1
|
Yang DP, Robinson PA. Unified analysis of global and focal aspects of absence epilepsy via neural field theory of the corticothalamic system. Phys Rev E 2019; 100:032405. [PMID: 31639915 DOI: 10.1103/physreve.100.032405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Absence epilepsy is characterized by a sudden paroxysmal loss of consciousness accompanied by oscillatory activity propagating over many brain areas. Although primary generalized absence seizures are supported by the global corticothalamic system, converging experimental evidence supports a focal theory of absence epilepsy. Here a physiology-based corticothalamic model is investigated with spatial heterogeneity due to focal epilepsy to unify global and focal aspects of absence epilepsy. Numeric and analytic calculations are employed to investigate the emergent spatiotemporal dynamics as well as their underlying dynamical mechanisms. They can be categorized into three scenarios: suppressed epilepsy, focal seizures, or generalized seizures, as summarized from a phase diagram vs focal width and characteristic axon range. The corresponding temporal frequencies and spatial extents of cortical waves in generalized seizures and focal seizures agree well with experimental observations of global and focal aspects of absence epilepsy, respectively. The emergence of the spatiotemporal dynamics corresponding to focal seizures provides a biophysical explanation of the temporally higher frequency but spatially more localized cortical waves observed in genetic rat models that display characteristics of human absence epilepsy. Predictions are also presented for further experimental test.
Collapse
Affiliation(s)
- Dong-Ping Yang
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
2
|
Baier G, Taylor PN, Wang Y. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients. Front Comput Neurosci 2017; 11:25. [PMID: 28458634 PMCID: PMC5394159 DOI: 10.3389/fncom.2017.00025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/29/2017] [Indexed: 01/24/2023] Open
Abstract
Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.
Collapse
Affiliation(s)
- Gerold Baier
- Cell and Developmental Biology, University College LondonLondon, UK
| | - Peter N Taylor
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK.,Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Newcastle UniversityNewcastle, UK.,Institute of Neurology, University College LondonLondon, UK
| | - Yujiang Wang
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK.,Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Newcastle UniversityNewcastle, UK.,Institute of Neurology, University College LondonLondon, UK
| |
Collapse
|
3
|
Computational models of epileptiform activity. J Neurosci Methods 2016; 260:233-51. [DOI: 10.1016/j.jneumeth.2015.03.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/24/2022]
|
4
|
Lüttjohann A, van Luijtelaar G. Dynamics of networks during absence seizure's on- and offset in rodents and man. Front Physiol 2015; 6:16. [PMID: 25698972 PMCID: PMC4318340 DOI: 10.3389/fphys.2015.00016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/11/2015] [Indexed: 11/13/2022] Open
Abstract
Network mechanisms relevant for the generation, maintenance and termination of spike-wave discharges (SWD), the neurophysiological hallmark of absence epilepsy, are still enigmatic and widely discussed. Within the last years, however, improvements in signal analytical techniques, applied to both animal and human fMRI, EEG, MEG, and ECoG data, greatly increased our understanding and challenged several, dogmatic concepts of SWD. This review will summarize these recent data, demonstrating that SWD are not primary generalized, are not sudden and unpredictable events. It will disentangle different functional contributions of structures within the cortico-thalamo-cortical system, relevant for the generation, generalization, maintenance, and termination of SWD and will present a new “network based” scenario for these oscillations. Similarities and differences between rodent and human data are presented demonstrating that in both species a local cortical onset zone of SWD exists, although with different locations; that in both some forms of cortical and thalamic precursor activity can be found, and that SWD occur through repetitive cyclic activity between cortex and thalamus. The focal onset zone in human data could differ between patients with varying spatial and temporal dynamics; in rats the latter is still poorly investigated.
Collapse
Affiliation(s)
- Annika Lüttjohann
- Donders Centre for Cognition, Donders Instiute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Institute of Physiology I, Westfälische Wilhelms-University Münster Münster, Germany
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Instiute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
5
|
Woldman W, Terry JR. Multilevel Computational Modelling in Epilepsy: Classical Studies and Recent Advances. VALIDATING NEURO-COMPUTATIONAL MODELS OF NEUROLOGICAL AND PSYCHIATRIC DISORDERS 2015. [DOI: 10.1007/978-3-319-20037-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Taylor PN, Kaiser M, Dauwels J. Structural connectivity based whole brain modelling in epilepsy. J Neurosci Methods 2014; 236:51-7. [PMID: 25149109 DOI: 10.1016/j.jneumeth.2014.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 11/30/2022]
Abstract
Epilepsy is a neurological condition characterised by the recurrence of seizures. During seizures multiple brain areas can behave abnormally. Rather than considering each abnormal area in isolation, one can consider them as an interconnected functional 'network'. Recently, there has been a shift in emphasis to consider epilepsy as a disorder involving more widespread functional brain networks than perhaps was previously thought. The basis for these functional networks is proposed to be the static structural brain network established through the connectivity of the white matter. Additionally, it has also been argued that time varying aspects of epilepsy are of crucial importance and as such computational models of these dynamical properties have recently advanced. We describe how dynamic computer models can be combined with static human in vivo connectivity obtained through diffusion weighted magnetic resonance imaging. We predict that in future the use of these two methods in concert will lead to predictions for optimal surgery and brain stimulation sites for epilepsy and other neurological disorders.
Collapse
Affiliation(s)
| | - Marcus Kaiser
- School of Computing Science, Newcastle University, UK; Institute of Neuroscience, Newcastle University, UK
| | - Justin Dauwels
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
7
|
KALITZIN STILIYAN, KOPPERT MARCUS, PETKOV GEORGE, DA SILVA FERNANDOLOPES. MULTIPLE OSCILLATORY STATES IN MODELS OF COLLECTIVE NEURONAL DYNAMICS. Int J Neural Syst 2014; 24:1450020. [DOI: 10.1142/s0129065714500208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In our previous studies, we showed that the both realistic and analytical computational models of neural dynamics can display multiple sustained states (attractors) for the same values of model parameters. Some of these states can represent normal activity while other, of oscillatory nature, may represent epileptic types of activity. We also showed that a simplified, analytical model can mimic this type of behavior and can be used instead of the realistic model for large scale simulations. The primary objective of the present work is to further explore the phenomenon of multiple stable states, co-existing in the same operational model, or phase space, in systems consisting of large number of interconnected basic units. As a second goal, we aim to specify the optimal method for state control of the system based on inducing state transitions using appropriate external stimulus. We use here interconnected model units that represent the behavior of neuronal populations as an effective dynamic system. The model unit is an analytical model (S. Kalitzin et al., Epilepsy Behav. 22 (2011) S102–S109) and does not correspond directly to realistic neuronal processes (excitatory–inhibitory synaptic interactions, action potential generation). For certain parameter choices however it displays bistable dynamics imitating the behavior of realistic neural mass models. To analyze the collective behavior of the system we applied phase synchronization analysis (PSA), principal component analysis (PCA) and stability analysis using Lyapunov exponent (LE) estimation. We obtained a large variety of stable states with different dynamic characteristics, oscillatory modes and phase relations between the units. These states can be initiated by appropriate initial conditions; transitions between them can be induced stochastically by fluctuating variables (noise) or by specific inputs. We propose a method for optimal reactive control, allowing forced transitions from one state (attractor) into another.
Collapse
Affiliation(s)
- STILIYAN KALITZIN
- Foundation Epilepsy Institute in The Netherlands (SEIN), Achterweg 5, Heemstede, The Netherlands
| | - MARCUS KOPPERT
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon EX4 4QF, UK
| | - GEORGE PETKOV
- Foundation Epilepsy Institute in The Netherlands (SEIN), Achterweg 5, Heemstede, The Netherlands
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon EX4 4QF, UK
| | - FERNANDO LOPES DA SILVA
- Swammerdam Institute for Life Sciences, Center of Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Department of Bioengineering, Instituto Superior Técnico, Lisbon Technical University, Lisbon, Portugal
| |
Collapse
|
8
|
KOPPERT MARC, KALITZIN STILIYAN, VELIS DEMETRIOS, LOPES DA SILVA FERNANDO, VIERGEVER MAXA. DYNAMICS OF COLLECTIVE MULTI-STABILITY IN MODELS OF MULTI-UNIT NEURONAL SYSTEMS. Int J Neural Syst 2014; 24:1430004. [DOI: 10.1142/s0129065714300046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we investigate the correspondence between dynamic patterns of behavior in two types of computational models of neuronal activity. The first model type is the realistic neuronal model; the second model type is the phenomenological or analytical model. In the simplest model set-up of two interconnected units, we define a parameter space for both types of systems where their behavior is similar. Next we expand the analytical model to two sets of 90 fully interconnected units with some overlap, which can display multi-stable behavior. This system can be in three classes of states: (i) a class consisting of a single resting state, where all units of a set are in steady state, (ii) a class consisting of multiple preserving states, where subsets of the units of a set participate in limit cycle, and (iii) a class consisting of a single saturated state, where all units of a set are recruited in a global limit cycle. In the third and final part of the work, we demonstrate that phase synchronization of units can be detected by a single output unit.
Collapse
Affiliation(s)
- MARC KOPPERT
- Stichting Epilepsie Instellingen Nederland, Achterweg 5, 2103 SW Heemstede, The Netherlands
| | - STILIYAN KALITZIN
- Stichting Epilepsie Instellingen Nederland, Achterweg 5, 2103 SW Heemstede, The Netherlands
| | - DEMETRIOS VELIS
- Stichting Epilepsie Instellingen Nederland, Achterweg 5, 2103 SW Heemstede, The Netherlands
- Department of Neurosurgery, Free University Medical Centre (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - FERNANDO LOPES DA SILVA
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
- Department Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal
| | - MAX A. VIERGEVER
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
9
|
Goodfellow M, Glendinning P. Mechanisms of intermittent state transitions in a coupled heterogeneous oscillator model of epilepsy. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2013; 3:17. [PMID: 23945016 PMCID: PMC4177386 DOI: 10.1186/2190-8567-3-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/30/2013] [Indexed: 05/10/2023]
Abstract
We investigate the dynamic mechanisms underlying intermittent state transitions in a recently proposed neural mass model of epilepsy. A low dimensional model is constructed, which preserves two key features of the neural mass model, namely (i) coupling between oscillators and (ii) heterogeneous proximity of these oscillators to a bifurcation between distinct limit cycles. We demonstrate that state transitions due to intermittency occur in the abstract model. This suggests that there is a general bifurcation mechanism responsible for this behaviour and that this is independent of the precise form of the evolution equations. Such abstractions of neural mass models allow a deeper insight into underlying dynamic and physiological mechanisms, and also allow the more efficient exploration of large scale brain dynamics in disease.
Collapse
Affiliation(s)
- Marc Goodfellow
- Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA), School of Mathematics, The University of Manchester, Manchester, UK
| | - Paul Glendinning
- Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA), School of Mathematics, The University of Manchester, Manchester, UK
| |
Collapse
|
10
|
O'Dea R, Crofts JJ, Kaiser M. Spreading dynamics on spatially constrained complex brain networks. J R Soc Interface 2013; 10:20130016. [PMID: 23407574 DOI: 10.1098/rsif.2013.0016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study of dynamical systems defined on complex networks provides a natural framework with which to investigate myriad features of neural dynamics and has been widely undertaken. Typically, however, networks employed in theoretical studies bear little relation to the spatial embedding or connectivity of the neural networks that they attempt to replicate. Here, we employ detailed neuroimaging data to define a network whose spatial embedding represents accurately the folded structure of the cortical surface of a rat brain and investigate the propagation of activity over this network under simple spreading and connectivity rules. By comparison with standard network models with the same coarse statistics, we show that the cortical geometry influences profoundly the speed of propagation of activation through the network. Our conclusions are of high relevance to the theoretical modelling of epileptic seizure events and indicate that such studies which omit physiological network structure risk simplifying the dynamics in a potentially significant way.
Collapse
Affiliation(s)
- Reuben O'Dea
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | | | | |
Collapse
|
11
|
Taylor PN, Goodfellow M, Wang Y, Baier G. Towards a large-scale model of patient-specific epileptic spike-wave discharges. BIOLOGICAL CYBERNETICS 2013; 107:83-94. [PMID: 23132433 DOI: 10.1007/s00422-012-0534-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/17/2012] [Indexed: 06/01/2023]
Abstract
Clinical electroencephalographic (EEG) recordings of the transition into generalised epileptic seizures show a sudden onset of spike-wave dynamics from a low-amplitude irregular background. In addition, non-trivial and variable spatio-temporal dynamics are widely reported in combined EEG/fMRI studies on the scale of the whole cortex. It is unknown whether these characteristics can be accounted for in a large-scale mathematical model with fixed heterogeneous long-range connectivities. Here, we develop a modelling framework with which to investigate such EEG features. We show that a neural field model composed of a few coupled compartments can serve as a low-dimensional prototype for the transition between irregular background dynamics and spike-wave activity. This prototype then serves as a node in a large-scale network with long-range connectivities derived from human diffusion-tensor imaging data. We examine multivariate properties in 42 clinical EEG seizure recordings from 10 patients diagnosed with typical absence epilepsy and 50 simulated seizures from the large-scale model using 10 DTI connectivity sets from humans. The model can reproduce the clinical feature of stereotypy where seizures are more similar within a patient than between patients, essentially creating a patient-specific fingerprint. We propose the approach as a feasible technique for the investigation of patient-specific large-scale epileptic features in space and time.
Collapse
Affiliation(s)
- Peter Neal Taylor
- Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|
12
|
Coombes S, Terry JR. The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience. Eur J Neurosci 2012; 36:2118-20. [PMID: 22805057 DOI: 10.1111/j.1460-9568.2012.08185.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is a vast (and rapidly growing) amount of experimental and clinical data of the nervous system at very diverse spatial scales of activity (e.g. from sub-cellular through to whole organ), with many neurological disorders characterized by oscillations in neural activity across these disparate scales. Computer modelling and the development of associated mathematical theories provide us with a unique opportunity to integrate information from across these diverse scales of activity; leading to explanations of the potential mechanisms underlying the time-evolving dynamics and, more importantly, allowing the development of new hypotheses regarding neural function that may be tested experimentally and ultimately translated into the clinic. The purpose of this special issue is to present an overview of current integrative research in the areas of epilepsy, Parkinson's disease and schizophrenia, where multidisciplinary relationships involving theory, experimental and clinical research are becoming increasingly established.
Collapse
|
13
|
Baier G, Goodfellow M, Taylor PN, Wang Y, Garry DJ. The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Front Physiol 2012; 3:281. [PMID: 22934035 PMCID: PMC3429055 DOI: 10.3389/fphys.2012.00281] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022] Open
Abstract
The occurrence of seizures is the common feature across the spectrum of epileptic disorders. We describe how the use of mechanistic neural population models leads to novel insight into the dynamic mechanisms underlying two important types of epileptic seizures. We specifically stress the need for a spatio-temporal description of the rhythms to deal with the complexity of the pathophenotype. Adapted to functional and structural patient data, the macroscopic models may allow a patient-specific description of seizures and prediction of treatment outcome.
Collapse
Affiliation(s)
- Gerold Baier
- DTC Integrative Systems Biology, Manchester Interdisciplinary Biocentre, The University of Manchester Manchester, UK
| | | | | | | | | |
Collapse
|