist), and D-2-amino-5-phosphonovalerate (APV, a broad-spectrum N-methyl-D-aspartate receptor [NMDAR] antagonist). RESULTS Pressure loading at 75 mm Hg significantly increased allopregnanolone levels as measured by LC-MS/MS. Elevated hydrostatic pressure also increased neurosteroid immunofluorescence, especially in the ganglion cell layer and inner nuclear layers. Staining was negligible at lower pressures. Enhanced allopregnanolone levels and immunostaining were substantially blocked by finasteride, but more effectively inhibited by dutasteride and APV. Administration of exogenous allopregnanolone suppressed pressure-induced axonal swelling in a concentration-dependent manner, while picrotoxin overcame these neuroprotective effects. CONCLUSIONS These results indicate that the synthesis of allopregnanolone is enhanced mainly via NMDARs in the pressure-loaded retina, and that allopregnanolone diminishes pressure-mediated retinal degeneration via GABAA receptors. Allopregnanolone and other related neurosteroids may serve as potential novel therapeutic targets for the prevention of pressure-induced retinal damage in glaucoma.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita Graduate University School of Medicine, Akita, Japan
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita Graduate University School of Medicine, Akita, Japan
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
7
|
Loiseau C, Osinski D, Joubert F, Straus C, Similowski T, Bodineau L. The progestin etonogestrel enhances the respiratory response to metabolic acidosis in newborn rats. Evidence for a mechanism involving supramedullary structures. Neurosci Lett 2014; 567:63-7. [PMID: 24686181 DOI: 10.1016/j.neulet.2014.03.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/28/2014] [Accepted: 03/07/2014] [Indexed: 01/30/2023]
Abstract
Central congenital hypoventilation syndrome is a neuro-respiratory disease characterized by the dysfunction of the CO2/H(+) chemosensitive neurons of the retrotrapezoid nucleus/parafacial respiratory group. A recovery of CO2/H(+) chemosensitivity has been observed in some central congenital hypoventilation syndrome patients coincidental with contraceptive treatment by a potent progestin, desogestrel (Straus et al., 2010). The mechanisms of this progestin effect remain unknown, although structures of medulla oblongata, midbrain or diencephalon are known to be targets for progesterone. In the present study, on ex vivo preparations of central nervous system of newborn rats, we show that acute exposure to etonogestrel (active metabolite of desogestrel) enhanced the increased respiratory frequency induced by metabolic acidosis via a mechanism involving supramedullary structures located in pontine, mesencephalic or diencephalic regions.
Collapse
Affiliation(s)
- Camille Loiseau
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; INSERM, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - Diane Osinski
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; INSERM, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - Fanny Joubert
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; INSERM, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - Christian Straus
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; INSERM, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service d'Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée, F-75651 Paris, France
| | - Thomas Similowski
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; INSERM, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale, F-75651 Paris, France
| | - Laurence Bodineau
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; INSERM, UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France.
| |
Collapse
|
8
|
Chesnoy-Marchais D. Bicuculline- and neurosteroid-sensitive tonic chloride current in rat hypoglossal motoneurons and atypical dual effect of SR95531. Eur J Neurosci 2012. [PMID: 23190086 DOI: 10.1111/ejn.12074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypoglossal motoneurons (HMs) are known to be under 'permanent' bicuculline-sensitive inhibition and to show 'transient' synaptic γ-aminobutyric acid (GABA)(A) and glycine inhibitory responses. The present paper describes a permanent bicuculline-sensitive current that should contribute to their tonic inhibition. This current was recorded in brainstem slices superfused without any exogenous agonist and remained detectable with tetrodotoxin. It could also be blocked by the other GABA(A) antagonists picrotoxin (PTX) and 2-(3-carboxypropyl)-3-amino-6-(4 methoxyphenyl)pyridazinium bromide) (SR95531; gabazine), but persisted in the presence of a specific blocker of α5-containing GABA(A) receptors. Addition of 2 μm 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride (THIP), known to preferentially activate GABA(A) receptors devoid of a γ-subunit, induced a sustained anionic current that could be further enhanced by neurosteroids such as allopregnanolone (100 nm). Thus, HMs show a tonic inhibitory current carried by extrasynaptic γ-free GABA(A) receptors, highly sensitive to neurosteroids. A second result was obtained by using SR95531 at concentrations sufficiently high to rapidly block the tonic current above the chloride equilibrium potential (E(C) (l)). Surprisingly, below E(C) (l) , SR95531 (10-40 μm) activated a sustained inward current, associated with a conductance increase, and resistant to bicuculline or PTX (100 μm). Similarly, after blockade of the bicuculline-sensitive current, SR95531 activated an outward current above E(C) (l). The bicuculline-resistant anionic current activated by SR95531 could be blocked by a GABA(C) receptor antagonist. Thus, two types of inhibitory GABA receptors, belonging to the GABA(A) and GABA(C) families, are able to show a sustained activity in HMs and provide promising targets for neuroprotection under overexcitatory situations known to easily damage these particularly fragile neurons.
Collapse
Affiliation(s)
- Dominique Chesnoy-Marchais
- UMR788 INSERM et Université Paris-Sud, Bátiment Grégory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicětre Cedex, France.
| |
Collapse
|
9
|
Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol 2011; 45:30-42. [PMID: 22072396 DOI: 10.1007/s12035-011-8217-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/25/2011] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABA(A) receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABA(A) receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.
Collapse
|
10
|
Sofuoglu M, Mouratidis M, Mooney M. Progesterone improves cognitive performance and attenuates smoking urges in abstinent smokers. Psychoneuroendocrinology 2011; 36:123-32. [PMID: 20675057 PMCID: PMC2987547 DOI: 10.1016/j.psyneuen.2010.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND Progesterone, a steroid hormone, has been implicated in many CNS functions including reward, cognition, and neuroprotection. The goal of this study was to examine the dose-dependent effects of progesterone on cognitive performance, smoking urges, and smoking behavior in smokers. METHODS Thirty female and thirty-four male smokers participated in a double-blind, placebo-controlled study. Female smokers were in the early follicular phase of their menstrual cycle during study participation. Smokers were randomly assigned to either 200 or 400mg/day of progesterone or placebo, given in two separate doses, during clinic visit. The first 3 days of the treatment period, smokers abstained from smoking, which was verified with breath CO levels. Smokers attended an experimental session on day 4 where the number of cigarettes smoked were recorded starting 2h after the medication treatment. RESULTS Progesterone treatment, 200mg/day, significantly improved cognitive performance in the Stroop and the Digit Symbol Substitution Test. Progesterone at 400mg/day was associated with reduced urges for smoking but did not change ad lib smoking behavior. CONCLUSIONS These findings suggest a potential therapeutic value of progesterone for smoking cessation.
Collapse
Affiliation(s)
- Mehmet Sofuoglu
- Yale University, School of Medicine, Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA.
| | | | | |
Collapse
|